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Abstract 
This paper analyses the effects of small injection/suction Reynolds number, 
Hartmann parameter, permeability parameter and wave number on a viscous 
incompressible electrically conducting fluid flow in a parallel porous plates 
forming a channel. The plates of the channel are parallel with the same constant 
temperature and subjected to a small injection/suction. The upper plate is al-
lowed to move in flow direction and the lower plate is kept at rest. A uniform 
magnetic field is applied perpendicularly to the plates. The main objective of the 
paper is to study the effect of the above parameters on temporal linear stability 
analysis of the flow with a new approach based on modified Orr-Sommerfeld 
equation. It is obtained that the permeability parameter, the Hartmann para-
meter and the wave number contribute to the linear temporal stability while the 
small injection/suction Reynolds number has a negligible effect on the stability. 
 

Keywords 
Hydromagnetic Flat Couette Flow, Injection/Suction Parameter, Modified  
Orr-Sommerfeld Equation, Temporal Linear Stability 

 

1. Introduction 

The study of Couette flow in a rectangular channel of an electrically conducting 
viscous fluid under the action of a transversely applied magnetic field has 
immediate applications in many devices such as magnetohydrodynamic (MHD) 
power generators, MHD pumps, accelerators, aerodynamics heating, electrostatic 
precipitation, polymer technology, petroleum industry, purification of crude oil 
and fluid droplets spray. Channel flows of a Newtonian fluid with or without 
heat transfer were studied with or without Hall currents by many authors [1]-[8]. 
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The effects of the injection/suction through the injection/suction parameter 
number, Hartmann parameter, permeabilty or Darcy parameter on the stability 
of the fluids flows were also studied with different approach [2] [5] [6] [7] [8]. 

Indeed, the heat source and the Soret effect on hydromagnetic oscillatory flow 
through a porous medium bounded by two vertical parallel porous plates have 
been analyzed by Chand [5], where one plate of the channel is kept stationary 
and the other is moving with uniform velocity. The plates of the channel are 
subjected to constant injection and suction velocities respectively. They remarked 
that the Lorentz force parameter i.e. the Hartmann number contributes to reduce 
the velocity and the skin friction profiles. The effect of the permeability parameter 
i.e. Darcy number is just opposite to that of Lorentz force parameter. Nayak et al. 
[8] studied an oscillatory effect on magnetohydrodynamic flow and heat transfer 
in rotating horizontal porous channel. They found that magnetic field fixed 
relative to the moving plate contributes more to the resultant velocity than the 
magnetic field fixed relative to the fluid in case of all the parameters. Another 
striking result is that frequency of oscillation has a distinct effect when the 
magnetic field is fixed relative to the fluid. The effect of all the pertinent 
parameters on phase angle is just opposite to that of resultant velocity owing to 
the relative positions of the magnetic fields. In [6], the authors have considered 
the unsteady hydromagnetic incompressible viscous fluid flow through a porous 
medium in a horizontal channel under prescribed discharge, under the influence 
of inclined magnetic field. Das [2] analyzed the effects of constant suction and 
sinusoidal injection on three dimensional Couette flow of a viscous incompressible 
electrically conducting fluid through a porous medium between two infinite 
horizontal parallel porous flat plates in presence of a transverse magnetic field. 
The stationary plate and the plate in uniform motion are, respectively, subjected 
to a transverse sinusoidal injection and uniform suction of the fluid. It is 
observed that a growing magnetic parameter retards the main velocity and 
accelerates the cross flow velocity of the flow field and a growing permeability 
parameter or suction/injection parameter reverses the effect. Both Prandtl 
number and the suction/injection parameter have retarding effect on the 
temperature field. Further, a growing suction/injection parameter diminishes 
both the components of skin friction at the wall while the permeability 
parameter enhances the x-component and reduces the z-component of the skin 
friction at the wall. In [7], the authors studied the effects of variable viscosity and 
heat source on unsteady laminar flow of dusty conducting fluid between parallel 
porous plates through porous medium with temperature dependent viscosity. It 
is assumed that the parallel plates are porous and subjected to a uniform suction 
from above and injection from below. They found that the effect of the suction 
velocity on both the velocity and temperature of the fluid and particles is more 
pronounced for higher values of the porosity parameter. 

In the present paper, we studied the effects of above parameters on the linear 
temporal stability of the fluid, in a Couette horizontal porous channel flow with 
the presence of a uniform transverse magnetic field fixed relative to the fluid. We 
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used a new approach based on a derived equation named modified Orr- 
Sommerfeld equation. The corresponding eigenvalue problem is resolved in 
order to study the linear stability of the flow. The plates of the channel are 
considered porous and flow within the channel is due to the uniform motion of 
the upper plate. Such linear temporal stability analysis through the so-called 
modified Orr-Sommerfeld equation has been made earlier [4] in a Poiseuille 
flow without injection/suction. The authors showed that the magnetic field has a 
stabilizing effect on the electrically conducting fluid flows. 

The paper is organized as follows: Sect. 2 addresses the so-called modified 
Orr-Sommerfeld equation governing the stability analysis in the hydromagnetic 
Couette horizontal porous plates flow. Section 3 deals with analysis of the effects 
of small injection/suction Reynolds number eR ω , Hartmann parameter M , 
wave number k  and permeability parameter pK  on the flow. The conclusion 
is presented in the last section. 

2. Modified Orr-Sommerfeld Equation 

We considere a Couette viscous incompressilbe, electrically conducting fluid 
flow between two porous parallel plates of infinite lengh, distant h  apart in the 
presence of uniform transverse constant magnetic field 0B  applied parallel to 

*y  axis which is normal to the planes of the plates. We considered the simple 
case where, 0B  is fixed relative to the fluid. We work at constant temperature, 
the heat transfer aspect of the flow is not studied. We applied a small constant 
injection Vω , at the lower plate and a same small constant suction Vω , at the 
upper plate. The upper plate is allowed to move with non-zero uniform velocity 

0U U=  in flow direction and the lower plate is kept at rest. We choose the 
origine on the plane ( )* *,0,x z  such as *h y h− ≤ ≤  and *x  parallel to the 
direction of the motion of the upper plate. We assumed the magnetic Reynolds 
number very small for metallic liquids and neglected the induced magnetic field 
in comparison with the applied one [3] [7] [8]. Initially, * 0t = , both the fluid 
and plates are assumed to be at rest. When * 0t > , the upper plate starts moving 
with a constant velocity U in coordinate system with the fluid. The equations of 
continuity, motion for the viscous incompressible electrically conducting fluid in 
vector form are:  

0,V∇ ⋅ =                            (1) 

( ) 2
* *

1 1 ,V VV V p V J B
t k

µ
ν

ρ ρ ρ
∂

+ ⋅∇ = − ∇ + ∇ + ∧ −
∂            

(2) 

( ) ,e eB J Eµ ε∇ ∧ = +                       (3) 

* ,BE
t
∂

∇ ∧ = −
∂                          

(4) 

0,B∇ ⋅ =                            (5) 

0,E∇ ⋅ =                           (6) 

0,J∇ ⋅ =                           (7) 
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Figure 1. Physical model and coordinate system. 

 
where (1)-(7) are continuity, Newton’s second law, Ampere’s law, Faraday’s law, 
Maxwell’s law and Gauss law equations respectively, with 

( ) ,J E V Bσ= + ∧                        (8) 

and ( )* * *, ,V u v w , B , E , J , σ , eµ , eε  are the velocity, the magnetic field, 
the electric field, the current density vector, the fluid electrical conductivity, the 
magnetic permeability and absolute permittivity of the fluid respectively and *t  
denotes the time. The physical model of the problem is illustrated in Figure 1, 
where ( )* * *, ,V u v w  is the velocity vector in the * * *, ,x y z  directions respectively. 

 

( )00, ,0 ,B B=                          (9) 

( ), , ,x y zE E E E=
                       

(10) 

( ),0, ;x zJ J J=                        (11) 

where 0B  is a constant. We assumed that no applied polarization voltage exists 
(i.e., 0E = ). Then Equation (8) and Equation (11) give  

( )0 ,0,J B w uσ= −                       (12) 

and Equation (7) yields  

0 0u wB
z x

σ
∂ ∂ − = ∂ ∂                        

(13) 

We introduce the following non-dimensional quantities 
*xx

h
= , 

*yy
h

= , 

*zz
h

= , 
*Utt

h
= , 

*uu
U

= , 
*vv

Vω

= , 
*ww

U
= , 

*

2

pp
Uρ

= , e
UhR
ν

=  

(hydrodynamic Reynolds number), e
V hR ω

ω ν
=  (injection/suction Reynolds 

number), 0M B h σ
µ

=  (Hartmann parameter), 
*

2p
kK
h

=  (permeability 

parameter). 
So, Equation (1) and Equation (2) become 

0e

e

Ru v w
x R y z

ω∂ ∂ ∂
+ + =

∂ ∂ ∂
  

                        
(14) 
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2 2

,e

e e e p e

Ru u u u p u M uu v w u
t x R y z x R R K R

ω∂ ∂ ∂ ∂ ∂ ∇
+ + + = − + − −

∂ ∂ ∂ ∂ ∂
      

   



         
(15) 

2

,e e

e e e p e

R Rv v v v p v vu v w
t x R y z R y R K R

ω

ω

∂ ∂ ∂ ∂ ∂ ∇
+ + + = − + −

∂ ∂ ∂ ∂ ∂
      

  



           
(16) 

2 2

.e

e e e p e

Rw w w w p w M wu v w w
t x R y z z R R K R

ω∂ ∂ ∂ ∂ ∂ ∇
+ + + = − + − −

∂ ∂ ∂ ∂ ∂
      

   



         
(17) 

For the stability analysis, the flow is decomposed into the mean flow and the 
disturbance according to  

( ) ( ) ( ), , ,i i iu r t U r u r t= +                    (18) 

( ) ( ) ( ), , .p r t P r p r t= +                     (19) 

We take the dimensional basic flow for small suction and injection [2] [4] [5],  

( )
*

* 1 ,
2
U yU y

h
 

= + 
                       

(20) 

* ,V Vω=                           (21) 
* 0.W =                            (22) 

By scaling these velocities as above, we obtain with 1h = ±  ( *1 1y− ≤ ≤ ) the 
no-dimensional base flow  

( ) 1,
2

yU y +
=

                        
(23) 

1,V =                            (24) 

0.W =                            (25) 

To obtain the stability equations for the spatial evolution of three-dimensional, 
we take the dependent on time disturbances  

( ) ( ) ( ) ( )( ), , , ; , , , ; , , , ; , , , ;u x y z t v x y z t w x y z t p x y z t
         

(26) 

which are scaled in the same way as above. 
Inserting Equations (18) (26) into Equations (15)-(17), we get  

2 2

,e e

e e e e p e

R Ru u u U p u M uU v u
t x R y R y x R R K R

ω ω∂ ∂ ∂ ∂ ∂ ∇
+ + + = − + − −

∂ ∂ ∂ ∂ ∂      
(27) 

2

,e e

e e e p e

R Rv v v p v vU
t x R y R y R K R

ω

ω

∂ ∂ ∂ ∂ ∇
+ + = − + −

∂ ∂ ∂ ∂            
(28) 

2 2

.e

e e e p e

Rw w w p w M wU w
t x R y z R R K R

ω∂ ∂ ∂ ∂ ∇
+ + = − + − −

∂ ∂ ∂ ∂          
(29) 

The pressure terms can be eliminated from Navier-Stokes equations. For such 
a mean profile (base flow), the divergence of Navier-Stokes equations and 
continuity, give  

2 2
2

d2 .
d

e e

e e

R RU v vp M
R y x yR
ω ω∂ ∂

∇ = − +
∂ ∂                 

(30) 

Taking the laplacian of Equation (28), we get after linearization with Equation 

1507 



A. V. Monwanou et al. 
 

(30) 

2 2 2 2
2

2 2

1 d 0.
d

e

e p e e e

R U v M vU v
t x R y K R R x Ry y

ω
 ∂ ∂ ∂ ∇ ∂ ∂

+ + + − ∇ − + = 
∂ ∂ ∂ ∂ ∂       

(31) 

The disturbances are taken to be periodic in the streamwise, spanwise 
directions and time, which allow us to assume solutions of the form  

( ) ( ) ( )ˆ, , , e ;i x z tf x y z t f y α β ω+ −=                  (32) 

where f  represents either one of the disturbances u , v , w  or p  and f̂  
the amplitude function; cosxk kα θ= =  and sinzk kβ θ= =  are the wave 
numbers respectively on x  and z  axis directions; cω α=  is the frequency 
of the wave; 2 1i = − , ( ),xθ = k k , r ic c ic= +  is the wave velocity which is 
taken to be complex, α  and β  are real because of temporal stability analysis 
consideration. Then Equation (31) becomes  

( )
2 2 2 2

2 2 ˆ ˆ;e

e p e e e

R D i D k M Di U c i i D k v i U v
R K R R R
ωα α

α α α

   − ′′− − − + − = − −         
(33) 

where 
d
d

D
y

= ; with boundary conditions for all ( ), 1, , 0x z t± >   

( )
( )

ˆ 1 1,
ˆ 1 0.

v

v

± =
 ′ ± =                          

(34) 

Taking 

( ) ( ) ( )ˆ, , , e 1,i x z t
pv x y z t v y α β ω+ −= −                 (35) 

Equation (33) and the boundary conditions Equation (34), take the forms  

( ) ( )

( ) ( )

2 2 2 2
2 2 2 2ˆ ˆ ,

ˆ ˆ1 1 0.

e
p p

e p e e e

p p

R D i D k iM DU i i D k U v c D k v
R K R R R

v v

ω

α α α α

    − ′′ − − + − − + = −           


′± = ± =

(36) 

The first equation of system Equation (36) is a flow equation modified by the 
small injection/suction Reynolds number eR ω , the Hartmann parameter  

0M B h σ
µ

 
=  

 
, and permeability parameter 

*

2p
kK
h

 
= 

 
 which is the so-called  

modified Orr-Sommerfeld equation, rewritten as an eigenvalue problem, where 
c  is the eigenvalue and ˆpv  the eigenfunction. 

3. Linear Stability Analysis 

We consider a three-dimensional disturbances. We use a temporal stability 
analysis as mentioned above. With c  complex as defined above, when 0ic < , a 
stability mode takes place, 0ic =  corresponds to neutral stability and elsewhere 
corresponds to instability. We employ Matlab 7.8.0.(R2009a) version in all our 
numerical computations to find the eigenvalues. The Couette horizontal porous 
plates flow with the basic velocity profile  
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1 ,1,0
2

y + =  
 

U
                       

(37) 

for eR ω  small (i.e. small suction) is considered. The eigenvalue problem 
Equation (36) is solved numerically with the suitable boundary conditions. The 
solutions are found in a layer bounded at 1y = ±  with ( ) ( )1 0,1,0± =U . The 
results of calculations are presented in the figures below. 

The black, red, green and blue colors are respectively, curves I, II, III, IV and 
the yellow color figure corresponds to the neutral mode 0ic = . Frame , , ,a b c d  
correspond respectively to 1k =  1.02k = , 2k =  and 3k = . 

Figure 2 presents the effect of injection/suction Reynolds number eR ω  on 
linear temporal stability of viscous incompressible electrically non conducting 
fluid ( 0M = ) flow for different values of wave number. It is observed that for 

1k =  and 1.02k =  (frames a and b), the stability is not affectd by eR ω  and 
the flow is unstable but for 2k =  and 3k =  (frames c and d), eR ω  affects the 
stability, and the flow stays stable, but increasing of eR ω  doesn’t contribute to 
the stability. 

Figure 3 exhibits the effect of permeabilty parameter pK  on linear temporal 
stability of viscous incompressible electrically non conducting fluid flow for 
different values of wave number. It is observed that pK  affects the stability. For 

1k =  and 1.02k = , the frames a  and b  show that for 0.045pK =  the 
flow is unstable (curves I) and stable for 1.000pK =  (curves IV) but for 

0.048pK =  and 0.130pK =  (curves II, III), we have the transition of the flow 
(See Table 1 for the criticals hydrodynamic Reynolds number values). For 

2k =  and 3k =  (frames c  and d ) the flow is completely stable. On careful 
observation, we remark that for 12500eR < , increasing of pK  contributes to 
the stability in frame d  case, and the opposite is noticed in the frame c  case, 
but when 12500eR > , increasing of pK  contributes in the both cases. Thus, it  

 

 
Figure 2. Ci vs. Re for 0, 0, 0pM K θ= = =  and ,eR kω  variable.  
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Figure 3. Ci vs. Re for 0, 0, 0eM R ω θ= = =  and ,pK k  variable.  

 

 
Figure 4. Ci vs. Re for 0, 0.045, 0e pR Kω θ= = =  and ,M k  variable. 

 
may be concluded that except the frame c  case where, the increasing of pK  
doesn’t contribute to stability for 12500eR < , the increasing of permeabilty 
parameter contributes to the flow stability. 

Figure 4 shows the effect of Hartmann parameter M  on linear temporal 
stability of viscous incompressible electrically conducting fluid flow for different 
values of wave number. It is observed that M  affects the stability. For 1k =  
and 1.02k = , frames a  and b  show that for 10M =  the flow is unstable 
(see curves I) and stable for 100M =  (see curves IV) but for 50M =  and 

80M =  (curves II, III), we have the transition of the flow (See Table 1 for the 
critical Reynolds number values). For 2k =  and 3k =  (frames c  and d ) 
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the flow is completely stable. Thus, we may concluded that the Hartmann 
parameter increasing contributes more to the flow stability. 

Figure 5 depicts the effect of phase angle θ  for different values of the wave 
number on the flow stability. For 1k =  and 1.02k = , frames a  and b  
show that the flow is unstable and the instability increases when θ  increases. 
But, for 2k =  and 3k =  the flow is completely stable except the curve IV 
frame c , which presents a transition initialy and stays stable after. 

Finally, Figures 6-8 ( 0M ≠ , electrically conducting fluid) show that for 1k =  
and 1.02k = , the small injection/suction has no effect on the linear temporal 
stability of the flow. But for 2k =  and 3k = , we remark a little influence of the  

 

 
Figure 5. Ci vs. Re for 0, 0.045, 0e pR K Mω = = =  and , kθ  variable. 

 

 

Figure 6. Ci vs. Re for 0.1π, 0.048, 50pK Mθ = = =  and ,eR kω  variable. 
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Figure 7. Ci vs. Re for 0.1π, 0.045, 50pK Mθ = = =  fixed and ,eR kω  variable. 

 

 

Figure 8. Ci vs. Re for 0.2π, 0.045, 50pK Mθ = = =  and ,eR kω  variable. 

 
small injection/suction on the stability only in a small range of eR . 

The critical Reynolds numbers ecR  for which transition occurs are presented 
in Table 1.  

4. Conclusion 

In this paper, we have investigated the effects of small injection/suction 
Reynolds number, Hartmann parameter, permeability parameter and wave 
number on a viscous incompressilbe electrically conducting fluid flow, in a 
porous parallel plates forming a channel. We have derived the appropriate 
equation named modified Orr-Sommerfeld equation in order to make the  
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Table 1. Table of critical values. 

eR ω  k  pK  M  ( )πθ  ecR  

0.00 1.00 0.130 00 0.00 5347 

0.00 1.00 0.048 00 0.00 19370 

0.00 1.02 0.130 00 0.00 5139 

0.00 1.02 0.048 00 0.00 18640 

0.00 1.00 0.045 50 0.00 18650 

0.00 1.00 0.045 80 0.00 7178 

0.00 1.02 0.045 50 0.00 18010 

0.00 1.02 0.045 80 0.00 6845 

0.00 1.00 0.045 50 0.10 19610 

0.50 1.00 0.045 50 0.10 19610 

0.75 1.00 0.045 50 0.10 19610 

1.00 1.00 0.045 50 0.10 19610 

0.00 1.02 0.045 50 0.10 18940 

0.50 1.02 0.045 50 0.10 18940 

0.75 1.02 0.045 50 0.10 18940 

1.00 1.02 0.045 50 0.10 18940 

0.00 1.00 0.048 50 0.10 17750 

0.50 1.00 0.048 50 0.10 17750 

0.75 1.00 0.048 50 0.10 17750 

1.00 1.00 0.048 50 0.10 17750 

0.00 1.02 0.048 50 0.10 17140 

0.50 1.02 0.048 50 0.10 17140 

0.75 1.02 0.048 50 0.10 17140 

1.00 1.02 0.048 50 0.10 17140 

 
stability analysis of the flow. Through this approach, we have found that the 
small injection/suction has a negligible effect on the linear temporal stability of 
hydromagnetic Couette flow. We noticed that the permeability parameter 
(Darcy number), the Lorentz force (the Hartmann parameter) and the wave 
number contribute to the temporal linear stability of hydromagnetic Couette 
flow. We remarked also that at low wave numbers, the phase angle θ  doesn’t 
contribute to the stability of the fluid flow, but for 2k =  and 3k = , the 
stabilizing effect appears. 
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