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Abstract 
The study of own fields and charged particles motion and also charged fission 
splinters of a heavy nucleuses into nonrelativistic approximation is the subject 
of this article research. The main efforts are concentrated in quest of charged 
share components by the radioactive β−-disintegration. The corresponding 
field equations and equations of motion in the nuclear electrodynamics 
processes are obtained and their solutions are found. Analysis of the micro-
scopic equations is generalized to the level of the macroscopic description of 
continuous medium electrodynamics and is accompanied by quantum me-
chanical additions. The obtained theoretical results can be a basis for the fur-
ther mathematical modelling of generation phenomenon of powerful direc-
tional electromagnetic fields on the toroid with external winding in the 
process of chain reaction fission and for the further creation of the nuclear 
electrogenerator (nuclegen) as a peculiar analogy to the quantum generator. 
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1. Introduction 

At the beginning we should stop briefly on the structural description and the 
content of article sections. Sections 2 - 5 are devoted to the coverage of a 
behaviour for dotted charged particles and fission splinters within the classical 
nonrelativistic nuclear electrodynamics. 

In Sections 2 and 3 the consecutive microscopic description on the level of 
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Maxwell-Lorenz fields equations and Newton-Lorenz equations of motion is 
carried out. Obtained in Section 2 results serve a foundation to the conclusion of 
laws for nonrelativistic nuclear electrodynamics of the charged fission splinters 
(Sections 3 and 4) and laws for continuous medium electrodynamics with the 
aid of macroscopic approach in consideration of statistical description (Section 
5). 

In Section 6 the nonrelativistic electrodynamic model is supplemented by 
consideration more realistic scheme connected with quantumomechanical con- 
clusion of the microscopic equations for fields and motions of charged particles 
and charged fission splinters. 

The important peculiarity of presented work is a definition and solution of 
fields equations and motion equations for fission splinters in consideration of 
charged share of radioactive inside nuclon β−-disintegration effect [1], i.e. in consi- 
deration of emited cascaded electrons but without consideration of γ-eradiation [2] 
[3] [4]. We propose the toroid is the solenoid with the external winding. Moreover 
inside of this toroid all fragments of the nuclear disintegration remain in force. 
That is why light charges don’t may escape the system and therefore enter the 
formalism. Theoretical results of Sections 2 - 6 can be also the basis for the 
elaboration of possible mechanism of hypermotion realization [5]-[12]. 

Similar to quantum generation phenomenon and some other physical effects 
going on intensive avalance-like scheme there are analogous processes occur by 
the chain fission of a heavy nucleuses [5] [9] [13] [14]: the vigorous growth of 
total number of neutrons, charged particles and charged fission splinters having 
enormous kinetic energy of motion is observed. This known phenomenon 
(charges motion in vacuum with great speed) is put into basis of nuclear 
electrodynamic effect. 

On this theory principles may be constructed superpowerful energetical 
devices operating no on thermal interaction of various substances but exclusively 
on a basis of physical electronuclear conversions. Actually, it is matter of on 
principle new stage into energy development which at this point is named the 
nuclear electrodynamics. 

As at laser technology the nuclear electrodynamic model for own functional 
beginning demands the preliminary “`power reprimand”‘ in a state of external 
directional electromagnetic field for making of anisotropic backcloth with the 
passing of chain nuclear fission reaction in vacuum. 

We suppose that the nuclear electrogenerator of direct action can be highly 
effective and reliable alternative to contemporary thermal nuclear reactor in the 
future. What is more, its role and meaning in subsequent wide and speedy 
pioneering of outer space, to all appearance, will be predominating as a basis 
component of arised compact hyperreactive accelerators [5] [9]. 

2. Fields and Motion of Charged Fission Particles 

We are interested the calculation recipe of electric ( ) 3
* ,E R t ∈R  and magnetic 

( ) 3
* ,B R t ∈R  fields in the point with coordinate 3R∈R  at the time moment t 
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which are produced by the point-particles with charges iZ , three-dimensional 
coordinates ( )iR t  and velocities ( ) ( ) , 1, 2,i iR t v t i= =


. It is known that 

given vector fields into Gaussian units system (taking into account of values in 
order 1 c , where c is velocity of light, and of multiplicator 4π  in the 
expression for potentials) can be written with the aid of microcsopic Maxwell- 
Lorenz equations system in the following form  

( )* ,i i
i

E Z R Rδ∇ = −∑  

( )* *
1 ,i i i

i
E B Z R R R

c
δ′− +∇× = −∑   

0, 0.B B E∗ ∗ ∗′∇ = +∇× =                     (1) 

Here we denote: for the vector ∇  (the differential Hamiltonian operator) is 
the differentiation on three-dimensional spatial coordinate R; the feature on top 
is the differentiation on ct; notes xy and x y×  correspondingly mean scalar and 
vector products; ( )iR Rδ −  is the delta-function from iR R−  including in the 
field sources. 

To find solutions of Equation (1) introduce into consideration potentials. 
From the third Equation (1) we have for the vector potential ( ),a R t :  

* .B a= ∇×                           (2) 

Taking into account the fourth Equation (1) we obtain for the scalar potential 
( ),R tϕ :  

* .E aϕ ′= −∇ −                          (3) 

After substitution of relations (2) and (3) into the first two Equation (1) 
ignoring of values in order 21 c  we derive  

( ) ,i i
i

a Z R Rϕ δ′∇ +∇ = − −∑  

( ) ( )1 ,i i i
i

a a Z R R R
c

ϕ δ′∇ −∇ ∇ + = − −∑ 

             
 (4) 

where 2∆ = ∇∇ =∇  is the Laplace operator. 
Relations (2), (3) determine potentials a  and ϕ  ambiguously to an 

approximation of the calibrated equalities  

, ,s sa a ψ ϕ ϕ ψ ′= +∇ = −  

where ψ  is the some arbitrary function. Take advantage of given fact so that 
potential a  and ϕ  satisfied the Lorenz calibrated condition  

0a ϕ′∇ + =  

which permits Equations (4) to write in form of two independent Poisson 
equations on ϕ  and a . Ignoring of values in order 21 c  then we obtain  

( ) ( )1, .i i i i i
i i

Z R R a Z R R R
c

ϕ δ δ∆ = − − ∆ = − −∑ ∑   

If for solution of this equations according to the work [2] to make use of 
relation  
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( )1 4π ,r
r

δ∆ ⋅ = −  

where ( ), ,r r x y z=  is vector-radius of the point with coordinates , ,x y z  and 

( )1 22 2 2r x y z= + +  is its the Euclidean length, then we may write potentials  

1, .
4π 4π

i i i

i ii i

Z Z Ra
c

ϕ
σ σ

= =∑ ∑  

Further, we shall use relations (2) and (3). Then the nonrelativistic 
electromagnetic fields can be found as  

* , ,
4π

i
i i

i i

ZE E E
σ

∇
= = −∑  

*
1, ,

4π
i i

i i
i i

Z RB B B
c σ

= = ∇×∑


                  
 (5) 

where through i iR Rσ = −  is denoted the distance between points with vector 
coordinates iR  and R  in space 3R . 

Pay attention to that from relations (5) it follows that the field *E  is 
noncirculatory. Then in fourth equation of system (1) the value B∗′  has a order 

21 c  and by it may ignore in considered nonrelativistic variant. Therefore in 
system (1) last equation may write as * 0E∇× = . 

Denote ( ) ( )( ), , ,i iE R t B R t  the full electromagnetic field in the point iR  at 
time moment t. This field is the sum of external field ( ) ( )( )0 0, , ,i iE R t B R t  and 
internal fields of the charged particles ( ) ( )( )* *, , ,i iE R t B R t  in the given point. 

The equation of i-th particle motion with mass im  under the Lorenz force 
influence has a form  

( ) ( )1, , ,i i i i i im R Z E R t R B R t
c

 = + ×  
                  (6) 

where the notation  

( ) ( ) ( )0, , , ,i j i i
j

E R t E R t E R t= +∑  

( ) ( ) ( )0, , ,i j i i
j

B R t B R t B R t= +∑  

is used, moreover 
* *, ,j jj ji j E E B B≠ = =∑ ∑ . The equation of motion (6) for 

nonrelativistic case taking into account the second line of the system (5) can be 
made more precise, namely  

( ) ( )0
1, , ,i i i i i im R Z E R t R B R t
c

 = + ×  
 

              
 (7) 

where  

( ) ( ) ( ) ( )0 0, , , , , ,
4π

j
i i i i i

j ij

Z
E R t E R t B R t B R t

σ
= − ∇ + =∑  

,ij i jR R i jσ = − ≠ , i∇  is partial derivation on elements of the vector iR . 
Thus, Equation (7) describes nonrelativistic motion of i-th charged particle, 
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1,2, ,i =   in electromagnetic field of external sources and from the direction 
of other j-th particles, 1,2, , ,j j i= ≠  in the given point iR . Equation (7) can 
be attached to the canonical form  

,i i
i i

H HR P
P R
∂ ∂

= = −
∂ ∂

   

with aid of the Hamiltonian  

( ) ( )
2

0 0, , , ,
2 8π

i ji i
i i i

i i j ii ij i

Z ZP PH Z R t A R t i j
m cm

ϕ
σ

 
= + + − ⋅ ≠ 

 
∑ ∑∑ ∑  

into the canonical terms of impulse variables iP , coordinate variables iR  and 
potentials (scalar 0ϕ  and vector 0A ) of external field. 

3. Fields and Motion of the Charged Fission Splinters 

Let us set the problem about conclusion of field equations and motion equations 
of the charged splinters (the united particles with internal nuclear structure) 
which are generated in consequence of the chain fission reaction. These 
compound united particles can be considered as many time ionizated positive 
ions for the reason electrons upsetting of the atom outer skin of divided 
substance. 

For definition of the electromagnetic field of the charged fission splinters we 
shall be proceeding in own analysis from the field microscopic equations of 
isolated particles (1). Add to the index i the index k. Then instead of the vector 

iR  we take the vector kiR  and expand it into the sum of two vectors: 

ki k kiR R r= + , where k is the splinter index, i is the index of the particle of given 
splinter, kR  is the coordinate of the some fixed point (nucleus) of k-th splinter, 

kir  is the internal coordinate of ki-th particle (its position) concerning the fixed 
point of k-th splinter. 

But as distinct from the works [2] [3] [4] and the others here it is necessary to 
mean that considered charged compound fission splinters aren’t “the stable 
complexes” but are the powerfully nonsteady particles groups are exposed the 
pronounced instantaneous radioactive fission (the β−-fission accompanied by 
the γ-eradiation). Radioactive instability of the fission splinters in one’s turn 
leads to peculiar and simultaneously enough intricate deformation of the fields 
electromagnetic equations and the motion of these assembly particles. Thus, our 
problem is concluded in so that “to catch” the distinctive peculiarity of 
radioactive disintegration of the given instable particles and to obtain corect 
from mathematical and physical points of view the note of these equations. 

Before to begin the equations synthesis we discuss just one more important 
moment of the theory. The problem of classical nonrelativistic electrodynamics 
is the registration of radioactive instability of the charged particles. It is well 
known that in the given case, i.e. when only parts up to the first order on 1 c  
inclusive are taken into consideration, to count up the effect of radiation 
γ-eradiation (the fading) turn out badly. This effect caused by “minus-field” (the 
retarding field) of the particle in nonrelativistic case is vanishingly small. In 
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connection with given exposition we try by the conclusion of equations to take 
into account the effect of charged radioactive disintegration but not of radio- 
active γ-eradiation accounting. 

Subsequently it is important to distinguish between the individual charged 
particles in the k-th fission splinter in the point kiR  with the charges kiZ  and 
the charged nucleus in the point kR  is exposed β−-radioactive fission. We remind 
that the fission splinters are intensive β−-eradiators, moreover the beta-fission is the 
subnucleonic process stipulated by poor interactions and proceeding for surplus 
neutrons of a splinter according to scheme: ,n p e ν−→ + +   i.e. in free state on 
average life time in order of 17 minutes neutron decays into proton, electron and 
antineutrino. We note also that inside of nucleus the formation of neutron it is 
possible owing to additional energy is imparted to proton by other nucleons of 
nucleus: p n e ν+→ +  i.e. during β+-fission when the process of proton fission 
inside of nucleus is occurs at expence of nucleus energy into neutron, positron 
and neutrino. 

Therefore, we indicate the charge in the point kR  in the time moment t 
through kZ . The charge kZ  is the total proton charge kX  of the nucleus 
(initial proton charge of splinter + proton charge of β−-fission products) and 
electron charge kY  of β−-fission products:  

.k k kZ X Y= +                          (8) 

Obviosly, value kZ  (8) coincides with charged value of initial proton charge 
of splinter. Nevertheless, it is necessary to make use of expansion (8) for account 
of radioactive fission effect of the nucleus of k-th splinter. 

Further we shall think that solutions *E  and *B  of field equations can be 
approximated as converged rows on parameter 1ki kr R R− < , i.e. the 
dimensions of a splinter kiR  is smaller a distance kσ  from the observation 
point R to fixed point (nucleus) kR  of k-th splinter. Transform equations (1) 
taking into account of all expansions including the δ-function expansion into the 
Taylor’s row on kir  in the locality of the point ( )kR R− . Then we obtain  

( ) ( ) ( )

( ) ( )

*
0

1
!

,

n
n

ki ki k
k i n

k k k k
k k

E Z r R R
n

X R R Y R R

δ

δ δ

∞

=

−
∇ = ∇ −

+ − + −

∑∑ ∑

∑ ∑
 

( ) ( ) ( ) ( )

( ) ( )

*
0

11
!

1 1 ,

n
n

ki k ki ki k
k i n

k k k k k k
k k

E B Z R r r R R
c n

X R R R Y R R R
c c

δ

δ δ

∞

∗
=

−
′− +∇× = + ∇ −

+ − + −

∑∑ ∑

∑ ∑





 

 

* *0, 0.B B E∗′∇ = +∇× =                     (9) 

In equations of system (9) we have operator equality of action to three- 
dimensional δ-function:  

( ) ( ) ,k k kR R R Rδ δ∇ − = −∇ −  

where , .k kR R∇ = ∂ ∂ ∇ = ∂ ∂  Consider this system in detail. The first 
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equation can be written in the shortened form:  

* ,E q p s s+ −∇ = −∇ + +                     (10) 

where is denoted  

( ), ,k k ki k
k i

q q q Z R Rδ= = −∑ ∑                 (11) 

( ) ( ) ( )
1

1

1

1
, ,

!

n
n

k k ki ki ki k
k i n

p p p Z r r R R
n

δ
−∞

−

=

−
= = ∇ −∑ ∑ ∑         (12) 

( ) ( ), .k k k k
k k

s X R R s Y R Rδ δ+ −= − = −∑ ∑
           

 (13) 

Then we transpose the second equation of system (9) to the form  

( ) ( ) ( )

( ) ( )

*
=0

11
!

,

n
n

k k ki ki ki k
k k i n

k k k k k k
k k

E B j R p Z r r R R
c n

X R R R Y R R R

δ

δ δ

∞

∗

 −
′− +∇× = − ∇ + ∇ −


+ − + − 

∑ ∑∑ ∑

∑ ∑





 

  (14) 

where is denoted  

( ), .k k ki k k
k i

j j j Z R R Rδ= = −∑ ∑ 

              
 (15) 

Further we make use of operator equality of action to the δ-function:  

( ) ( ).k k kR R R R R
t
δ δ∂

− = − ∇ −
∂



                
 (16) 

Differentiate the relation (12) on ( )ct∂ ∂ :  

( )
( ) [ ]( ) ( )1

0

11 1 0.
1 !

n
n

k k k ki ki ki ki ki ki k
i n

p R p Z r r nr r r R R
c c n

δ
∞

−

=

−
′ + ∇ − ∇ + ∇ ∇ − =

+∑ ∑

   (17) 

Then we add up relation (17) by k and add to right part of Equation (14). The 
second equation of field (14) with aid of vector identity ( ) ( ) ( )a b b a a b∇× × = ∇ − ∇  
justifiable for any vectors a and b can be written in the form  

( )*
1 1 ,E B j p m u u
c c∗ + −′ ′− +∇× = + +∇× + +             (18) 

where following designations are introduced  

( )
( ) ( ) ( )

1
1

1

11, ,
1 !

n
n

k k k k ki ki ki ki k
k i n

m m m p R Z r r r R R
c n n

δ
−∞

−

=

 −
= = × + × ∇ − 

+  
∑ ∑ ∑

  (19) 

( ) ( ), .k k k k k k
k k

u X R R R u Y R R Rδ δ+ −= − = −∑ ∑           (20) 

Here the vector m uses the name of magnetic vector. 
Note that in Equations ((10), (18)) summands 1,s c u−

+ +  and 1,s c u−
− −  (13), 

(20) can be associated with outrunning and retarding fields in relativistic and 
plus- and minus-fields in quantum electrodynamics [2] [15] [16] [17] [18]. 

Values 1,s c u−
+ +  represent own fields of the charged nucleuses of all splinters 

and 1,s c u−
− −  represent “the deformation” of total field is caused by the effect of 

radioactive β−-fission of nucleuses of all splinters. 
We consider full charge of the k-th splinter  
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.k ki k ki k k
i i

Z Z Z X Yζ = + = + +∑ ∑
               

 (21) 

Taking into account designation (21) for fission-fragment charge and 
expressions (11) and (15) can be written that  

( ) ,k k
k

Q q s s R Rζ δ+ −= + + = −∑  

( ).k k k
k

J j u u R R Rζ δ+ −= + + = −∑                 (22) 

Values Q  and J  are determined by equalities (22) on the analogy of 
electrodynamic standards may call densities of the fission-fragment charge and 
current correspondingly. 

It is easy to notice that from system (22) conservation law of the fission- 
fragment charge follows directly:  

.Q J
t

∂
= −∇

∂                         
 (23) 

Indeed, formula (23) follows if the value Q t∂ ∂  from the first relation of 
system (22) to calculate with the aid of equality (16) and then to make use of the 
second relation of system (22). 

Values p (12) and m (19) in conformity with accepted electrodynamic 
standards can be named the fission-fragment electric and magnetic polarizable 
densities. 

Thus, the system of equations for the field of charged fission splinters into 
terms of densities of charge, current, electric and magnetic polarization looks as:  

* ,E Q p∇ = −∇  

*
1 ,E B J p m
c∗′ ′− +∇× = + +∇×  

* *0, 0.B B E∗′∇ = +∇× =                    (24) 

The system of Equation (24) are the system of microscopic fields ( )* *,E B  
induced by splinters. In other words, these fields where fission splinters are 
situated. Notice simultaneously that on own form these fields are quite identical 
to the Maxwell macroscopic field equations for continuous medium. Equation 
(24) can be named equations of the fission-fragment fields. If introduce instead 
of vectors p and m vectors of displacement *D  and *H  correspondingly to 
formulas  

* * * *, ,D E p H B m= + = −  

then obviously that the system of equations of fission-fragment fields (24) 
assumes the form (compare with the system of the Maxwell macroscopic 
equations for variable electromagnetic field ( ), , ,E D H B : rotE B t= −∂ ∂ , 
divD ρ= , rotH j D t= + ∂ ∂ , div 0B = , where j D t+ ∂ ∂  is the density of the 
full current, j  is the density of the conductivity current, ρ  is the volumetric 
charged density, d

S
I j S= ∫  is the conductivity current, ( )* d d d

S
I t D S= ∫  is 

the displacement current, S  is the surface):  

* * *
1, ,D Q D H J
c

′∇ = − +∇× =  
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* *0, 0.B B E∗′∇ = +∇× =                    (25) 

We now move on to formation of equations for dynamics of charged fission 
splinters if there are given off electrons arised as a result of radioactive 
β−-disintegration. 

The motion equation of ki-th particle into k-th splinter with the charge kiZ , 
the mass kim  and the coordinate kiR  at the time moment t into full 
electromagnetic field ( ) ( )( ), , ,ki kiE R t B R t  has a form of Equation (6), where 

i kiR R→ , i.e.  

( ) ( )1, , ,ki ki ki ki ki kim R Z E R t R B R t
c

 = + ×  
 

            
 (26) 

moreover full fields ( ),kiE R t  and ( ),kiB R t  in considered case (compare with 
expressions for E and B in Equation (7)) have a form  

( ) ( )

( ) ( )

( ) ( )

, , ,

0
,

0

,
4π 4π 4π

, ,
4π

, , ,

kj ljk k
ki ki ki ki

j l jkl ij k ik kl ij

l l
ki ki

l kl il

ki ki

Z ZX Y
E R t

X Y
E R t

B R t B R t

σ σ σ

σ

+
= − ∇ −∇ − ∇

+
− ∇ +

=

∑ ∑∑

∑      (27) 

where ,j i l k≠ ≠ ; ki∇ —is the gradient vector on the elements of vector kiR . 
In the system of Equation (27) are denoted  

, ,, ,k ij ki kj k ik ki kk ki kR R R R R Rσ σ= − = − = −  

, ,, ,kl ij ki lj kl il ki ll ki lR R R R R Rσ σ= − = − = −  

, , .kk k ll l ki k kiR R R R R R r≡ ≡ − =                (28) 

One can see beautifully from relations (27) that full field ( ),E B  includes: 
1) intrafission-fragment field created by all particles , ,ki i j≠  of given k-th 

splinter and by nucleus of this splinter; 
2) interfission-fragment fields corresponding to particles of all other l  

splinters, ,l k≠  and to nucleuses of these splinters also; 
3) external field ( )0 0,E B  created by external sources. 
On the analogy of (6) ( )i k→  can be written the motion equation of the 

nucleus of k-th splinter with charge k k kZ X Y= + , mass km , coordinate kR  
into full electromagnetic field ( ) ( )( ), , ,k kE R t B R t :  

( ) ( )1, , ,k k k k k km R Z E R t R B R t
c

 = + ×  
                (29) 

where  

( )

( ) ( )

( ) ( )

, ,

0
,

0

,
4π 4π

, ,
4π

, , ,

kj lj
k k k

j l jk kj kl kj

l l
k k

l kl kl

k k

Z Z
E R t

X Y
E R t

B R t B R t

σ σ

σ

= − ∇ − ∇

+
− ∇ +

=

∑ ∑∑

∑

           

 (30) 

for l k≠ , i.e. system of relations (29), (30) can be obtained from system (26), 
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(27) by , kk ki k= ∇ ≡ ∇  and taking into account identical equalities (28). In this 
case we think in relation (27) that the second summand in right part is equal to 
zero, .k kR∇ = ∂ ∂  

After summarizing of Equation (26) on i and adding with Equation (29) for 
description of the motion of k-th splinter with mass kbarm  and coordinate of 
masses center kR :  

, ,ki ki k k
k k k

ki i k

m R m Rm m R
m
+

= + =∑ ∑  

we obtain the motion equation of k-th splinter in the form  

( ) ( ) ( ) ( )1 1, , , , .k k ki ki ki ki k k k k
i

m R Z E R t R B R t Z E R t R B R t
c c

   = + × + + ×      
∑

   (31) 

Substitute expressions (27), (30) into Equation (31). Then resultant force 
corresponding to intrafission-fragment field for the set of central forces is 
obviously equal zero. Consequently Equation (31) acquires the following form:  

( )

( ) ( )( )

( ) ( )

( ) ( ) ( )

, ,

, ,

0 0

0 0

4π 4π

4π 4π

1, ,

1, , ,

ki lj ki l l
k k ki ki

l i j l ikl ij ki il

lj k k l l k k
k k

l j lkl kj kl kl

ki ki ki ki
i

k k k k k

Z Z Z X Y
m R

Z X Y X Y X Y

Z E R t R B R t
c

X Y E R t R B R t
c

σ σ

σ σ

+
= − ∇ − ∇

+ + +
− ∇ − ∇

 + + ×  
 + + + ×  

∑∑∑ ∑∑

∑∑ ∑

∑







       (32) 

where l k≠ , and external field ( )0 0,E B  satisfies to homogeneous equations  

0 0 00, 0.B B E′∇ = +∇× =  

Thus, Equation (32) is the motion equation of k-th splinter into electromagnetic 
field of other splinters and external sources. 

It is important to note that Equation (32) on a level with traditional 
summands in the right part of the Lorenz force contains also summands are 
made a force connected with radioactive charged eradiation of nucleuses into 
fission splinters (the accounting of β−-charged eradiation by the radioactive 
electrodynamic effect). 

In following section will be realized the breeding of “the energy equation” for 
fission splinters with charged radioactivity, namely the equation in conformity 
with it total derivative on the time from energy of system is equal to short-active 
and long-active contributions containing the powerful components of different 
forces. 

4. Power Relations for the Charged Fission Splinters 

Proceed to the substantiation of energy equation and internal pulse moment of 
k-th splinter on the basis of previous section results. 

For working out of energy equation we take ki-th particle and scalarly 
multiply motion Equation (26) by velocity kiR :  
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( ), .ki ki ki ki ki kim R R Z R E R t=  

                   (33) 

Similarly we treat with the nucleus of k-th splinter. From Equation (29) after 
multiply by the vector kR  we have  

( ), .k k k k k km R R Z R E R t=                       (34) 

Then summarise by i Equation (33) and add with Equation (34). With the aid 
of expressions for ,k km R  and of relations (27), (30) we find for internal 
coordinate ki ki kr R R= −  that  

( ) ( )

2 2d 1 1
d 2 2

, , ,

ki ki k k
i

ki ki ki k k k
i

m R m R
t

Z R E R t Z R E R t

 + 
 

= +

∑

∑

 

 

 

or  

( )

( )

( )

2 2 2 2

, , ,

, , ,, ,

0
,

d 1 1 1
d 2 2 2

4π 4π

4π 4π

,
4π

ki ki ki ki k k k k k k
i i

ki kj ki ki k
ki ki ki

i j ik ij k ik

ki lj ki l l
ki ki ki ki

l i j l ikl ij kl il

k kj
ki ki ki k k

i j lk kj

m r m r R m R m R R
t

Z Z Z ZR R

Z Z Z X Y
R R

Z Z
R Z E R t R

σ σ

σ σ

σ

 + + + − 
 

∇
= − ∇ −

+
− ∇ − ∇

+ − ∇ −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

  

  

 

 

 

( )

( )( ) ( ) ( )

, ,

0
,

4π

, ,
4π

k k lj
k k

j lk kj

k k l l
k k k k k k

l kl kl

X Y Z
R

X Y X Y
R R X Y E R t

σ

σ

+
∇

+ +
− ∇ + +

∑

∑



 

     (35) 

where ,i j l k≠ ≠ . 
In right part of Equation (35) the first, the second and the sixth summands are 

making intrafission-fragment power contribution which can be presented as a 
total derivative on the time from intrafission-fragment Coulomb’s energy of 
given k-th splinter ,C kE :  

( ) ( )

( )

, , , ,

, , ,

,

,

4π 4π 4π

8π 8π

8π

d ,
d

ki kj k kjki k
ki ki ki ki k k

i j i jk ij k ik k kj

ki kj ki k
ki ki kj kj ki ki k k

i j ik ij k ik

k kj
k k kj kj

j k kj

C k

Z Z Z ZZ ZR R R

Z Z Z ZR R R R

Z Z
R R

E
t

σ σ σ

σ σ

σ

− ∇ − ∇ − ∇

= − ∇ + ∇ − ∇ + ∇

− ∇ + ∇

= −

∑ ∑ ∑

∑ ∑

∑

  

   

 

 

or  

,
,

d d 1 .
d d 8π

ki kj k kjki k
C k

i j i jki kj ki k k kj k k

Z Z Z ZZ ZE
t t r r r R R r R R

  = + + 
− + − + −  

∑ ∑ ∑
  

 (36) 

In general case Equation (35) taking into account the dependence (36) can be 
produced in the form  
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( )2 2 2 2
,

, ,0

d 1 1 1
d 2 2 2

,

ki ki ki ki k k k k k k C k
i i

k l k

m r m r R m r m R R E
t
 + + + − + 
 

= Λ + Λ

∑ ∑  

   

     (37) 

where is denoted  

( ) ( ) ( )

( ) ( )( )

,
, , ,, ,

, , ,

4π 4π

,
4π 4π

ki lj ki l l
k l k ki ki k ki ki

l i j l ikl ij kl il

k k lj k k l l
k k k k

l j lkl kj kl kl

Z Z Z X Y
R r R r

X Y Z X Y X Y
R R

σ σ

σ σ

+
Λ = − + ∇ − + ∇

+ + +
− ∇ − ∇

∑ ∑

∑ ∑

 

 

 

 

( ) ( ) ( ) ( ),0 0 0, , .k k ki ki ki k k k k
i

R r Z E R t R X Y E R tΛ = + + +∑ 

   

Thus, the energy equation of k-th splinter (37) in own left part contains 
summands of intrafission-fragment kinetic, potential and Coulomb’s energies; 
quantities determining interfission-fragment ,k lΛ  and external ,0kΛ  fields on 
the background of β−-charged eradiation were in the right part of this equation. 

For working out of internal pulse moment equation of k-th splinter we make 
use of corresponding expression for the quantity of internal pulse moment  

( ) ( ) ,k ki ki ki k k k k k
i

m r r m R R R RΨ = × + − × −∑ 

              (38) 

where ,ki km m  are masses of composed particles and nucleus of k-th splinter, 

ki ki kr R R= −  are internal coordinates of particles. 
Differentiate relation (38) on the time. Then we obtain with employment of 

significances of ,k km R :  

( ) ( )
( ) ( ) ( )
( ) .

k ki ki ki k k k k k
i

ki ki ki k k k k k k k k k
i

ki ki ki k k k k
i

m r r m R R R R

m r R m R R R m R R R R

m r R m R R R

Ψ = × + − × −

= × − − × + − × −

= × + − ×

∑

∑

∑



  

 

 

 

    

 (39) 

The following step: put motion Equations ((26), (29)) and equations of fields 
(27), (30) into Equation (39). We obtain finally  

( )

( ) ( )

( ) ( )

( ) ( )( )

( )( ) ( ) ( )

, , ,, ,

0 0

, ,

,

0 0

4π 4π

1, ,

4π

4π

1, , ,

ki lj ki l l
k ki ki ki ki

l i j l ikl ij kl il

ki ki ki ki ki
i

l k lj
k k k

l j kl kj

k k l l
k k k

l kl kl

k k k k k k k

Z Z Z X Y
r r

Z r E R t R B R t
c

X Y Z
R R

X Y X Y
R R

X Y R R E R t R B R t
c

σ σ

σ

σ

+
Ψ = − ×∇ − ×∇

 = × + ×  
+

− − ×∇

+ +
− − ×∇

 + + − × + ×  

∑ ∑

∑

∑

∑







 

where ,i j l k≠ ≠  and resulting activity of central forces corresponding 
intrafission-fragment fields is equal zero. 



V. Yu. Tertychny-Dauri 
 

13/19 OALib Journal

5. Statistical Description of Nonrelativistic Nuclear  
Electrodynamics Laws 

Maxwell’s equations of electromagnetic field are in reality macroscopic 
equations for the description of field and substance with slowly-varying (into 
time and space) physical variables. Consequently their employment for the 
description of microscopic objects behaviour with quicly-varying physical 
variables cannot be recognized fully adequate and theoretically corect. 

Macroscopic equations operate with not separate particle but with whole 
group of particles (medium). Obviously from this point of view that for the 
obtaining of nuclear electromagnetic macroscopic laws it is necessary to carry 
out averaging on fission splinters and to avail of statistical mechanics principles 
where physical variables describing with the aid of distribution functions are 
considered as continuous functions of spatio-temporal coordinates. 

We note also for the carrying-out of statistical (macroscopic) physics it is 
necessary that averaging on considered splinters occured in the volume with 
sizes bigger than interfission-fragment distances but smaller than macroscopic 
sizes of the system. 

Statistical averaging in statistical mechanics is introduced with the aid of 
distribution function or phase density ( )f x  in phase space where ( )x t  is 
phase vector of the system [19] [20]. 

In nonrelativistic case macroscopic values can be averaged only on phase 
space of coordinates and velocities of particles. Therefore, if ki-th particle is 
characterized by microscopic value ( ), ,ki kia R R t  then the average from it is 
defined by this integral  

( ), d ,R t a af ϕ= = ∫                     (40) 

where ( ), ,ki kif f R R t=   is distribution function, d d dki kiki R Rϕ =∏   is a 
element of the phase space volume, df ϕ  is the probability of system stay in the 
element of volume dϕ  (owing to the conservation of probability d constf ϕ =  
along phase trajectory). 

Hence it follows the commutation of operations of the differentiation on the 
time and the averaging on phase space and spatial differentiation and phase 
averaging also:  

d dd d ,
d d
a aa af f

t t t t
ϕ ϕ

∂ ∂
= = =

∂ ∂ ∫ ∫  

d d ,a af af aϕ ϕ∇ = ∇ = ∇ = ∇∫ ∫                (41) 

where  

,
d ,
d ki ki ki ki

ki ki
R R

t t ⋅
∂

= + ∇ + ∇
∂ ∑ ∑   

,, .ki ki
ki kiR R⋅
∂ ∂

∇ ≡ ∇ ≡
∂ ∂ 

 

So that to receive Maxwell’s equations it is necessary to apply statistical 
averaging to equations of fission-fragment fields (24). Then we shall be having  
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* ,E Q p∇ = − ∇  

*
1 ,E B J p m
c∗′ ′− + ∇× = + + ∇×  

* *0, 0,B B E∗′∇ = + ∇× =                  (42) 

and further, with the aid of commutation rule (41) in system of Equation (42) we 
obtain  

* ,E Q p∇ = −∇  

* *
1 ,E B J p m
c

′ ′− +∇× = + +∇×  

* * *0, 0.B B E′∇ = +∇× =                 (43) 

Use designation (40) for macroscopic fields, densities of charge, current and 
vectors of polarizations  

* *, , , ,E B Q J= = = =     

, .p m= =   

Then we can rewrite system (43) in the form of Maxwell’s equations:  

,∇ = −∇    

1 ,
c

′ ′− +∇× = + +∇×      

0, 0.′∇ = +∇× =                       (44) 

If resort to designations for vectors of displacement  
( ), ,= + = −       system of Maxwell’s Equation (44) can be written in 
still more compact form:  

1, ,
c

′∇ = − +∇× =      

0, 0.′∇ = +∇× =                       (45) 

System of Equation (45) can be obtained by means of the averaging of system 
(25) also. We note that system of Equation (45) into known terms of Maxwell 
fields , ,    and   is comfortable for the employment in the case of 
assignment of some boundary conditions. 

Continue the derivation of macroscopic equations on the basis of the averag- 
ing of microscopic equations. Then analogously by means of the averaging of 
Equation (23) can obtain macroscopic equation of the charge conservation  

.
t

∂
= −∇

∂



                        

 (46) 

If further to average relations (22) then we find macroscopic densities of 
charge and current correspondingly:  

( ) ( ), ,k k
k

R t Q R Rζ δ= = −∑  
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( ) ( ), .k k k
k

R t J R R Rζ δ= = −∑   

Write solutions of macroscopic Equation (44) to an approximation of 
summands in order 1 c :  

( ) ( ) ( ) ( )0
1, , , , d ,

4π
R t R t R t R t Rα α α α

ασ
 = −∇ −∇ ∫     

( ) ( ) ( ) ( ) ( )0

,1 1 1, , , , d ,
4π

R t
R t R t R t R t R

c c t
α

α α α α
ασ

 ∂
= +∇× + +∇ × ∂ 

∫


     

where ,R R Rα α α ασ∇ = ∂ ∂ = − , ( )0 0,   is the solution of field equations 
without sources (external field). For the checking of these expressions it is 
enough to put their in equations (44) and to take into account dependence (46). 

6. Quantumomechanical Model of Microscopic Equations 

Here we try to apply received earlier results for microscopic equations of nuclear 
electrodynamics in nonrelativistic approximation to the model founded on 
quantum mechanics with employment of operators theory and own vectors of 
states in Hilbert’s space. 

Let there is the system of particles with masses im , charges iZ  which is 
described by operators of coordinate ˆ

iR  and pulse îP  into external electromagnetic 
field with potentials ( )0 0, Aϕ  with the aid of Hermite (since the energy is real 
value) operator of Hamilton to an approximation of summands in order 1 c :  

( ) ( ){ }0 0

ˆ 1ˆ ˆ ˆ ˆ= , , , ,
ˆ2 8π 2

i ji
i i i i i

i i j ii ij

Z ZPH Z R t Pm A R t
m c

ϕ
σ

 + + −  
∑ ∑∑ ∑     (47) 

where ˆ ˆˆij i jR Rσ = − , the anti-commutator by scalar product of pulse operator 

îP  and vector potential 0A  is defined on the rule { },A B AB BA= +  Operator 
Ĥ  (47) gives the behaviour in the time of state vector ( )tψ  for considered 

system according to Schrödinger’s equation:  

( ) ( )ˆ .H t t
i t

ψ ψ∂= −
∂



                    
 (48) 

Here i  is the imaginary unit. 
Field equations into terms of Hermite’s operators of electric and magnetic 

fields have the form  

( )ˆ ˆ ,i i
i

E Z R Rδ∇ = −∑  

( ){ }1ˆ ˆ ˆ ˆ, ,
2 i i

i
E B R R R

c
δ′− +∇× = −∑   

ˆ ˆ ˆ0, 0,B B E′∇ = +∇× =                     (49) 

where in the second equation of system (49) in right part is the anti-commutator 
providing the hermicity of sources in field equations and what’s more the 
relation  

ˆˆ ˆ ˆˆ ,i AA cA H A
t

∂ ′= = +  ∂




                    (50) 
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has place for the operator Â . In equality (50) Â t∂ ∂  means the open 
derivative on the time, i.e. we assume that the operator Â  depends from the 
time obviously. Specifically, if in expression (50) the operator Â  don’t depends 
from the time obviosly then we have known as Heisenberg’s motion equation for 
operators which are independent from the time obviosly [21] [22]:  

( ) ( ) ( )
ˆd ˆˆ , .
d
A t i H t A t

t
 =  
                   

 (51) 

Since Equation (51) has open similarity with corresponding equation of 
classical mechanics of Poisson’s brackets then the commutator in the right part 
of Equations ((50), (51)) is named quantum brackets of Poisson from Ĥ  and 
Â  also. We remind that commutator by two operators is named the moved 
form [ ],A B AB BA= − . We note also that ˆ ˆ

i i iR P m=  follows from expression 
(47) with an approximation of summands in order 0c . 

So that to write motion equation for charged i-th particle it is necessary by the 
calculation of derivatives on the time from ˆ

iR  to take advantage of rule (50). 
Then with the aid of expression for Ĥ  (47) we obtain  

( )0
1ˆ ˆ ˆ , ,i i i i im R P Z A R t
c

= −  

( ) ( )0 0

ˆ1ˆ ˆ ˆ ˆ, , , ,
ˆ4π 2

i j i
i i i i i i

j ij i

Z Z P
m R Z E R t B R t

c mσ

×    = −∇ + +  
    

∑       (52) 

where ˆ ˆ , .i iR i j∇ = ∂ ∂ ≠  Here external field ( )0 0,E B  is connected with scalar 
and vector potentials ( )0 0, Aϕ  by dependences (2), (3) so that  

0 0 0 0 0, ,E A B Aϕ ′= −∇ − = ∇×  

moreover in the right part of Equation (52) over the { },A B ×  is indicated 
rearranged form with vector product: { },A B A B B A× = × − × . 

In conclusion we adduce quantumomechanical description of microscopic 
field equations of charged fission splinters (24) for average values of corresponding 
operators. The system in Hilbert’s space is described by the state vector ( )tψ  
or Hermite’s operator of the density ( ) ( ) ( )*ˆ t t tψ ψΨ = . Average values A  of 
the operator Â  is introduced as  

( )* ˆ ˆˆor Sp .A A A Aψ ψ= = Ψ  

Formally for notes of fields equations of fission splinters it is necessary 
demand the performance of the condition ki ki k kr R R R R= − < −  which 
guarantees the participation of those observation points R situated out of 
splinters and which provides the convergence of the row expansion (in this case 
the row converges for sources). 

We have for average values of operators (compare with system (24)):  

,E Q p∇ = −∇  

1 ,E B J p m
c

′ ′− +∇× = + +∇×  
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0, 0,B B E′∇ = +∇× =                    (53) 

where operators are determined by expressions  

( )ˆ ˆ ,k k
k

Q R Rζ δ= −∑  

( ){ }1ˆ ˆ ˆ ˆˆ ˆ, , , ,
2 k k k k k

k

iJ v R R v H Rζ δ  = − =  ∑


           (54) 

and the anti-commutator and the commutator for velocity operator are in the 
second and the third relations (54) correspondingly. 

Motion equation of ki-th particle in k-th splinter has the form of operator 
equation:  

( ) ( ){ }0
1ˆ ˆ ˆ ˆ ˆ, , , ,
2ki ki ki ki ki ki kim R Z E R t P m B R t

c

× = +  
           (55) 

where  

( ) ( )

( ) ( )

, , ,

, 0

1ˆ ˆ ˆ ˆ ˆ ˆ,
4π

ˆˆ , ,

ki ki kj k ij k k k ik lj kl ij
j l j

l l kl il ki
l

E R t Z X Y Z

X Y E R t

σ σ σ

σ


= ∇ − − + −


− + +

∑ ∑∑

∑
 

( ) ( )0
ˆ ˆ ˆ ˆ, , ; , , .ˆki ki ki

ki

B R t B R t j i l k
R
∂

= ≠ ≠ ∇ =
∂

 

Here the designation σ̂  indicates only on the presence of coordinates 
operator R̂  with corresponding indexes. 

Analogously the motion equation of nucleus of k-th splinter can be written in 
the operator form:  

( ) ( )0

ˆ1ˆ ˆ ˆ ˆ, , , ,
2

k
k k k k k

k

Pm R Z E R t B R t
c m

×    = +  
    



           

 (56) 

where  

( ) ( ) ( )
( ) ( )

, , , 0

0

1ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,
4π

ˆ ˆ ˆ, , .

k k kj k kj lj kl kj l l kl kl k
j l j l

k k

E R t Z Z X Y E R t

B R t B R t

σ σ σ
 

= ∇ − − − + + 
 

=

∑ ∑∑ ∑
 

Summation of motion equations of particles (55) and addition their with 
motion equation of nucleus (56) as a result led to a motion equation of the 
masses center of k-th splinter. 

Field Equations ((49), (53)) and motion equations of charged particles and 
fission splinters (52), (55), (56) form the base for further deduction of operator 
macroscopic field equations and motion equations into quantumomechanical 
interpretation taking into account β−-charged radioactive eradiation. 

7. Conclusion 

Here in essence the nuclear electrodynamics theory is presented. This theory 
opens wide perspectives for the creation of power devices in the form of the 
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nuclear electrogenerator which functions on new principles of the passing of 
nuclear fission reaction into directional electromagnetic fields. Chain fission of 
heavy nuclei is one of many physical phenomena which proceed in an avalanche 
scheme. In fission there is an impetuous increase in the numbers of neutrons, 
charged particles and fission splinters with enormous kinetic energy. The 
present theory aims to describe the above process quantitatively. In the future it 
could find an application in powerful nuclear electrogenerators operating 
exclusively on the basis of electronuclear conversions. 
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Notation 
∗  above is the transposition sign. 

Sp A  is the spur of quadratic matrix A  (the summarized elements of the 
main diagonal). 

[ ],A B AB BA= −  is the commutator of A  and B  operators with scalar 
product. 

{ },A B AB BA= +  is the anti-commutator of A  and B  operators with scalar 
product. 

{ },A B A B B A× = × − ×  is the rearranged form of A  and B  operators with 
vector product. 

All items are published in Russian except [1] [2] [3] [6] [11] [12] [13] [14] 
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