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Abstract 
In this thesis, we reformulate the original non-linear model for the LMRP. 
Firstly, we introduced a set of parameters to represent the non-linear part of 
the cost increase for a facility space allocated potential additional costs and 
new set of decision variables, indicating how many customers each equipment 
distribution. The algorithms are tested on problems with 5 to 500 potential fa-
cilities and randomly generated locations. Then using actual data to validate 
this new method is better. Our work was motivated by the modeling approach 
used in the Maximum Expected Covering Location Problem (MEXCLP). We 
compare new method and Lagrangian relaxation method to solve LMRP with 
constant customer demand rate and equal standard deviation of daily de-
mand. 
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1. Introduction 

Our work was motivated by the modeling approach used in the Maximum Ex-
pected Covering Location Problem (MEXCLP). MEXCLP is introduced by Mark 
S. Daskin in 1983 [1] [2]. The location model with risk pooling (LMRP) is in-
troduced by Mark S. Daskin, Collette R. Coullard, and Zuo-Jun Max Shen in 
2002 [3]. This problem chooses facility locations in order to minimize the total 
cost of building the facilities, transporting goods from facilities to customers and 
holding inventory to take advantage of economies of scale and protect against 
uncertain demand. So there are four parts in the objective function; the con-
struction cost, the transportation cost, the cycle stock cost and the safety stock 
cost. This problem can be solved quite efficiently using Lagrangian relaxation 
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when the ratio of the demand variance to mean is the same for every customer. 
In our thesis, we consider a further special case in which we assume all facilities 
share the same customer demand rate and standard deviation of daily demand. 
Ozsen [4] considered the interdependence between capacity and inventory 
management in the LMRP. The Lagrangian sub-problem is also a non-linear in-
teger program. They proposed an efficient algorithm for the continuous relaxa-
tion of this sub-problem. 

This model is a kind of covering problem; it decides the number of vehicles in 
each location in order to maximize the expected number of demands that can be 
covered, given that vehicles may be unavailable (in use). The model assumes that 
there is an equal probability that a vehicle is busy at any location. As the objec-
tive function is the expected number of demands, the decision variables that 
choose the number of vehicles in each location appear in an exponential term. 
This makes the objective function non-linear, just like the LMRP problem. Das- 
kin introduces a set of parameters to represent the increase in the expected cov-
erage for each additional vehicle, as well as a set of binary decision variables to 
indicate whether the customer is covered a specific numbers of times. By using 
the sum of all th0e benefits of adding a new vehicle to represent the expected 
coverage, he changes the problem into one that is linear and easy to solve. So we 
apply the same idea to convert the LMRP into a linear mixed-integer program-
ming problem and compare it with the Lagrangian method of Mark S. Daskin, 
Collette R. Coullard, and Zuo-Jun Max Shen to see if it will give us a more effi-
cient method [5] [6]. Daskin and Teo [7] presented a stochastic version of the 
LMRP problem, and they developed a Lagrangian method for this problem. 
They also discussed the influence of changing the key parameters. 

2. Model Formulation 
2.1. Maximum Expected Covering Location Problem 

As we mentioned in the Introduction chapter, our approach for solving concave 
binary minimization problems is inspired by a reformulation strategy that is 
sometimes used to solve other binary optimization problems in which the objec-
tive function contains a non-linear function of the sum of the binary variables. 
The basic idea is to introduce auxiliary parameters and binary variables and use 
their product to represent the none-linear part, and use these to linearize the 
objective function. 

One model that uses this approach is the maximum expected covering loca-
tion problem (MEX-CLP) by Mark S. Daskin in 1983. The MEXCLP chooses lo-
cations of facilities that can sometimes be unavailable (e.g., because the ambul-
ance located there is busy on another call). A demand node is covered by a facil-
ity if it is within a certain coverage radius of it. The goal of the MEXCLP is to 
locate at most P facilities to maximize the total expected coverage of the demand 
nodes. 

The MEXCLP assumes that the probability that a facility is unavailable at any 
time is given by q. It also assumes that facility unavailability are independent, so 
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if there are n facilities that cover a demand node, then the probability that all of 
them are unavailable is given by qn. Since the number of covering facilities, n, is 
not known a priori, we have to express it in terms of the decision variables as 

ij jj J a X
∈∑ , where ija  is a parameter that equals 1 if facility j covers demand 

node i and 0 otherwise. Then the model can be formulated as follows: 
Parameters: 
J  set of potential facilities, indexed by j, 
I  set of customer nodes, indexed by i, 
q  the probability that a facility is unavailable at any time, 
P  the maximum number of the facilities can be chosen, 

ih  the demand generated at node i, 
1 if a facility at can cover demands at customer node ?
0 otherwiseij

j i
a 

= 


 

Decision Variables; 

jX  the number of facilities to be built at j 
Then the model can be formulated as follows: 

( )Maximize 1 ij jj J a X
i

i I
h q ∈

∈

∑−∑  

subject to j
j J

X P
∈

≤∑  

0,1,jX j J∈ ∀ ∈  

2.2. Linearization of Maximum Expected Covering  
Location Problem 

In the original formulation, the probability that the demand of a customer node i 
is covered is given by 1 ij jj J a Xq ∈∑− , which is a non-linear function of Xj. Instead 
of computing the probability directly, proposes adding up the benefits of each 
new facility. We now summarize his approach. 

Figure 1 shows how we compute the probability by adding up benefits. The 
x-axis is the number of facilities that cover the demand node and the y-axis is the 
probability. Assume there are k facilities that can cover the demand node. We 
first compute the bene t of adding the ( )1n +  st facility (assuming we already 
have n facilities ) ( 0,1, , 1n P= − ) and then we can add them up from n = 1 to 
k. 

The availability probability for n facilities is ( ) ( ) ( )11 1 1n n nq q q q+− − − = − . 
We introduce a new variable jkZ  to represent the number of times covered, 
which we define to be 1 if demand node i is covered k or more times, and 0 if not. 
The model then can be formulated as follows. 

( )1

1
Maximize 1

P
k

i jk
k i I

h q q Z−

= ∈

−∑∑  

1
subject to 0,

P

ij j ik
j J k

a X Z i I
∈ =

− ≥ ∀ ∈∑ ∑  

0,1,jX j J∈ ∀ ∈  
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Figure 1. Adding up benefits to compute probability. 
 

0,1, ; 1, 2, , .jkZ j J k P∈ ∀ ∈ =   
In this model, we add up the benefits to replace the none-linear part of the 

objective function and that gives us a linear formulation. In what follows we 
propose a similar method to reformulate the LMRP model as a linear one. 

2.3. The Location Model with Risk Pooling 

The LMRP model is an extension of the UFLP that considers uncertain demand. 
Besides the fixed cost of opening locations and the variable transportation cost, 
it also includes the cost of cycle stock and safety stock. As a result, the LMRP is 
structured much like the UFLP model, with two extra non-linear terms in the 
objective function. Despite its concave objective function, the LMRP problem 
can be solved by Lagrangian relaxation quite efficiently, just like the UFLP, as-
suming that the ratio of the customer demand rate and the standard deviation of 
daily demand are constant. We use the following notations: 

Parameters: 
I  set of retailers, indexed by i, 
J  set of candidate DC sites, indexed by j,  

iu  mean daily demand of retailer i, for each i I∈  
2
iσ  variance of daily demand of retailer i, for each i I∈ , 
 jf  fixed (daliy) demand of locating a DC at candidate site j, for each  j J∈ ,  

jK  fixed cost for DC j to place an order from the supplier, including fixed 
components of both ordering and transportation costs, for each  j J∈ , 

ijd  cost per unit to ship between retailer i and candiddate DC site j, for each 
 i I∈  and  j J∈  
θ  a constant parameter that captures the safety stock costs at candidate sites. 
Decision Variables: 

1 if we locate at candidate site
0 if notj

j
X 

= 

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1 if demands at retailer are assigned to a DC at candidate site
0 if notij

i j
Y 

= 


 

Then the model is formulated as follows. 

2Minimize j ij ij j i ij i ij
j J i I i I i I

f d Y K u Y Yθ σ
∈ ∈ ∈ ∈

 
+ + + 

 
∑ ∑ ∑ ∑  

subject to 1,ij
j J

Y i I
∈

= ∀ ∈∑  

, ,ij jY X i I j J≤ ∀ ∈ ∀ ∈  

{ }0,1 ,jX j J∈ ∀ ∈  

{ }0,1 , ,ijY i I j J∈ ∀ ∈ ∀ ∈  

2.4. Linearization of LMRP 

To make the objective function linear, we introduce a new parameter jkγ  to 
represent the cost of safety and cycle stock cost that k retailers are assigned to 
DC j, that is 

2
jk jK ku kγ θ σ= +  

Also we introduce a new decision variable 

1, if exactly retailers are assigned to DC ,
0, if notjk

k j
Z 

= 


 

To associate jkZ  with its meaning using linear constraints, we add the con-
straints 

 
0

,   
I

jk ij
k i I

kZ Y j J
= ∈

= ∀ ∈∑ ∑  

0
1,

I

jk
k

Z j J
=

= ∀ ∈∑  

The second constraint says that only one of the   jkZ  can be equal to 1 for 
each j and the first constraint makes sure that the 1 appears when iji Ik Y

∈
=∑  

which is just how we define the meaning of   jkZ . 
So the linear model is: 

{ }Minimize j j ij ij jk jkj J i I k Jf X d Y Zγ
∈ ∈ ∈

+ +∑ ∑ ∑           (2.1) 

subject to 1,ijj J Y i I
∈

= ∀ ∈∑                  (2.2) 

    , ,ij jY X i I j J≤ ∀ ∈ ∀ ∈                     (2.3) 

0     ,I
jk ijk i IkZ Y j J

= ∈
= ∀ ∈∑ ∑                   (2.4) 

0 1,I
jkk Z j J

=
= ∀ ∈∑                     (2.5) 

{ }0,1 ,jX j J∈ ∀ ∈                      (2.6) 

{ }0,1 , ,ijY i I j J∈ ∀ ∈ ∀ ∈                   (2.7) 

{ }0,1 , , 0, ,jkZ j J k I∈ ∀ ∈ ∀ =                  (2.8) 
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From these two formulations, we can see although the second method is linear, 
it has many more constraints than the original formulation. On the other hand, 
it can be solved by an o—the-shelf MIP solver and does not require Lagrangian 
relaxation as in the original LMRP. So it’s hard to say which computation time 
would be shorter only by looking at the models. We will test randomly generated 
examples and compare the solution time of the two methods in Chapter 4. 

2.5. The Lagrangian Relaxation Method for the LMRP 

Similar to the UFLP, we solve the LMRP by relaxing the assignment constraints 
Equation (2.2) to obtain the following Lagrangian sub-problem: 

( )

2

2

Minimize 1

Minimize

j ij ij j i ij i ij I ij
j J i I i I i I i I j J

j ij i ij j i ij i ij i
j J i I i I i I i I

f d Y K u Y Y Y

f d Y K u Y Y

θ σ λ

λ θ σ λ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈

  
+ + + + −  

   
 

= + − + + + 
 

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 

subject to , ,ij jY X i I j J∈ ∀ ∈ ∀ ∈  

{ }0,1 ,jX j J∈ ∀ ∈  

{ }0,1 , ,ijY i I j J∈ ∀ ∈ ∀ ∈  

Although the sub-problem is a concave integer minimization problem, it can 
be solved relatively efficiently, using a sorting method developed by Mark S. 
Daskin, Collette R. Coullard, and Zuo-Jun Max Shen in 2003. The algorithm re-
lies on the assumption that the ratio of the demand variance to the demand 
mean is a constant for all retailers. That is, for all i I∈ , 2 0i iuσ γ= ≤ . Then we 
can collapse two square root terms into one and apply the sorting algorithm to 
solve the resulting sub-problem.  

The optimal objective function value of the Lagrangian sub-problem gives us a 
lower bound of the original problem; then we need an upper bound. There are 
many ways to find a feasible solution to get the upper bound; in this paper, we 
use a simple algorithm to generate the solution from the sub-problem result. 
This is shown in the appendix. 

Finally, we recursively update λ  to get a smaller gap between the lower and 
upper bound. Our stopping condition in the computational tests in this thesis is 
when the number of iterations is over 500 or the gap is less than or equal to 5 
percent of the upper bound. There is no limit for CPU time since the first stop-
ping condition includes it. 

3. Computational Results 
3.1. Testing on Random Instances 

We implemented the Lagrangian method in C++ and the linearization method 
in AMPL with CPLEX version 12.4.0.0. Table 1 is the comparison of the solution 
time for the linearization and Lagrangian methods. The linearization method 
has a similar solution time as the Lagrangian method when the number of facili-
ties is small. However, the solution time increases faster with the number of  
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Table 1. Average solution time comparison. 

Data Scale Lagrangian Method Linearized Method 

5 0.039 0.264 

10 0.055 0.373 

15 0.105 0.422 

20 0.081 0.447 

25 0.096 0.472 

30 0.171 0.567 

35 0.133 0.623 

40 0.109 0.729 

45 0.153 0.815 

50 0.175 0.873 

55 0.169 1.151 

60 0.213 1.626 

65 1.948 1.559 

70 0.172 1.597 

75 0.225 2.142 

80 0.240 2.458 

85 0.289 3.121 

90 0.246 5.722 

95 20715 5.215 

100 0.373 4.965 

150 0.726 31.408 

200 7.645 300.122 

250 10.753 193.101 

300 2.540 650.172 

350 3.750 397.260 

400 27.234 166.028 

450 59.588 397.333 

500 71.281 364.518 

 
facilities for the linearized method than it does for the Lagrangian method. So 
for larger scale problems (which are more practical) the Lagrangian method will 
have better performance. 

In our experiments, for one specific data set, CPLEX gets stuck when it tries to 
solve the linearization problem. It takes over 90 seconds while the other samples 
with the same data scale only need 2.91 seconds on average. When we use the 
Lagrangian method to solve the same problem, the method also stopped because 
the number of iterations is over 500. The reason that the Lagrangian method 
can’t solve this kind of data set in a small number of iterations is that the La-
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grangian relaxation’s optimal value can’t reach the original problem’s optimal 
value, and the gap is over 5 percent, but the reason why the gaps are large for 
this data set is not clear. Similarly, we still can’t understand why CPLEX also gets 
stuck for this data set. 

The gap between the upper bound and the lower bound is not large; it is on 
average 4.3 percent. However, there is a significant cant increase in the gap when 
the data scale grows larger. 

Figures 2-4 and Table 1 are the comparison of the average solution time for 
the Lagrangian method and the linearization method. In the figure, the lower 
line (blue) represents the solution time for the Lagrangian method and the upper 
line (orange) is for the linearization method. 

Figure 5 and Figure 6 and Table 2 and Table 3 are the comparison of the 
maximum solution time for the Lagrangian method and the linearization me-
thod. 
 

 
Figure 2. Average solution time for data scale 5 to 100. 
 

 
Figure 3. Average solution time for data scale 150 to 450. 
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Figure 4. Bounds from Lagrangian method. 
 

 
Figure 5. Maximum solution time for data scale 5 to 100. 
 

 
Figure 6. Maximum solution time for data scale 150 to 450. 
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Table 2. Maximum solution time comparison. 

Lagrangian Method Linearized Method  

5 0.078 0.420 

10 0.086 0.828 

15 0.125 0.623 

20 0.192 0.803 

25 0.202 0.733 

30 0.233 0.826 

35 0.187 1.022 

40 0.162 1.483 

45 0.329 1.891 

50 0.245 1.623 

55 0.227 1.92 

60 0.297 2.427 

65 6.935 2.895 

70 0.502 2.798 

75 0.643 4.052 

80 0.582 6.304 

85 0.636 8.471 

90 0.721 12.567 

95 9.028 15.465 

100 1.873 13.981 

150 2.234 90.385 

200 21.43 639.293 

250 28.388 293.233 

300 8.449 1243.54 

350 14.284 1539.455 

400 53.293 324.144 

450 19.116 567.342 

500 20.101 597.369 

 
Table 3. Data distribution for LMRP. 

Parameters Generated from distribution 

ijd  Uniform [0,500] 

jf  Uniform [0,15] 

jK  Uniform [0,25] 

θ  Inverse Normal 

2σ  Uniform [0,1] 

u  Uniform [0,2] 
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Based on the results, we can see that the gap between the lower and upper 
bounds is acceptable, even in the cases that stopped due to the 500-iterations 
limit. Additionally, when the scale is not large, we can get results from the La-
grangian method with a tiny gap, say 0.5 percent. So it can be concluded that the 
Lagrangian method is reliable. 

The linearization method becomes slower than the Lagrangian method on av-
erage when the data scale is large. From Table 4 and Table 5, we see that the 
maximum solution time of the ten samples has a similar trend as the average so-
lution time. However, there do exist in-stances for which the linearization me-
thod runs faster. The solve-speed depends on the instances. 

For further research, we will test on larger scale problems and real world in-
stances. 

3.2. Testing on Benchmark Instances 

As in real life, the data such as distance, fixed cost of opening a new facility and 
the demand of different places are not always independent, so it is necessary to 
compare the computation time not only on random data sets, but also on exam-
ples that come from more realistic instances. 

Our data comes from “An inventory-location model: Formulation, solution 
algorithm and computational results. Annals of Operations Research” and we 
use two data sets. For the 88-node dataset, representing the 50 largest cities in 
the 1990 US census along with the 48 capitals of the continental US minors dup-
licates, the mean demand was obtained by dividing the population data by 1000 
and rounding the result to the nearest integer. Fixed facility location costs were 
obtained by dividing the facility location costs by 100. For the 150-node dataset, 
representing the 150 largest cities in the continental US for the 1990 census,  
 
Table 4. Sample test data for LMRP. 

j(i) jf  jK  θ  u 2σ  

1 6.7899 20.1892 −0.6551 0.1004 1.4484 

2 8.3984 10.8181 −0.6551 0.1004 1.4484 

3 5.4865 24.0214 −0.6551 0.1004 1.4484 

4 3.2355 14.2425 −0.6551 0.1004 1.4484 

5 8.7225 10.2614 −0.6551 0.1004 1.4484 

 
Table 5. Sample test data for LMRP. 

ijd  1 2 3 4 5 

1 313.0018 427.8025 148.3325 269.3765 47.4767 

2 307.9506 275.2097 240.9874 236.6587 39.4540 

3 210.9449 216.0247 295.6569 200.8956 55.5366 

4 228.2597 245.9648 386.1843 321.6904 185.5226 

5 83.5940 316.4902 476.5017 329.6392 48.3012 
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the mean demand was obtained in the same manner. The fixed facility costs 
were all set to 100, one thousandth of the value in the dataset given by Mark S. 
Daskin, Collette R. Coullard, and Zuo-Jun Max Shen in 2002. These changes 
were made to allow us to deal with smaller numbers. 

For the 88-node dataset, the solution time for the Lagrangian method is 0.203 
s and it takes CPLEX 2.435 s. For the 150-node dataset, the solution time for the 
Lagrangian method is 0.539 s and it takes CPLEX 19.673 s. 

We see that the solution time for both methods is a little bit smaller than the 
average of the random samples and the Lagrangian method is still much faster 
han the linearization method. So the randomness of the initial instances may not 
have much influence on the comparison of these two methods. 

4. Conclusions 

Our linearization of the LMRP requires longer solution time on average than the 
Lagrangian method does. However, it performs better in some special instances.  

For future research, we would like to determine under what conditions the li-
nearization method will have a shorter solution time than the Lagrangian me-
thod does. 
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