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Abstract 
An efficient multigrid finite-differences scheme for solving elliptic Fredholm 
partial integro-differential equations (PIDE) is discussed. This scheme com-
bines a second-order accurate finite difference discretization of the PIDE 
problem with a multigrid scheme that includes a fast multilevel integration of 
the Fredholm operator allowing the fast solution of the PIDE problem. Theo-
retical estimates of second-order accuracy and results of local Fourier analysis 
of convergence of the proposed multigrid scheme are presented. Results of 
numerical experiments validate these estimates and demonstrate optimal com-
putational complexity of the proposed framework. 
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1. Introduction 

A partial integro-differential equation (PIDE) is an equation composed of a 
partial-differential term and an integral term. In the recent past, the solution of 
partial-integro differential equations has attracted attention and motivated research 
in the field in view of applications in mechanics, biology and finance [1] [2] [3] 
[4]. We notice that in the past, research on integro-differential problems has 
focused on one-dimensional problems in the framework of ordinary differential 
equations. On the other hand, parabolic multi-dimensional problems with Volterra 
type integral terms have been considered [5]. Furthermore, independently of these 
topics, the problem of fast computation of Fredholm operators in multi-dimensions 
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has been investigated. However, much less is known on the numerical analysis of 
multi-dimensional elliptic PIDEs with Fredholm integral terms. In [6], a one 
dimensional PIDE with a convolution kernel is solved through conversion of the 
PIDE to an ordinary differential equation and the use of the inverse Laplace 
transform. The work in [7] develops a moving mesh finite-difference method for a 
PIDE that involves approximating the time dependent mapping of the coordinate 
transformation by a piecewise quadratic polynomial in space and piecewise linear 
functions in time. In [8] [9], compact finite-differences for one-dimensional PIDEs 
are studied. Additional results on high-order schemes for integro differential 
equations (IDE) can be found in [10]. The research in [11], is devoted to an 
iterated Galerkin method for PIDE in one-dimesion; see [12]. Further, the work 
[13] considers the numerical solution of linear IDE using projection methods. The 
work in [14] investigates a Tau method with Chebychev and Legendre basis to 
find the numerical solutions of Fredholm integro-differential equations where the 
differential part is replaced by its operational Tau representation. We remark that 
the methodologies referred above are designed for one-dimensional problems and 
their complexity for multi-dimensional problems may become prohibitive. 

The purpose of this work is to contribute to this field of research with the 
development and analysis of a methodology that is appropriate for multi-dimen- 
sional PIDE problems. We present a second-order accurate fast multigrid scheme 
to solve elliptic problems of the following form 

( ) ( ) ( ) ( ), d in ,Au x k x y u y y f x
Ω

+ = Ω∫  

where A represents an elliptic operator with given boundary conditions and  
dΩ⊂  . Our approach is to combine a multigrid scheme for elliptic problems 

with the multigrid kernel approximation strategy developed in [15]. 
For this purpose, we discretize our PIDE problem by finite-differences and 

quadrature rules and analyse the stability and accuracy of the resulting scheme in 
the case of A being the minus Laplace operator that is combined with a Fredholm 
Hilbert-Schmidt integral operator. 

It is well-known that a multigrid scheme solves elliptic problems with optimal 
computational complexity. However, this is in general not true if a straight- 
forward implementation of the integral term is considered. For this reason, with- 
in the multigrid framework, we investigate the multigrid kernel approximation stra- 
tegy proposed in [15], where it is demonstrated that it is possible to approximate a 
Fredholm integral term with ( )2sh  accuracy while reducing the complexity of its 
calculation from ( )2n  to ( )sn , where n is the number of grid points. 

Our work is organized as follows. In Section 2, we discuss the theory of an 
elliptic Fredholm partial integro-differential equation, proving existence and uni- 
queness of solutions. In Section 3, we discuss the finite-difference discretization of 
our PIDE problem and prove second-order accuracy of the numerical solution. In 
Section 4, we illustrate our multigrid solution process including the techniques in 
[15] for approximating the Fredholm integral operator. Our resulting PIDE 
multigrid solution procedure is analysed by local Fourier analysis in Section 5. In 
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Section 6, results of numerical experiments are presented that successfully validate 
the theoretical estimates and the effectiveness of the proposed PIDE solution 
procedure. A section on conclusion completes this work. 

2. An Elliptic Fredholm Partial Integro-Differential Equation 

We consider the following PIDE problem 

( ) ( ) ( ) ( ), d in ,u x k x y u y y f x
Ω

−∆ + = Ω∫            (2.1) 

( ) 0 on ,u x = Γ                        (2.2) 

where 2,x y∈Ω⊂   is a two-dimensional, convex and bounded domain with a 
2C  boundary or a rectangle. We denote Γ = ∂Ω  and Ω =Ω∪Γ . We consider  

( )2f L∈ Ω  and a symmetric positive semi-definite Hilbert Schmidt kernel  

( )2k L∈ Ω×Ω , such that ( ) 2
, d dk x y x y

Ω Ω

< ∞∫ ∫ , and the following holds 

( ) ( ) ( ) ( )2, d d 0, for all .k x y v x v y x y v L
Ω Ω

≥ ∈ Ω∫ ∫               (2.3) 

We have the following theorem. 
Theorem 2.1 Let ( )2k L∈ Ω×Ω  be a Hilbert Schmidt kernel. The integral 

operator   given by 

( )( ) ( ) ( ), d , ,u x k x y u y y x
Ω

= ∈Ω∫  

defines a bounded mapping of ( )2L Ω  into itself, with the Hilbert Schmidt norm 

2k≤ . 
Proof. From Tonelli’s theorem, ( )( ) ( ) ( ), du x k x y u y y

Ω

= ∫  is a measurable 
function of x and its L2-norm can be determined by the Cauchy-Schwarz inequality. 
Let ( )2u L∈ Ω , we have 

( ) ( ) ( )

( ) ( )

( )

2
22

2

2 2

2 2 2 2

2 2 2

d , d d

, d d d

, d d .

u u x x k x y u y y x

k x y y u y y x

k x y u y x k u

Ω Ω Ω

Ω Ω Ω

Ω Ω

= =

  
≤   

  

= = < ∞

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 

 

Hence ( )2u L∈  . 
Remark 2.1 From Schur’s test [16], since the kernel k is a measurable function, 

it satisfies the following conditions 

( ) ( )1 2ess sup , d , ess sup , d .
x y

k x y y k x y xξ ξ
∈ ∈Ω Ω

= < ∞ = < ∞∫ ∫
 

 

Then the integral operator   defines a bounded mapping and ( )
1
21 22 ξ ξ≤ . 

With this preparation, we can prove the following. 
Theorem 2.2 There exist a unique function ( ) ( )1 2

0u H H∈ Ω ∩ Ω  that solves 
(2.1)-(2.2). 

Proof. The proof is straightforward by using the Lax-Milgram theorem and the 
properties of the kernel. 
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3. Discretization of the Elliptic PIDE Problem 

We discretize (2.1)-(2.2) using finite differences and the Simpson’s rule [17] [18] 
[19]. For simplicity, we assume that ( )k C∈ Ω×Ω  and ( )f C∈ Ω  such that we 
can evaluate these functions on grid points. Specifically, we consider  

( ) ( ), ,a b a bΩ = ×  and N is an integer with 2N ≥ . We denote ( )1 2,x x x=  and  

( )1 2,y y y= . Let 
1

b ah
N
−

=
−

 be the mesh size. We denote the mesh points  

( )1 1 , 1, ,ix a i h i N= + − = 
, and ( )2 1 , 1, ,jx a j h j N= + − = 

. These grid 
points define the following grid 

( ){ }2
1 2, : , 2, , 1 .h ij i jx x x i j NΩ = = ∈ = − ∩Ω  

Later, we consider a sequence of nested uniform grids { }
0h h >

Ω




, where  

2 1N N= = +


 for ∈  . 

For grid functions v and w defined on hΩ , we introduce the discrete L2-scalar 
product 

( ) ( ) ( )2, ,
h

h
x

v w h v x w x
∈Ω

= ∑  

with associated norm ( ), hhv v v= . The negative Laplacian with homogeneous 
Dirichlet boundary conditions is approximated by the five-point stencil and is 
denoted by h−∆ . Given continuous functions in Ω  are approximated by grid 
functions defined through their values at the grid points. Thus the right-hand side 
of (2.1) in hΩ  is represented by ( )1 2,h

ij i jf f x x= , if ( )f C∈ Ω  (otherwise by 
local average), and similarly for the kernel function. 

Further, we introduce the following finite-difference operators. The forward 
finite-difference operator is given by 

( ) ( ) ( )
1

1 1 2 1 2
1 2

, ,
, .i j i j

x i j

u x x u x x
D u x x

h
++

−
≡               (3.1) 

The backward finite-difference operator is as follows 

( ) ( ) ( )
1

1 2 1 1 2
1 2

, ,
, .i j i j

x i j

u x x u x x
D u x x

h
−+

−
≡               (3.2) 

With these operators, we can define the 1
hH  norm as 

( )1 1 2 2

1
2 2 2 2

1,
|| ]| || ]|x x x xh hu u D u D u− −= + + . Notice that the bracket ]  denotes 

summation up to N in the given direction 1x , resp. 2x ; see [19]. With this 
preparation, we have 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 1 1 1 2 2 2 1 2

1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1
2 2

, , ,

, 2 , , , 2 , ,
.

h i j x x i j x x i j

i j i j i j i j i j i j

u x x D D u x x D D u x x

u x x u x x u x x u x x u x x u x x

h h

− + − +

+ − + −

∆ = +

− + − +
= +

 

The integral term of the elliptic PIDE in two-dimensions is written explicitly as 
follows 

( )( ) ( ) ( ), d , .u x k x y u y y x
Ω

= ∈Ω∫  



D. K. Gathungu, A. Borzì 
 

971 

Using the Simpson’s rule, we have the following approximation of this integral 
operator 

( )( ) ( ) ( ) ( )2

1 1
, , , ,

N N
h

lm lm h
l m

u x h r l m k x x u x x
= =

= ∈Ω∑∑             (3.3) 

where ( ) ( ) ( ),r l m r l r m=    represents the coefficients of the quadrature rule. In 
the case of the Simpson’s rule, we have 

( )

1 if 1,
3
4 2 0, 2, , 1
3
2 else.
3

l l N

r l l mod l N

 = =

= = = −






  

We refer to the Formula (6) as the full-kernel (FK) evaluation. 
We need the following lemma. 
Lemma 3.1 The positivity of the Hilbert Schmidt operator stated in (2.3) is 

preserved after discretization. 
Proof. Consider the following function ( ) ( )1

l
lm lmmv x x x vδ

=
= −∑ 

  where  
( )xεδ  is a 2L  suitable approximation of the Dirac delta function as ( ) 0x → , 

e.g., a narrow Gaussian. Inserting this function in (2.3) we have 

( ) ( )( ) ( )( )
, 1 , 1

, d d 0.
N N

lm ij lm ij
l m i j

v v k x y x x x y y y x yδ δ
= = Ω Ω

− − ≥∑ ∑ ∫ ∫  

          (3.4) 

Therefore by continuity, as ( ) 0x →  the above integral tends to ( ),lm ijk x y . 
Thus, we obtain ( ), 0hu u ≥ . 

The Simpson’s rule provides a fourth-order accurate approximation of the 
integral as follows 

( )4 ,h
h

v v h− =    

for any sufficiently smooth v . 
With the setting above, we write the finite-difference approximation of (2.1)- 

(2.2) as follows 

in ,h h
h hU U f−∆ + = Ω                      (3.5) 

where ( )ijU U=  denotes the numerical approximation to u. Further, the integral 
function (6) evaluated at ( )1 2,i jx x  is given as follows 

( ) 2
, .h hh

ij lm lmij lm
U h k U= ∑  

Notice that for functions that are zero on the boundary, summation can be 
restricted to the interior grid points. The double superscript hh  in ,

hh
lm ijk  indi- 

cates that the pairs of indices ( ),lm ij  refer to the mesh hΩ . 
Next, we investigate the stability and accuracy of (8). For this purpose, we use 

the numerical analysis framework in [19]. We denote h
h hA = −∆ +  . 

We need the following lemma, see also [19]. 
Lemma 3.2 Suppose U  is a function defined on hΩ  with 0U =  on the 

boundary; then the following holds 
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( )
1 12 22 2

1 2
1 1 1 1

,
N N N N

h x ij x ijh
i j i j

A U U h D U h D U
− −

− −

= = = =

≥ +∑∑ ∑∑  

Proof. Using the results of Lemma 3.3, we have 

( ) ( )
( ) ( ) ( )

1 1 2 2

1 1 2 2

1 12 22 2
1 2

=1 =1 =1 =1

2 2
1 1 2 2

, ,

, , ,

] ]|| | || |

h
x x x xh h

h
x x x xh h h

N N N N

x ij x ij
i j i j

x x x x

AU U D D U D D U U U

D D U U D D U U U U

h D U h D U

D U D U

+ − + −

+ − + −

− −

− −

= − − +

= − + − +

≥ +

≥ +

∑∑ ∑∑




      (3.6) 

Lemma 3.3 Suppose U is a function defined on hΩ  with 0U =  on the boun- 
dary; then there exists a constant *ρ , which is independent of U  and h , such 
that the following discrete Poincaré-Friedrichs inequality holds 

( )2 2 2
* 1 1 2 2|| ]| || ]|x x x xhU D U D Uρ − −≤ +                 (3.7) 

for all such U ; see [19]. 
Remark 3.1 From (3.6) and (3.7), we obtain ( ) 2

0 1,,h
h hh
U U U Uρ−∆ + ≥ , 

where ( )*
0 1 1ρ ρ= + . 

Theorem 3.4 The scheme (3.5) is stable in the sense that *

1,
0

1 h
h h

U f
ρ

≤  

Proof. We have 

( ) ( ) ( )2
0 1,

1,

, , ,

,

h h h
hh h h h

h h
h hh h

U U U U f U f U

f U f U

ρ ≤ −∆ + = ≤

≤ ≤


 

hence *

1,
0

1 h
h h

U f
ρ

≤ . 

We conclude this section with the following theorem. 
Theorem 3.5 Suppose ( )2f L∈ Ω  and ( ), 0k x y ≥  is a Hilbert Schmidt ker- 

nel, and assume that the weak solution u  to (2.1)-(2.2) belongs to  
( )1 3

0H H∩ Ω ; then the solution U  to (3.5) approximates u  with second-order 
accuracy as follows 

2
1, ,hu U ch− ≤  

where c is a positive constant independent of h. In particular 2
hu U ch− ≤  . 

Proof. The proof uses Theorem 3.4 and the fact that the truncation error of (3.5) 
is of second order. This proof follows exactly the same reasoning as in Theorem 
2.26 in [19]. 

4. A Multigrid Scheme for Elliptic PIDE Problems 

Our multigrid solution procedure for solving the discrete elliptic PIDE problem 
(3.5) is based on the full approximation storage (FAS) framework [20] [21] [22] 
and the multigrid fast integration technique presented in [15]. Notice that, 
although in this work we consider linear problems such that a linear multigrid 
scheme is well suited, our focus is on the nonlinear FAS framework in view of 
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future applications (nonlinear problems, differential inequalities). 
To illustrate our multigrid strategy, we first focus on the two-grid case, which 

involves the fine grid hΩ  and the coarse grid HΩ , where 2H h= . 
In hΩ , consider the discretized PIDE Equation (3.5) as follows 

,h h
hA U f=                              (4.1) 

where hU  denotes the solution to this linear problem. 
The main idea of any multigrid strategy for solving (4.1) is to combine a basic 

iterative method that is efficient in reducing short-wavelength errors of the 
approximate solution to (4.1), with a coarse-grid correction of the fine-grid long- 
wavelength solution’s errors that is obtained solving a coarse problem. 

We denote the smoothing scheme with S. Specifically, when S is applied to 
(4.1), with a starting approximation , 1h mU − , it results in ( ), , 1,h m h m hU S U f−= . 
The smoothing property is such that the solution error , ,h m h h me U U= −  has 
smaller higher-frequency modes than the error , 1 , 1h m h h me U U− −= − . 

In the multigrid solution process, starting with an initial approximation ,0hU  
and applying S to (4.1) 1ν -times, we obtain the approximate solution 1,hhU U ν= . 

Now, the desired (smooth) correction he  to hU , to obtain the exact solution, 
is defined by ( )h h h

hA U e f+ = . Equivalently, this correction can be defined as 
the solution to 

( ) ,h h h h
h hA U e r A U+ = +                     (4.2) 

where h h h
hr f A U= −   is the residual associated to hU . 

Next, notice that the structure of hA  and the smoothness of the error function 
allow to represent (4.2) on the coarse grid HΩ . On this grid, h hU e+  is repre- 
sented in terms of coarse variables as follows 

ˆ ,H H h H
hU U e= +                    (4.3) 

where ˆH h
h U  represents the restriction of hU  to the coarse grid by means of the 

direct injection operator denoted with ˆH
h . 

With this preparation, it appears natural to approximate (4.2) on the coarse grid 
as follows 

( ) ˆ .H H h h H h
H h h H hA U f A U A U= − +               (4.4) 

Notice that this equation can be re-written as H H h H
H h hA U f β= +  where  

ˆH H h H h
h H h h hA U A Uβ = −   . The term H

hβ  is the so-called fine-to-coarse defect 
correction. 

Now, suppose to solve (4.4) to obtain HU . Then we can compute 
ˆH H H h

he U U= −  , which represents the coarse-grid approximation to he . Notice 
that while HU  and ˆH h

h U  need not to be smooth, their difference is expected to 
be smooth by construction, and therefore it can be accurately interpolated on the 
fine grid to obtain an approximation to he  that is used to correct hU . This 
procedure defines the following coarse-grid correction step 

( )ˆ .h h h H H h
H hU U U U= + −                      (4.5) 

In order to damp the high-frequency errors that may arise through the coarse- 
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grid correction, a post-smoothing is applied. 
Notice that in (4.4) a restriction operator H

h  is applied to the residual, while in 
(4.5) an interpolation operator h

H  is applied to the error function. We choose the 
following inter-grid transfer operators [23] [24] 

[ ] [ ]1 1: 1 9 9 1 and : 1 0 9 16 9 0 1 .
16 32

h H
H h= − − = − −  (4.6) 

The transfer operators given by (4.6) are of 4th-order.The 4th-order interpo- 
lation operator is symmetric and accesses two grid points on either side of the 
interpolated point. To approximate at the grid point 2i =  and 1i N= − , an 
asymmetric interpolation that accesses one point on one side and three points on 
the other side is used. The asymmetric fourth-order interpolation is given by 

[ ]1: 5 15 5 1 .
16

h
H = −  

Notice that our choice of higher-order interpolation and restriction operators, as 
in [15], appears advantageous for the fast integration technique that we discuss 
next. 

The fast integration strategy [15] [25] aims at performing integration mostly on 
coarser grids and to interpolate the resulting integral function to the original fine 
grid where this function is required. To illustrate this technique in the one- 
dimensional case, denote with ( )1jx a j h= + −  the grid points on the grid with 
mesh size h, and with ( )1Jx a J H= + −  the grid points on the grid with mesh 
size 2H h= . Notice that j Jx x=  for 2 1j J= − . 

Now, suppose that the kernel ( ),k x y  and u  are sufficiently smooth. (For 
the case of singular kernels see [15].) In hΩ , the integral  
( )( ) ( ) ( ), du x k x y u y y

Ω

= ∫  is approximated by ( ) ,
h hh

i j ji j
U h k U= ∑ . On the  

other hand, in the strategy of [15], the kernel is approximated by , ,.
hh h hH

i j H i j
k k =   , 

where the interpolation operator h
H  may be equal to h

H . With this setting, we 
have 

( ) ( )

( )

, ,.

T

, , where ,

h h h h hh h h hH h
i j j H i jji i j j

hH h h hH H H H h
i J H i J J h

Jj j

U U h k U h k U

h k U H k U U U

 ≈ = =  

 = = =  

∑ ∑

∑ ∑



 

 

 

where HU  is obtained by coarsening of hU . In particular, using straight 
injection for boundary values or the full-weighted restriction in (4.6), we have 

2
H h
J JU U= . Now, we go a step further and consider the coarse integral function  

( ) ,
H H HH H

I J JI
U H k U= ∑ . This function is evaluated on the coarse grid and, from  

the calculation above it is clear that it is equal to ( )h h

i
U  for all 2 1i I= − . 

Therefore we obtain the following approximation to the integral function on the 
fine grid 

( ) where .h h h H H H H h
H hU U U U≈ =           (4.7) 

In one dimension, the summation complexity on the coarse grid is of order 
( )2 2N  operations, which may still be large. However, assuming that the 
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kernel is sufficiently smooth and using the fact that the coarse-grid summation has 
the same structure of the fine-grid summation, the coarsening-summation proce- 
dure just described can be applied recursively, until a grid is reached with  

( )N  grid points. On this grid the summation is then actually performed, 
requiring ( )N  operations. Further, the computational effort of the restriction 

hH
h U  and of the interpolation ( )h H H

H U   is ( )2 pN , where p  is the 
order of interpolation ( 2p =  for linear interpolation). Therefore the order of total 
work required to obtain the (approximated) summation is ( )N  operations. 
Notice that choosing H h= , the quadrature error on using Simpson’s rule is 
( ) ( )4 2H h=  . This gives an overall ( )2h  order of accuracy for the whole 

procedure. 
Now, we can illustrate the multigrid procedure considering a sequence of nested 

grids (levels) 
kk hΩ =Ω  of mesh size kh , indexed by the level number  

1, ,k l=  , where l  denotes the finest level. First, we summarize the fast inte- 
gration (FI) technique in Algorithm 1, where we perform full-kernel evaluation 
when a level k l d= − , with given depth d , is reached. 
 

 
 

Next, we discuss our smoothing scheme. Our approach is to implement a 
Gauss-Seidel step for the Laplace operator, without updating the integral part of the 
equation operator. It can be appropriately called a Gauss-Seidel-Picard iteration, 
where the integral is evaluated using the FI scheme before the Gauss-Seidel step 
starts. In the one-dimensional case, our smoothing scheme is given by Algorithm 2. 
 

 
 

Our multigrid scheme is given in Algorithm 3. Notice that this algorithm 
describes one cycle of the multigrid procedure that is repeated many times until a 
convergence criterion is satisfied. In Algorithm 3, the parameter γ  is called the 
cycle index and it is the number of times the same multigrid procedure is applied 
to the coarse level. A V-cycle occurs when 1γ =  and a W-cycle results when 

2γ = . 
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5. Local Fourier Analysis 

In this section, we investigate convergence of the two-grid version of our FAS-FI 
multigrid solution procedure using local Fourier analysis (LFA) [20] [21] [26] [27]. 
In order to ease notation, we consider a one-dimensional case and use h and H 
indices to denote variables on the fine and coarse grid, respectively. For the LFA 
investigation, we assume that the kernel of the integral term is translational 
invariant in the sense that ( ) ( ),k x y k x y= −  and require that ( )k x y−  de- 
cays rapidly to zero as x y−  becomes large. With these assumptions the stencil 
of our PIDE operator can be cast in the standard LFA framework. However, trea- 
ting the fast-kernel evaluation in this framework results too cumbersome. On the 
other hand, numerical experiments show that, apart of the different complexity, 
the convergence of our multigrid scheme with FI and with FK evaluation are very 
similar. Therefore we analyze our two-grid scheme with the latter procedure. 
We apply the local Fourier analysis to the two-grid operator given by 

( )2 11 ,H h H
h h h H H h h hTG S A A Sν ν− = −                 (5.1) 

where different pre- and post-smoothing steps are considered. The coarse grid 
operator is given by ( ) 1H h H

h h H H h hCG A A− = −    . 
The local Fourier analysis considers infinite grids, { },hG jh j= ∈ , and there- 

fore the influence of boundary conditions is not taken into account. Nevertheless, 
LFA is able to provide sharp estimates of multigrid convergence factors. This 
analysis is based on the function basis 

( ) ( ], e , π, π .i x h
h x θφ θ θ= ∈ −  
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For any low frequency [ )0 π 2, π 2θ ∈ − , we consider the high frequency mode 
given by 

( )1 0 0signum π.θ θ θ= −                      (5.2) 

We have ( ) ( )0 1, ,h hφ θ φ θ⋅ = ⋅  for [ )0 π 2, π 2θ ∈ −  and Hx G∈ . We also 
have ( ) ( )0, 2 ,h Hx xφ θ φ θ=  on HG  for 0θ θ=  and 1θ θ= . 

The two components ( )0 ,hφ θ ⋅  and ( )1,hφ θ ⋅  are called harmonics. For a 
given [ )0 π 2, π 2θ ∈ − , the two-dimensional space of harmonics is defined by 

( ) { }, : 0,1 .h hE spanθ αφ θ α = ⋅ ∈   

For each θ  and a translational invariant kernel, we assume that the space hEθ  
is invariant under the action of H

hTG . In fact in our case, the stencil of the discrete 
PIDE operator is defined by constant coefficients that do not depend on the choice 
of origin of the infinite grid. Now, we study the action of H

hTG  on the following 
function 

( ) ( )
,

, , .j h j j hx A x x Gα α
θ

α θ
ψ φ θ= ∈∑  

Specifically, we determine how the coefficients Aα
θ , [ )π 2, π 2θ ∈ −  and 

0,1α = , are transformed under the action of the two-grid operator. This requires 
to calculate the Fourier symbols of the components that enter in the construction 
of this operator. 

First, we derive the Fourier symbol of our smoothing operator. For this purpose, 
we introduce the following Fourier representation of the solution error before and 
after one smoothing step. We drop the index α  as we assume invariance of hEθ  
under the action of the smoothing operator. We have 

1 1E e and E e ,m m i j m m i j
j je eθ θ

θ θ
θ θ

+ += =∑ ∑                   (5.3) 

where Em
θ  and 1Em

θ
+  denote the error amplitude after m  and 1m +  iterations 

of the smoother. Notice that 1m m
he S e+ = , and thus for the coefficient of the θ  

Fourier mode, we have ( )1 ˆE E .m m
hSθ θθ+ =  

Now, consider the following point-wise definition of our GSP iteration applied 
to our discretized PIDE on hG . We have 

1 1
1 12 2 2

2 1 1 .m m m m
j j j jl l

l
e e e h k e

h h h

∞
+ +

− +
=−∞

− = − ∑                   (5.4) 

At this point, recall that ( ) ( ),k x y k x y= −  and introduce the index n j l= − . 
Since we assume that the element jl j l nk k k−= =  becomes very small as n  
becomes large, we truncate the sum in (5.4) and consider the following equation 

1 1
1 12 2 2

2 1 1 .
L

m m m m
j j j j nn

n L
e e e h k e

h h h
+ +

− + −
=−

− = − ∑                   (5.5) 

where we assume that the partial sum provides a sufficiently accurate 
approximation of the integral term on hG . Specifically, assuming that 

( ) ( )2expk x y x y− = − −  and requiring that the ( )1610nk O −=  (double pre- 
cision machine epsilon) for n L> , one should choose 1L h∝ . However, in 
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practice, a much smaller L  results in accurate LFA estimates. 
Next, in (5.5), we insert (5.3) and obtain 

( )

( ) ( )

11 1
2 2

1
2

2 1E e E e

1 E e E e ,

i jm i j m

L
i j i j nm m

n
n L

h h

h k
h

θθ
θ θ

θ θ

θ θ
θ θ

θ θ

−+ +

+ −

=−

−

= −

∑ ∑

∑ ∑ ∑
             (5.6) 

which can be re-written as follows 

1
2 2 2

2 1 1E e e E e e e .
L

m i i j m i i n i j
n

n L
h k

h h h
θ θ θ θ θ

θ θ
θ θ

+ − −

=−

  − = −      
∑ ∑ ∑      (5.7) 

Now, comparing the coefficients of equal frequency modes on both sides of 
(23), we obtain 

( )
3

1 e e
Eˆ : .
E 2 e

L
i i n

m n
n L

h m i

h k
S

θ θ

θ
θ

θ

θ

−
+

=−
−

−
= =

−

∑
                  (5.8) 

Therefore an appropriate estimate of the smoothing factor of our GSP scheme is 
given by 

( )( )GSP π π
2

ˆmax .hS
θ

µ θ
≤ ≤

=                       (5.9) 

With this definition, we obtain a smoothing factor of our GSP scheme given by 

GSP 0.447µ =  for all mesh sizes. This is done by inspection of the function  
( )ˆ

hS θ . 
Next, in order to investigate the two-grid convergence factor, we construct the 

Fourier symbol of the two-grid operator. For this purpose, we derive the Fourier 
symbol for h

h hA = −∆ +  , applied to a generic vector v  with jth component 
given by ei j

jv V θ
θ

θ
= ∑ . We have 

( ) ( )
( )

1 1

2

e 2e e e .
i j i ji j L

i j n
h nj

n L
A v V h k

h

θ θθ
θ

θ
θ

+ −
−

=−

 − +
= − +  

 
∑ ∑  

Therefore we obtain 

( )
( )( )

2

2 1 cosˆ e .
L

i n
h n

n L
A h k

h
θθ

θ −

=−

−
= − + ∑           (5.10) 

Now, recall that on the fine grid, we distinguish on the two harmonics. There- 
fore we have the following operator symbols acting on the vector of the two 
harmonics 

( )
( )

( )
( )

( )
( )

0 0

1 1

ˆ ˆ0 0
ˆ ˆand .

ˆ ˆ0 0

h h

h h

h h

A S
A S

A S

θ θ
θ θ

θ θ

   
   = =
   
   

 

On the coarse grid, we have the following 

( )
( )( ) ( )2 2

2

2

2 1 cos 2ˆ 2 e .

L

i n
H n

Ln

A H k
H

θθ
θ −

=−

−
= − + ∑            (5.11) 
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For the restriction operator, we have the following [27] 
( ) ( ) ( ) ( )

( ) ( )

3 1 1 3

3 3

e 9e 16e 9e ee ,
32

e 9e 16 9e e e ,
32

18cos 16 2cos 3
e .

32

i j i j i j i ji j
H i j
h

i i i i
i j

i j

θ θ θ θθ
θ

θ θ θ θ
θ

θθ θ

− − + +

− −

− + + + −
=

 − + + + −
=  
 

+ − 
=  
 



 

Hence 

( )
( ) ( ) ( ) ( )0 0 1 118cos 16 2cos 3 18cos 16 2cos 3ˆ .

32 32
H
h

θ θ θ θ
θ

 + − + −
 =
  

  

For the interpolation operator, we obtain 
( ) ( ) ( ) ( ) ( )

( ) ( )

3 1 1 3e 9e 16e 9e ee ,
16

18cos 16 2cos 3
e .

16

i j i j i j i j i j
h i j
H

i j

θ θ θ θ θ
θ

θθ θ

− − + +− + + + −
=

+ − 
=  
 


 

Hence 

( )

( ) ( )

( ) ( )

0 0

1 1

18cos 16 2cos 3

16ˆ .
18cos 16 2cos 3

16

h
H

θ θ

θ
θ θ

 + −
 
 =  + − 
  

  

Now, we are able to compute the two-grid convergence factor as follows 

 ( )( ){ }π
2

max ,H
TG hTG

θ
µ ρ θ

≤
=                (5.12) 

where ρ  denotes the spectral radius of the 2 2×  matrix  ( )H
hTG θ . 

In Table 1, we report the values of the two-grid converge factor given by (5.12) 
for different numbers of pre- and post-smoothing steps, 1 2,ν ν . These values are 
computed by inspection of the function  ( )( )H

hTGρ θ , which is evaluated using 
MATLAB to compute the eigenvalues of the matrix  ( )H

hTG θ  on a fine grid of 
θ  values, π 2 π 2θ− ≤ ≤ . 

Further in the same table, we compare these values with the value of the 
observed convergence factor given by 

2

2

1

.h

h

m
h L

m
h L

r

r
ρ

+

=  

 
Table 1. Estimated and observed multigrid convergence factors. 

1 2,ν ν  1 2 3 4 

TGµ  2.000e−1 4.000e−2 8.000e−3 1.600e−3 

ρ  1.347e−1 1.353e−2 9.757e−3 8.653e−3 
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This numerical convergence factor represents the asymptotic ratio of reduction 
of the 2L -norm of the residual between two multigrid cycles. These calculations 
refer to the choice ( ) ( )2expk x y x y− = − − . As shown in Table 1, the LFA 
estimates of the multigrid convergence factor are accurate. (The same values of 

TGµ  are obtained with L ranging from 20 to 400.) 

6. Numerical Experiments 

In this section, we present results of numerical experiments to validate our FAS-FI 
multigrid strategy and the theoretical estimates. We demonstrate that our FAS-FI 
scheme has ( )logM M  computational complexity (M denotes the total number 
of grid points on the finest grid) and provides second-order accurate solutions. 

Our first purpose is to validate our accuracy estimates for the discretization 
scheme used. For this purpose, we consider an elliptic PIDE problem with a Gaus- 
sian convolution kernel in two dimensions as follows 

( ) ( ) ( ) ( ), , , , , d d , ,u x y k x y t s u t s t s f x y
Ω Ω

−∆ + =∫ ∫       (6.1) 

where ( ) ( )1,1 1,1Ω = − × −  and the Gaussian kernel  

( ) ( ) ( )2 2

, , , exp
2

x t y s
k x y t s

 − + −
 = −
 
 

. 

To investigate the order of accuracy of the discretization scheme, we construct  

an exact solution to (6.1) by choosing ( )
2 2

, exp
2

x yu x y
 +

= − 
 

. With this  

choice, the right-hand side of (6.1) is given by 

( ) ( )
2 22 2

2 2
4 422 2 π, 2exp exp exp

2 4

2erf 1 erf erf 1 erf 1 .
2 2 2 2

x yx y
x yf x y x y

y y x x

   +   − + −          +
= − − + + 

 
 −          × + + − + +                    

 

The Dirichlet boundary is also given by the chosen u. 
Using the exact solution above, we can validate the accuracy of our finite- 

differences and Simpson’s quadrature schemes. In Table 2, we report the values 
of the norm of the solution errors on different grids. We obtain second-order 
accuracy as predicted. 

Next, we investigate the FI scheme. For this purpose, we consider the integral 
term in (3.3), and compute the norm h

h
u u−  . Notice that we can evaluate 

u  exactly, while hu  is computed using the full-kernel (FK) evaluation 
formula (6) and the FI technique involving different depths, d l k= − . For 0d =  
the FI scheme performs FK evaluation. 

In Table 3, we report the values of h
h

u u−   corresponding to different 
working levels l  and different depths. Because we use a fourth-order quadrature 
formula, we can see an increase of accuracy of a factor 16 by halving the mesh  
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Table 2. L2−norm error using full kernel approximation. 

N N×  h
u U−  order of accuracy 

9 9×  8.60e 4−  1.99 

17 17×  2.16e 4−  2.00 

33 33×  5.41e 5−  2.00 

65 65×  1.35e 5−  2.00 

129 129×  3.38e 6−   

 
Table 3. Errors for 2D integral evaluation using 4th−order interpolation and different 
depths. 

N N×   0d =  1d =  2d =  3d =  4d =  5d =  

9 9×  FK 3.78e 5−       

 FI 3.78e 5−  2.12e 3−      

17 17×  FK 2.54e 6−       

 FI 2.54e 6−  7.51e 5−  2.29e 3−     

33 33×  FK 1.64e 7−       

 FI 1.64e 7−  3.89e 6−  7.01e 5−  2.35e 3−    

65 65×  FK 1.04e 8−       

 FI 1.04e 8−  2.42e 7−  3.19e 6−  7.01e 5−  2.38e 3−   

129 129×  FK 6.56e 10−       

 FI 6.56e 10−  1.53e 8−  1.94e 7−  3.11e 6−  7.05e 5−  2.39e 3−  

 
size and using the FK scheme. On the other hand, increasing the depth of the FI 
scheme, this scaling factor deteriorates. However, since the truncation error corre- 
sponding to the Laplace operator is of second-order, the reduction of accuracy due 
to the use of the FI scheme with the fourth-order quadrature does not affect the 
overall solution accuracy of the PIDE problem as shown in Table 4. 

Next, we validate our FAS-FI solution procedure. One main issue is how the 
accuracy of the solution obtained with the FAS-FI scheme is affected by the 
approximation of the integral due to the FI procedure. For this purpose, in Table 4, 
we compare the norm of the solution errors obtained with a FAS scheme with FK 
calculation and with our FAS scheme including the FI technique. We see a 
moderate degradation of the quality of the numerical solution while increasing the 
depth. On the other hand, we notice that a second-accurate solution is obtained by 
choosing d corresponding to the first before the coarsest grid. 

For the same experiments as in Table 4, we show large speed up in com- 
putational time in Table 5. Further, in Figure 1, we demonstrate that the compu- 
tational complexity of our multigrid procedure is ( )logM M  and 2M N=  is 
the total number of grid points. In Figure 2, we depict the convergence history of 
the norm of the residuals at a given working level using different numbers of pre- 
and post-smoothing steps, 1, ,10ν =  , 1 2ν ν ν= + , and 5 V-cycle iterations. 
We complete this section, presenting results of experiments with a singular kernel, 
and consider an elliptic PIDE in one dimension of the following form 

( ) ( ) ( )log du x x y u y y f x
Ω

−∆ + − =∫  
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Table 4. Errors of FAS solution with FK and FI integral evaluation after 5 V-cycles. 

N N×   0d =  1d =  2d =  3d =  4d =  5d =  

9 9×  FK 8.60e 4−       

 FI 8.60e 4−  8.39e 4−      

17 17×  FK 2.16e 4−       

 FI 2.16e 4−  2.17e 4−  2.06e 4−     

33 33×  FK 5.41e 5−       

 FI 5.41e 5−  5.41e 5−  5.51e 5−  8.84e 5−    

65 65×  FK 1.35e 5−       

 FI 1.35e 5−  1.35e 5−  1.36e 5−  1.46e 5−  8.64e 5−   

129 129×  FK 3.38e 6−       

 FI 3.38e 6−  3.36e 6−  3.37e 6−  3.45e 6−  4.60e 6−  8.88e 5−  

 
Table 5. CPU time (secs.) of FAS solution with 5 V-cycles. In bold are the values of CPU 
time actually involved in the multigrid solution scheme. 

N N×   0d =  1d =  2d =  3d =  4d =  5d =  

9 9×  FK 0.98      

 FI 0.95 0.53     

17 17×  FK 10.49      

 FI 10.36 3.27 1.72    

33 33×  FK 162.14      

 FI 161.41 44.33 15.78 8.63   

65 65×  FK 2568.89      

 FI 2574.11 731.88 224.03 84.37 47.75  

129 129×  FK 41970.15      

 FI 41939.82 11237.26 5378.64 1170.72 451.10 263.13 

 

 

   Figure 1. Computational complexity of the FAS-FI method; 2M N= . 
 
where ( ) 1f x =  for ( ): 1,1x∈Ω = − . We further assume homogeneous Dirichlet 
boundary conditions. 

We implement the FAS-FI scheme for this PIDE problem whose integral term 
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has a singular kernel with one isolated singularity. On the singularity point, we 
cannot evaluate the kernel directly. However, we can estimate the integral using 
its values on neighbouring points. If the singularity is on one ix  of the grid, we  

use local averaging ( ) 1 1
2 2

1
2i i i

k x k x k x
− +

    
≈ +            

. In Figure 3, we depict the  

observed multigrid computational complexity when solving the singular kernel 
problem and see that complexity appears to match or even improve on the typical 
estimate ( )logM M . Further, in Figure 4 the convergence history of the  
 

 
Figure 2. Convergence history of the FAS-FI scheme with different  

1 2ν ν ν= + , 1ν =  (green) to 10ν =  (red) along 5 V-cycles of FAS;  
8, 3l d= = . 

 

 
Figure 3. Computational complexity of the FAS-FI scheme for the PIDE 
with a singular kernel. 
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Figure 4. Convergence history of the FAS-FI scheme for a PIDE with 
singular kernel. 

 
multigrid scheme with different pre- and post-smoothing schemes applied to the 
singular kernel case is presented. 

7. Conclusion 

An efficient multigrid finite-differences scheme for solving elliptic Fredholm par- 
tial integro-differential equations (PIDE) was developed and investigated. This 
scheme combines a FAS multigrid scheme for elliptic problems with a multilevel 
fast integration technique. Theoretical estimates of second-order solution accuracy 
and LFA multigrid convergence estimates were presented. These estimates were 
confirmed by results of numerical experiments. 
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