
Open Journal of Soil Science, 2017, 7, 133-148 
http://www.scirp.org/journal/ojss 

ISSN Online: 2162-5379 
ISSN Print: 2162-5360 

DOI: 10.4236/ojss.2017.77011  July 13, 2017 

 
 
 

Spatial Modeling of Soil Lime Requirements 
with Uncertainty Assessment Using 
Geostatistical Sequential Indicator Simulation 

Jussara de Oliveira Ortiz1, Carlos Alberto Felgueiras1, Eduardo Celso Gerbi Camargo1,  
Camilo Daleles Rennó1, Manoel Jimenez Ortiz2 

1INPE-Brazilian National Institute for Space Researches DPI-Divisão de Processamento de Imagens, São José dos Campos, Brazil 
2Geopixel Soluções em Geotecnologias e TI, São José dos Campos, Brazil 

 
 
 

Abstract 
This work presents and analyses a geostatistical methodology for spatial mod-
elling of Soil Lime Requirements (SLR) considering punctual samples of Ca-
tion Exchange Capacity (CEC) and Base Saturation (BS) soil properties. Geosta-
tistical Sequential Indicator Simulation is used to draw realizations from the 
joint uncertainty distributions of the CEC and the BS input variables. The 
joint distributions are accomplished applying the Principal Component Ana-
lyses (PCA) approach. The Monte Carlo method for handling error propaga-
tions is used to obtain realization values of the SLR model which are consi-
dered to compute and store statistics from the output uncertainty model. 
From these statistics, it is obtained predictions and uncertainty maps that 
represent the spatial variation of the output variable and the propagated un-
certainty respectively. Therefore, the prediction map of the output model is 
qualified with uncertainty information that should be used on decision mak-
ing activities related to the planning and management of environmental phe-
nomena. The proposed methodology for SLR modelling presented in this ar-
ticle is illustrated using CEC and BS input sample sets obtained in a farm lo-
cated in Ponta Grossa city, Paraná state, Brazil. 
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1. Introduction 

Soil acidity is one of the factors that limits crop yields in various places of the 
world. Brazilian soils are mostly acids, mainly for the tropical Savanna regions, 
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known in Brazil as Cerrado. Such soils are characterized by low concentrations 
of calcium and magnesium, elements directly involved in the development of the 
plant [1]. 

The appropriate correction of soil acidity, or liming, is considered an effective 
practice for the use of soil nutrients by plants [2], which promoting increased 
soil fertility and hence productivity. For this purpose, the limestone is an agri-
cultural input with efficient response to correct soil acidity. It is relatively cheap 
in Brazil and it is of simple application. The literature shows a limestone relation 
to the increase in production, involving the raising of productivity of grain 
crops, mainly soybeans, wheat and corn, with proper fertilization, or replace-
ment of nutrients in the soil [3] [4] [5] [6]. 

However, any application of high or insufficient doses of inputs in the soil will 
reflect in plant nutrition so that, if not corrected by cover fertilizations, will in-
crease or decrease the productivity. Therefore, the recommendation of the amount 
of limestone, like any other fertilizer, must comply with a soil analysis, which 
should avoid unnecessary applications that would lead to super liming. Accord-
ing to some authors [7] [8], super liming would be as damaging as high acidity 
and it would be difficult to correct. 

To obtain higher yields and to apply inputs in the soil with no waste, there is a 
tendency to use methods of input estimates based on spatial variability of soil 
properties. These estimates lead to application of inputs, by variable rates in the 
geographic space, with the purpose of optimizing profit, productivity and envi-
ronmental sustainability. These practices, known as Precision Agriculture (PA), 
implement the process of agricultural automation, dosing fertilizers and pesti-
cides for the soil of a geographical area of interest. This set of agriculture tools 
involves the use of Geodesic Positioning Systems (GPS), Geographic Information 
Systems (GIS) with integrated statistics methods, and instruments with sensors 
for measurement or detection of parameters on targets of interest in the agro- 
ecosystem (soil, plant, insects and diseases). 

Several authors have adopted the geostatistical procedures in PA to estimate 
and evaluate the spatial variability of soil properties [9] [10] [11] [12] [13]. Spe-
cifically, indicator geostatistical procedures have been widely used because they 
are non-parametric methods, i.e., they do not require the definition of a priori 
probability model [14] [15] [16]. In addition, predictions maps (mean, median 
or mode value), and uncertainty maps (based on deviation values or probability 
of default quantiles) are extracted by inference and simulation methods. So, the 
predictions are accompanied with their respective uncertainties, which are also 
spatially distributed in the study area. Take into account the uncertainty infor-
mation during the modeling process is important, because it allows to qualify the 
result of the used model, which should be considering for planning and decision 
making related to the investigated properties [17] [18] [19]. 

In this context, this work applies and analyses indicator geostatistical proce-
dures for spatial modelling of Soil Lime Requirements (SLR), derived from a 
model proposed by [20]. The SLR model is based on the relationship between 
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Cation Exchange Capacity (CEC) and Base Saturation (BS) properties. These soil 
chemical properties affect soil acidity, and subsequently soil fertility and yield. 
So, the idea of the SLR modelling is to show the soil regions that need correction, 
raising the saturation of the bases to a value that provides maximum economic 
efficiency of the limestone application.  

This work is organized in 6 sections. Besides the Section 1, presenting the in-
troduction, the Section 2 addresses the main necessary theoretical concepts. Sec-
tion 3 synthesizes the proposed methodology. The Section 4 explores a case study 
of SLR modeling with real data. Section 5 presents the results, followed of ana-
lyses and discussions. Finally, the Section 6 reports important conclusions with 
suggestions for future works involving research aspects of this work. 

2. Concepts 
2.1. The Spatial SLR Model 

Liming depends on the decision to apply or not the limestone and the definition 
of its quantities, if it is required. This is done through some formulated mathe-
matically methods and they are related to the soil characteristics of each geo-
graphic region. 

Among the several methods for liming recommendation, the base saturation 
method, presented by [20] was defined as the most suitable for the study region. 
It is based on the relationship between BS and CEC. The model parameters are 
considered for the soil, soil amendment and the crop. The method consists in 
raising the saturation of the bases to a value that provides maximum economic 
efficiency of the of limestone application. 

The neutralizing power, the granulometry and reactivity of the limestone are 
important factors for the correct choice of it. The neutralizing power is deter-
mined by comparison with the power of neutralization of pure calcium carbo-
nate (CaCO3), with the maximum value equal 100. For this reason, it is called the 
Relative Power of Total Neutralization (RPTN) or calcium carbonate equivalent, 
and the knowledge of this parameter is relevant to determine the SLR. The mod-
el to determine SLR, in tons/hectare (t/ha), according to recommendations 
about soils presented in [6] is expressed as: 

( )
( )( ) ( )2 1BS BS CEC

SLR
RPTN

− ⋅
=

u u
u                   (1) 

where: u is a vector of the geographic coordinates where the input variables are 
sampled inside of the study area; BS1(u) is the base saturation value of the origi-
nal soil, given in percentage, before correction. They are sampled directly from 
the ground, analyzed in the laboratory and should be elevated to the level consi-
dered suitable for the crop and soil studied; BS2 is the base saturation value that 
you want to achieve; there is a default value for each crop; CEC(u) is the sum of 
the bases with the values of potential acidity; RPTN: is the Relative Power of the 
Total Neutralization in relation to the limestone adopted and it is, generally, less 
than 100 (the total neutralization). 
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According to [21] the BS2 is variable for each State or region and, as defined 
before, at Parana State this value is 70% and RPTN is the Relative Power of the 
Total Neutralization in relation to the limestone adopted and it is, generally, less 
than 100%, that is the total neutralization; The limestone that has been used at 
the study farm presents a RPTN equivalent to 85%. So, the model to calculate 
Limestone Requirement is: 

( )
( )( ) ( )70
850

BS CEC
SLR

− ∗
=

u u
u                        (2) 

The spatial modeling applied to the investigation of a phenomenon of interest 
requires mathematical models that work on estimate values of the input va-
riables and their uncertainties. The output estimates only depend on the input 
variables while the output uncertainties are propagated from the uncertainties of 
the input variables. The output uncertainties are used to qualify the spatial mod-
el output. Knowing the quality of the model results is important, especially when 
they are used in decision making activities associated to the planning and man-
agement of the investigated phenomena [22]. 

When management planning requires local estimates and mathematical mod-
els are considered, the uncertainty propagated in the predictions might be eva-
luated. Knowing the quality of the model results is fundamental, especially when 
they are used in spatial decision making [22], with GIS operations. 

Some uncertainty propagation techniques were presented by [23]. The first 
order Taylor series and the Monte Carlo simulation can be stand out. 

The Monte Carlo simulations were considered in this work. Let U(.) be the 
output of a GIS operation g(.) on m input attributes  

( ) ( ) ( ) ( )( )1. : . , . , , .i mA U g A A=  . The idea of the method is to compute the re-
sult on ( )1, , mg a a  repeatedly, with input values ai that are randomly sampled 
from their joint distribution.  

Application of the Monte Carlo method to uncertainty propagation with 
non-point operations requires the simultaneous generation of realizations from 
Ai(.). This implies that spatial correlation will have to be accounted for. The 
technique adopted in this paper for stochastic spatial simulation, was the joint 
sequential Indicator simulation algorithm [14] with principal component analy-
sis, as presented in the next item. 

The idea of the Taylor series method is to approximate g(.) by a truncated 
Taylor series centred at ( )1, , mb b b=   [23]. 

The first order Taylor series of g(.) around b  is given by:  

( ) ( ) ( )i iiU g bAb b g ′= + −∑                      (3) 

where ( ).ig′  is the first derivative of g(.) with respect to its i-th argument. The 
variance 2σ  is given as:  

( ) ( )2
ij i j i jg gb bσ ρ σ σ ′ ′= ∑∑                     (4) 

where: σi and σj are the standard deviation of the i and j variables respectively 
and ρij is the correlation between them.  
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As the SLR model considers only two variables, the Equation (4) will be as 
bellow: 

( ) ( )2 22
1 1 i jij i ji j g gb bσ ρ σ σ
= =

′ ′= ∑ ∑                    (5) 

i represents the variable BS and j represents the variable CEC. 
And when Equation (5) is applied on the model as,  

( )70
850
BS CEC

SLRg
− ∗

==                       (6) 

the derivatives are as bellow: 

850
g CEC

BS
∂ −

=
∂

 and 70
850

g BS
CEC
∂ −

=
∂

                 (7) 

2.2. Principal Component Transformation 

Many spatial models that make use of the several input variables required the 
determination of joint probability distributions of these variables for generation 
of the new information and for uncertainty evaluation, that usually are built via 
simulation methods.  

When the input variables are correlated, their distributions should not be si-
mulated independently. The direct approach is to use a joint simulation of the 
dependent variables, but it requires the inference and modeling of direct and 
cross covariance matrices that are computational costly to determine [14].  

An alternative mode is first to decorrelate the input variables using Principal 
Component Analysis-PCA [24] [25] and, after apply the geostatistical simulation 
procedure. So, the M interdependent input variables, denoted by  

( ) ( ) ( ) ( ){ }1 2, , ,M mZ Z Z Z= u u u u , 1, ,m M= 
, are transformed in M inde-

pendent variables, denoted by ( ) ( ) ( ) ( ){ }1 2, , ,M mY Y Y Y= u u u u , as follows:  

( ) ( )( )M MY Zϕ=u u                           (8) 

where ϕ  is the transformation function of the PCA.  
To recover the interdependent variables ( )MZ u  applies the inverse trans-

form function, as follows: 

( ) ( )( )1
M MZ Yϕ−=u u                          (9) 

where 1ϕ−  is the inverse transformation of the PCA.  

2.3. Indicator Geostatistical Approach 

The indicator geostatistical approach for continuous variables, for example for 
the ( )MY u  variables, allows to estimate a set of values at non sampled location, 
that represent a discretized approximation of the conditional cumulative distri-
bution function (ccdf) [15] [26]. 

Initially the variables ( )MY u  are transformed into indicator variables, con-
sidering c

My  cutoffs values, 1, ,c n= 
 cutoffs. These transformations are de-

fined by the relation: 

( ) ( )
( )

1 se
;

0 se

c
M Mc

M M c
M M

Y y
I y

Y y

 ≤= 
>

u
u

u
                  (10) 
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The transformation expressed in Equation (8) is equivalent to associate prob-
ability 1 (100%) for ( )MY u  values which are smaller than or equal to the cutoff 

c
My  and 0 otherwise. So, for each cutoff value indicator fields are generated, 

with 0 and 1 values, of the indicator variable ( ); c
M MI yu . 

Next, empirical indicator semivariograms are determined for each one of the 
indicator fields to estimated their spatial correlation structures:  

 ( ) ( ) ( ) ( )
( ) 2

1

1ˆ , ; ;
2

N
c c c

M M M M
j

y i y i y
N

γ
=

 = − + ∑
h

h u u h
h

                 (11) 

where ( ); c
Mi yu  and ( ); c

Mi y+u h  are values of the indicator variable  
( ); c

M MI yu  separated by the distance vector h, and N(h) is the number of the 
pairs points that are separated by the distance vector h.  

The indicator fields associated with their respective cutoff values and theoret-
ical semivariograms are used by Indicator Kriging (IK) and Conditional Sequen-
tial Indicator Simulation (SIS) procedures for estimating probabilities values at 
non-sampled location. Thus, this set of estimated probabilities, at non sampled 
location, is used to create a discretized approximation of the ccdf [15] [27]) and 
it represents the uncertainty model of the variable. 

2.4. Conditional Sequential Indicator Simulation 

A stochastic simulation is a process of drawing equally likely realizations of val-
ues that are obtained from the probability distribution of a Random Variable (RV). 

Consider the M independent factors YM(u). Then, a set of the realizations 
equally likely are generated by geostatistical simulation, denoted by ( )L

MY αu , 
where L is the simulation number; αu  = 1, ⋅⋅⋅, gridsize (nlines x ncolumns), are 
locations regularly distributed in the geographic space, determining a regular 
grid representation structure. For example, to the Y2(u) independent variable, 

( ) ( ){ }2 2
L lY yα α=u u , where 1, ,l L=  ; ( )2

ly αu  is the l-th simulated value at 

αu ; and the set { ( )}l
2y αu represent the l-th random field generated by simula-

tion of the Y2(u). In that case, the SIS procedures makes use of the ccdf, condi-
tioned to the n nearest of RV Y2(u) and also to the pre-simulated values, inside 
the αu  neighborhood, to get ( )2

ly αu  values.  
The SIS procedure has the following steps [15]: 
1) Sets up randomly one αu  location. Then simulates a value of the ( )2

ly αu  
from the univariate ccdf of ( )2Y αu , ( ) ( )2 2Prob |Y y nα α ≤ u u , conditioned to 
the n nearest sample data Y2(u); 

2) Once simulated, ( )2
ly αu  becomes a conditioning data for subsequent si-

mulation steps. The conditioning data is updated to  
( ) ( ) ( ) ( ){ }2 21 ln n Y y α+ = = u u ; 

3) Sets up randomly another location α α′ ≠u u . Simulated a new value of the 
( )2

ly α′u  from the univariate ccdf of ( )2Y α′u ,  
( ) ( ) ( )2 2Prob | 1Y y nα α′ ′ ≤ + u u , conditioned to the information set (n + 1); 

4) Update the information set (n + 1) to a new information set  
( ) ( ) ( ) ( ){ }2 22 1  n n Y y α′+ = + = u u ; 
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5) Repeat the two previous steps until all the locations αu  of the spatial grid 
have been simulated. At this time was produced a random field of the Y2(u); 

6) Repeat all steps for generating new random fields of the Y2(u). Stop when 
you reach the desired number of simulations.  

3. Methodology 

The proposed methodology for SLR modelling is illustrated in the Figure 1, us-
ing BS(u) and CEC(u) input sample sets obtained in a farm located in Ponta 
Grossa city of Paraná State, Brazil. The variables BS(u) and CEC(u), hereafter  
 

 
Figure 1. Methodological sequence applied to CEC(u) and BS(u) soil attributes to model SLR. 
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are named in this Section as Z1(u) and Z2(u), respectively. 
Initially, the input variables Z1(u) and Z2(u) are decorrelated via PCA trans-

formation in order to get two uncorrelated sample sets named Y1(u) and Y2(u) 
variables. Following, Y1(u) and Y2(u) are independently spatialized applying SIS 
procedure. The result is a set of the realizations equally likely, ( )1

LY αu  and 
( )2

LY αu . Since the simulation values were obtained from the independent va-
riables distributions [Y1(u) and Y2(u)], it is necessary to apply to them PCA−1, 
the inverse transformation of PCA, in order to obtain a set of dependent realiza-
tions, ( )1

LZ αu  and ( )2
LZ αu . From theses realizations, prediction and uncertainty 

maps can be generated. These maps are intermediate results that help the analyst 
to better understand the spatial distribution of the variables involved in the SLR 
model and their respective uncertainties. So, the simulated fields ( )1

LZ αu  and 
( )2

LZ αu  are selected randomly several times, via Monte Carlo method and after 
applied in the spatial SLR model. From the resulting SLR fields, prediction and 
uncertainty maps are generated. These maps represent the spatial variation of 
the output variable and the propagated uncertainty, respectively. Therefore, the 
prediction map generated by spatial SRL model is qualified with uncertainty in-
formation 

Given a spatial region of interest, the methodology applied has the following 
steps: 

1) In a set of spatial correlated sample points of the CEC and BS soil 
attributes, hereafter named in this text Z1 and Z2 variables, apply the PCA trans-
formation in order to get two uncorrelated variables Y1 and Y2;  

2) Apply the indicator sequential simulation on the Y1 and Y2 variables in or-
der to get independent grids representing fields of draw values of these variables; 

3) The draw values of Y1 and Y2 are back transformed using a PCA−1 approach 
resulting on a set of dependent grids representing fields of draw values of the Z1 
and Z2 variables; 

4) Extract statistic properties of the CEC and BS draw values: prediction maps 
of mean or median values, for example, and uncertainty maps based in confi-
dence interval of standard deviations or quantiles. This is important to observe the 
individual spatial distribution of the estimated and uncertainty values of the in-
put variables; 

5) Obtain draw values, randomly chosen, from the SLR model applied to the 
dependent draw values of the Z1 and Z2 variables; 

6) Extract statistic properties of the SLR draw values: prediction maps of mean 
or median values, for example, and uncertainty maps based in confidence inter-
val of standard deviations or quantiles. 

In this article the final resulting maps of predictions and uncertainties are 
analyzed and. Figure 1 illustrates the applied methodology. 

4. A Case Study 
4.1. The Study Area and Input Data 

The study region, Figueira farm, is located in the city of Carambeí, PR, Brazil, 
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and comprises an area of 392 ha. The farm has been adopted a precision agri-
culture system and the main cultures are soy, wheat and corn. In order to illu-
strate the methodology of this work, it was used as information a set of points of 
soil chemical properties (BS and CEC). These data were sampled at field by a 
Brazilian company that works with precision agriculture [28]. The geographical 
positioning of the samples was gathered by Global Positioning System, GPS, 
which ensures accurate georeferencing, as shown in the Figure 2. 

5. Results and Discussion 

The results presented below were obtained from simulated fields of input va-
riables of CEC and BS. These fields were produced using specific functions from 
geostatistical software called GSLIB [14]. As mentioned before the soil attributes, 
CEC and BS are interdependent and the correct spatial modeling requires the 
joint simulation of these variables.  

In this study an alternative to joint simulation was implemented, and it was 
possible to simulate separately a set of independent factors from which the orig-
inal variables can be reconstituted [14] [15]. The factors were obtained from 
Principal Component Analysis and the interdependence was guaranteed by the 
common inverse transform. The indicator simulation was performed over the  
 

 
Figure 2. Study area Figueira farm in Paraná state. 
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independent sample set and simulated fields were generated. These independent 
simulated fields were back transformed into simulated values/fields for the orig-
inal variables and they represent their stochastic uncertainty models.  

In this case study, for each input variable, the number of realizations was fixed 
to 400 and they were represented in regular grid structures with 200 lines by 200 
columns. That number of runs is considered sufficiently large to reach high ac-
curacies. From those simulated values it could be generated the prediction and 
uncertainties maps. Thus, the mean estimates map was calculated by arithmetic 
average of the simulated values at each spatial position. Similarly, an uncertainty 
map was based on calculating the standard deviation of those same simulated 
values. 

The resulting data were organized in a geographic database using the GIS SPRING 
[29]. This GIS enabled the visualization of spatial input information and the re-
sults of the spatial model explored. 

Figure 3 shows the predicted values, grid of mean values, obtained from the 
uncertainty models of CEC and BS soil properties. From these maps that represent 
the outline of the study area, it can be observed the spatial distribution of each 
attribute, along with their minimum and maximum values.  

Figure 4 depicts the uncertainty maps with confidence intervals based on 
standard deviation values of the uncertainty models of CEC and BS soil proper-
ties.  

The maps of the Figure 4 indicate that the highest uncertainties, red areas, 
appear in regions where higher local variations of the predicted values occur. 
This is an expected result since the uncertainties of the indicator simulation ap-
proach are proportional to the local density of the samples and to their local 
value variations. These maps represent the spatial distribution of the uncertain-
ties where one can get, for instance, the general idea of the areas with the most  

 

 
Figure 3. Map of predicted mean values from simulated fields of 
(a) CEC and (b) BS. 
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Figure 4. Map of uncertainty values, based on standard deviation con-
fidence intervals, from simulated fields of (a) CEC and (b) BS soil 
properties. 

 
reliable estimates. These uncertainty values are propagated to the resulting un-
certainty maps of any spatial modelling that integrate these variables. 

6. Modeling Results and Uncertainty Propagation 

In the Figueira Farm the correction of soil acidity was modeled by estimating 
soil lime requirement, as a function of the CEC and BS that are the input va-
riables of the model, SLR, presented in Equation (2). Those variables were simu-
lated previously (Figure 3) and their uncertainty values (Figure 4) will propa-
gate through these model, leading to uncertain response values of the SLR. Fig-
ure 5 presents the predicted and uncertain maps resulting of the SLR spatial 
modelling. These maps were generated from the application of the Monte Carlo 
approach on the back transformed fields, or the correlated simulated fields, of 
the CEC and BS variables. In this procedure 400 fields were generated from the 
final model obtained by applying Equation (2) in the simulated values of the in-
put variables, randomly drawn. The simulated values from those fields, at each 
spatial location, were used to generate the maps presented in the Figure 5(a), 
mean of SLR and Figure 5(b) standard deviation of the SLR. 

In the Figure 5(a) the map of means presents the spatial distribution of the 
mean values estimated of the SLR. That map shows that regions with high SLR 
values, in red, are those in which the CEC values are higher and BS is lower. The 
map of standard deviation, Figure 5(b), shows the spatial distribution of the 
uncertainty values propagated to final modeling result. As expected, at this un-
certainty map are observed high uncertainty areas in red, where there is a greater 
spatial variability in the values inferred by the model. 
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Figure 5. SLR results of (a) predicted mean (b) uncertainty values from 
joint simulation process. 

7. Discussion 

Figure 6(a) presents uncertainty map resulting from the SLR spatial modelling 
regarding to correlation between the variables CEC and BS to perform the joint 
simulation, and Figure 6(b) shows the uncertainty map considering indepen-
dence between them. The maps are plotted in a same color scale (0 to 6.44) in 
order to be compared. Comparing the uncertainty maps of Figure 6, it can be 
observed that the uncertainty gets smaller for the SLR results when the correla-
tion between the input variables is considered. In this case this correlation is 
positive and the final propagated result of the SLR model agrees with the con-
cepts explained in the Section 2.5. 

When the Taylor expression (Equation (6)) is applied on the model SLR (Eq-
uation (2)), replacing the first derivatives as presented in Equation (7), it is 
possible to evaluate that as higher correlation between the input variables as 
lower the uncertainty propagation in the final results. So this information can be 
associated with the results analysis. 

Although most users are aware with uncertainty in GIS operations, they have 
not paid attention to the problem of correlated variables in spatial modelling. To 
emphasize this important issue we have considered three different correlations 
levels, including the measured, to apply the Taylor series: one of them is higher 
than the original measured correlation ρ = 0.8; the true correlation of the data, 
ρ = 0.51 and a lower correlation ρ = 0.2. The results, presented in the Figure 7, 
show that the propagated uncertainty decreased when the correlation increased. 

The uncertainty maps are used to qualify the inferences. So, in decision-making 
processes, it can be considered just uncertainties values above or below of a set-
tled threshold, giving priority to areas that are best suited to the problem that is  
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Figure 6. Uncertainty maps: (a) Joint simulation; (b) Independence be-
tween CEC and BS. 

 

 
Figure 7. Uncertainty maps with Taylor series: (a) Correlation 0.8; (b) Correlation 0.5; 
and (c) Correlation 0.2. 
 
being addressed. In this work, which is modeling the need for limestone, the de-
cision maker can evaluate the available resources and define important thre-
sholds, upper and lower, for the implementation of necessary agricultural inputs. 
It is important to consider that the excess of limestone can be as or more harm-
ful than the lack of it for a particular crop. So, incorporate uncertainty maps to a 
precision farming system adds quality to the agricultural planning that requires 
information with spatial representation. 
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8. Conclusions 

In order to make good decisions in precision agriculture, considering a field with 
acid soil, as this study case, the determination of the best liming practice de-
pends on the uncertainty analysis. Spatial modelling as presented in this paper 
has to consider the level of uncertainty about the input parameters of the model, 
soil properties, and their propagation. Specifically, when those parameters are 
correlated their distributions cannot be sampled independently. So, this study 
was concerned about it and replaces the joint distribution to the principal com-
ponent analysis.  

In this work, we used the geostatistical simulation procedure for nomination 
to represent soil properties that are correlated. Applied an approach based on 
the analysis of principal components to obtain the achievements, with depen-
dencies, these simulations. These achievements have been integrated via Monte 
Carlo method to obtain limestone need values according to a predefined spatial 
model. 

The methodology for modeling the liming requirements was proved easy to 
implement and the results showed consistency with the spatial model and its 
input variables. In this modeling were obtained, besides the prediction maps, 
maps the uncertainties of the input variables and the final model that reflects the 
propagated uncertainty. He showed up at work, the propagated uncertainty is 
overrated if you do not consider different correlations of zero between model 
input variables. It is able to highlight areas with higher lime requirements and it 
is possible to identify areas with higher uncertainties in relation to the predic-
tions. With those results the decision maker can, for instance, choose the first 
areas candidate for liming if there are financial problems. To reduce uncertain-
ties is a very important point to policy makers who, many times, have to decide 
and to assess the consequences of different decisions, even decide for no action if 
the uncertainties are big. 
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