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Abstract 
A novel approach to inverse spectral theory for Schrödinger Equation opera-
tors on a half-line was first introduced by Barry Simon and actively studied in 
recent literatures. The remarkable discovery is a new object A-function and 
intergo-differential Equation (called A-Equation) it satisfies. Inverse problem 
of reconstructing potential is then directly connected to finding solutions of 
A-Equation. In this work, we present a large class of exact solutions to A-Eq- 
uation and reveal the connection to a class of arbitrarily large systems of non-
linear ordinary differential Equations. This non-linear system turns out to be 
C-integrable in the sense of F. Calogero. Integration scheme is proposed and 
the approach is illustrated in several examples. 
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1. Introduction 

Several years ago, Barry Simon investigated a new approach to inverse spectral  

theory for the half-line Schrödinger operator, ( )
2

2

d
d

q x
x

− +  in ( )2 0,L ∞  in [3].  

A new A-function introduced in [1] [2] [3], is related to Weyl-Titchmarsh func- 
tion by the following relation: 

( ) ( )2 2
0

, , e dm x A x ακκ κ α α
∞ −− = − − ∫                  (1) 

where ( ) ( )1, 0,A x L aα ∈  for all a. 
In [3], the key discovery is that ( ),A xα  satisfies the following integro-diffe- 

rential Equation: 

( ) ( ) ( ) ( )
0

, , , , d .A Ax x A x A x
x

α
α α β α β β

α
∂ ∂

= + −
∂ ∂ ∫             (2) 
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Given the fact that 

( ) ( )
0

lim ,A x q x
α

α
↓

=                        (3) 

(at least in the 1L  sense), ( )q x  can be determined directly from ( ),A xα . 
And ( ),A xα  can be calculated from ( ),0A α  (which is essentially the inverse 
Laplace transform of the data), by solving an equation which does not involve 
( )q x . Thus the inverse problem to determine q from m, becomes a problem to 

solve the integro-differential Equation (2). Properties of (2) are discussed in [4] 
[5] [6] [7]. To construct numerical solvers to this integro-differential equation, 
one needs to study sets of exact analytic solutions. 

In this paper, we study a larger class of analytic solutions of (2), which is of 
the form 

( ) ( ) ( )2

1
, e .j

n
x

j
j

A x f x αγα −

=

= ∑                    (4) 

This ansatz is motivated by the explicit example in [1], where ( ),0A α  is 
calculated for Bargmann potentials using inverse scattering theory (which is 
valid only under restrictive assumptions). Our aim is to determine the behavior 
of such solutions for all ( ), xα  and to do so using only (2). 

Substituting (4) in (2), we find that ( ) ( )2j jf x xγ ′= − , and jγ  satisfy the 
nonlinear equations: 

2
2 , 1 .j l

j j j
l j j l

j n
γ γ

γ γ γ
γ γ≠

′ ′
′′ ′= − + ≤ ≤

−∑                (5) 

Then we give a method for solving (5) explicitly in Section 3. The idea is to 
introduce new variables jc , the symmetric functions of jγ  ( 1, ,j n= � ), that is 

1 21 2 jjj i i ii i ic γ γ γ
≤ ≤ ≤

= ∑ �
� . Via this “change of variable”, (5) yields a new non- 

linear system: 

1 1 1

0

2 2 1 1.

1, 0 when .
j j j

j

c c c c j n

c c j n
− −′ ′ ′′= + ≤ ≤ +

= = >
                (6) 

This nonlinear system turns out to be solvable. Calogero proved that a certain 
family of n-body problems is solvable in a 2004 J. Math. Phys. paper and his 
model includes system (6), and the method we use in this method is different 
from his approach. Our method also shows some insightful connection to 
scattering problems. In Section 3, first we find n constants of motion for the 
system (6) which allow us to reduce it to a first order nonlinear system. 
Explicitly we will prove 

Theorem 1. (i) Supposing that for any x in an open interval I, jc  are 
solutions of the second order nonlinear system (6). Then on I, jc  solves the 
first order system 

( ) ( )2 1 1
1

1
n j k

j k k k j
k

c c c µ−
− − +

=−

′− − =∑                 (7) 

for 0, ,j n= � . Here ( )0j jµ ≠  are constants and 0 1µ = . 
(ii) Conversely, if ( )jc x  is solutions of (7) with ( ) 0nc x ≠  and ( )2

j xγ ≠  
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( )2
l xγ  for x I∈ , then (6) holds. 
The latter is then solved by finding a nonlinear analogue of the method of 

integrating factors (Theorem 13). 
We note that jγ  is zeros of polynomials with coefficients jc . Calogero 

pointed out in [8] [9] that some nonlinear systems can be linearized by non- 
linear mapping between coefficients of polynomial and its zero, and thus is 
integrable. The novelty in this paper is that the nonlinear mapping from jγ  to 

jc  relates the system (5) to a solvable yet still nonlinear system. Interestingly, a 
system similar to (6) arises ([10] [11]) if one seeks potentials for which the large 
frequency WKB series is finite and yields solutions of the corresponding Sch- 
rödinger equations (with no error). 

Section 4 shows how we obtain analytic examples of (2) by following this 
systematic procedure. 

2. The γ Equation 

As described in introduction, we relate a large class of exact solution of A- 
Equation (2) to a second order non-linear system (5). 

Without loss generality, we assume i jγ γ≠  for all i j≠ . Then the following 
proposition can be followed by direct calculation. 

Proposition 2. If ( ),A xα  is of the form (4), and satisfies (2), then ( )jf x =  
( )2 j xγ ′− , and ( )j xγ  satisfy (5). Conversely, if ( )j xγ  satisfy (5), then the 

function ( ) 2
1, 2 e jn

jjA x αγα γ −

=
′= − ∑  solves (2). 

Our goal is to solve (5) explicitly. To begin with, we need some notations. Let 
j

lδ  be the lth symmetric function on 2
kγ , k j≠ : 

1 2
1

2 2 2.
l

l

j
l i i i

i i
i jν

δ γ γ γ
< <
≠

= ∑
�

�                        (8) 

Lemma 3. If 2 2
1 , , nγ γ�  are distinct, and ( )0 1j

l l nδ ≤ ≤ −  are the symmetric 
functions on 2

kγ , k j≠ , 1 k n≤ ≤ , then the matrix 
1 2
0 0 0
1 2
1 1 1

1 2
1 1 1

n

n

n
n n n

δ δ δ
δ δ δ

δ δ δ− − −

 
 
 
 
  
 

�
�

� � � �
�

                      (9) 

is invertible. 
Proof. Suppose the matrix is not invertible; then there exists a non-zero vector 

( )T
1 2, , , na a a� , such that 

1
1

0 .
n

j
l j

j
a lδ −

=

= ∀∑                         (10) 

Then 

( ) ( )2
1

1 1 1
1 0 .

n n nl j n l
j m l j

j l jm j
a z a z zγ δ −

−
= = =≠

 
− = − − = ∀ 

 
∑ ∑ ∑∏           (11) 

Evaluate the above at ( )
0

2
0 1, ,jz j nγ= = � : 
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( )0 0
0

2 2 0.j j m
m j

a γ γ
≠

− =∏                      (12) 

We assumed 2
kγ  are distinct, so 

0
0ja =  for all 01 j n≤ ≤ . This contradicts 

our assumption, and proves the given matrix must be invertible. 

3. A Transformed System and Explicit Solutions 
3.1. Non-Linear Integrable Equation 

To solve Equation (5) explicitly, we construct a nonlinear mapping from γ  to 
new dependent variables c. We take jc  to be the j-th symmetric function of 

jγ , 

1
1

.
j

j
j i i

i i
c γ γ

< <

= ∑
�

�                       (13) 

For convenience, we define 0 1, 0kc c≡ ≡  for 0k <  or k n> . 
Proposition 4. If { }jγ  satisfy Equation (5), then { }jc  as defined by (13), 

satisfy the system: 

1 1 12 2 ,1 1.j j jc c c c j n− −′ ′ ′′= + ≤ ≤ +                  (14) 

0 1, 0 when .jc c j n= = >                      (15) 

Proof. It follows directly by calculation, that for every 1 j n≤ ≤ , 

( )
1 1

1 1

1

1 1 1
1 1

1

1 1

2
2 2

2 0.

m t
t m s

j m t

m t s
j

j
i i

j j j i i i
i i m t j s mi i

s t

j

i i i
i i m t j s m

s t

c c c c
γ γ

γ γ γ
γ γ

γ γ γ

−

−

−

− −
< < ≤ < ≤ − ≠

≠

−

< < ≤ < ≤ − ≠
≠

′ ′
′ ′ ′′− − = − −

−

′ ′− =

∑ ∑ ∏

∑ ∑ ∏

�

�

     (16) 

And for 1j n= + , we have 

( )
( )

1
1 1

1

2 2

2
0

n n
i ji

n n i n n
i i j ii i j

n i j i j
n

i j i i j i j

c c c c c

c

γ γγ
γ

γ γ γ

γ γ γ γ

γ γ γ γ

= = ≠

= ≠

 ′ ′ ′′
′ ′′ ′− − = − − +  

 
′ ′ +

= − =
−

∑ ∑ ∑

∑∑
          (17) 

Conversely, we have 
Proposition 5. If jc  satisfy the system (14), and 1 nγ γ�  are the distinct 

roots of the polynomial with coefficients ( )1 j
jc− , then jγ  satisfy the system 

(5). 
Proof. As in the previous calculations, for every 1 1j n< ≤ + , we have 

1 1

1 2
1 2

1

1 1 1
1 1

1

2
2 2 2

2
2 0

s
j

j
j

j
i l

j j j i i i i
i i j l is i l

n
m l

m m m i i
m l m i ii l

i m

c c c c ν

ν ν ν
ν ν

ν

ν ν

γ γ
γ γ γ γ

γ γ

γ γ
γ γ γ γ γ

γ γ

−

−
−

−

− −
< < ≤ ≤ − ≠≠

= ≠ < <
≠

 ′ ′ 
′ ′ ′′ ′′ ′− − = − − +  − 

 ′ ′ 
′′ ′= − − + = 

− 

∑ ∑ ∑∏

∑ ∑ ∑

�

�

�
 (18) 

By assumption, ,i j i jγ γ≠ ∀ ≠ . The proof of Lemma 3 then shows that the 
matrix ( )2

m
jδ −  ( 2, , 1, 1, ,j n m n= + =� � ), where 
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1
1

,
j

j

m
j i i

i i
i mν

δ γ γ
< <

≠

= ∑
�

�  

is invertible. Thus 

2
2 0 for 1, , ;m l

m m m
l m i l

m nγ γ
γ γ γ

γ γ
′

≠

′
′′ ′− − + = =

−∑ �  

and jγ  satisfy (5). 

3.2. Second Order Nonlinear System to First Order Nonlinear 
System 

We have identified n constants of motion for the system (14). This will allow us 
to reduce the second order system to a first order system. 

Proposition 6. The nonlinear system (14) has the following constants of mo- 
tion: 

( ) 1 1

0 1 1
1 Constk j k j k j k j k

k j k j k j k j k

c c c c
c c c c

− − + − − +

≥ − − + − + +

  − − = ′ ′  
∑         (19) 

for all the 0 j n≤ ≤ . Here 0jc = , when j n>  or 0j < . 
Proof. Since 1 1 12 2j j jc c c c− −′ ′ ′′= + , 1 1j n≤ ≤ + , we can write 

1 1 12 2 ,j j jc c c c− −′′ ′ ′= −                     (20) 

1 12 2 .j j jc c c c+′′ ′ ′= −                      (21) 

Multiplying the first of these equations by jc  and the second equation by 

1jc − , and subtracting, we have 

1 1 1 12 2 ,j j j j j j j jc c c c c c c c− − + −′′ ′′ ′ ′− = −  

so that, 

( )2
1 1 1 12 .j j j j j j jc c c c c c c+ − − −

′′ ′ ′= − +                  (22) 

Similarly, from 

1 2 1 12 2j j jc c c c+ + +′′ ′ ′= −  

and 

2 1 1 22 2 ,j j jc c c c− − −′′ ′ ′= −  

we find 

2 1 1 2 2 2 1 12 2 .j j j j j j j jc c c c c c c c− + + − − + + −′′ ′′ ′ ′− = −  

Using this equation we obtain (compare with (22)) 

( )1 1 2 2 1 1 2 1 2 12 2 2 .j j j j j j j j j jc c c c c c c c c c+ − + − + − − + − +
′′ ′ ′ ′= − + + −  

It follows by induction that 

( ) ( ) ( )1 1
1 1 1 1

1 1
2 1 2 1 .

n j n j
k k

j j j k j k j k j k j k j k
k k

c c c c c c c c
− −

− −
+ − + − − − + − − +

= =

′ ′ ′ ′= − + − − 
 
∑ ∑  

This identity, together with (22) shows that 
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( ) ( ) ( )1 12
1 1

0 1
1 1 2 Const,

n j n j
k k

j k j k j k j k j j k j k
k k

c c c c c c c
− −

− −
− − + − − + + −

= =

′ ′− − + − − =∑ ∑  

for 0 j n≤ ≤ . 
We can also write (19) as 

( ) ( )2 1 1
1

1
n j k

j k k k j
k

c c c µ−
− − +

=−

′− − =∑                   (23) 

for 0, ,j n= � . Here ( )0j jµ ≠  are constants and 0 1µ = . 
Theorem 1 presents the equivalence of the first order system (23) and the 

second order system (14). 
Proof. of Theorem 1 
(i) this result follows directly from Proposition 6. 
(ii) let 1 12 2j j j jT c c c c+′′ ′ ′= − + . Differentiate (23), for 1 j n≤ ≤ , 

( ) ( )
{ }

{ }min 1,

2 1 1 2 1
1 min 1,

0 1 .
j j n jn j k

j k k k j k k
k k j j n j

c c c c T
+ − −

−
− − + − −

=− = − − −

′ ′= − − = 
 
∑ ∑  

If we write the above equation in matrix form, we have 

( ) ( ) ( ) ( )

0

2 1 1

4 3 2

3
1 1

2 2 2 21 2 1

1

2 3

1

0 0 0
0 0
0 0

1 1 1 1

0 0
0 0

n n n n

n n

n

nn n

n n n n

c
c c T
c c T

T

c c c c
T
Tc c

c c

− −
−

−

− −

− ×

− 
 −   

  −
  
  

=  
 − − − − 
  
       −

  − 

�
�
�

� � � � �

��
� � � � �

�
�

0     (24) 

The coefficient matrix of above Equation (24) is a Sylvester resultant matrix. A 
well known theorem from linear algebra then expands the determinant of the 
Sylvester resultant matrix as the resultant of the two polynomials, 

( ) ( )
1 2

2 2 21 3 11 ,
n n n

na s c s c s c
− −

−= − + − + −�  

( ) ( )
1 2

2 2 2 20 2 4 1 .
n n n n

nb s c s c s c s c
− −

= − + − + −�  

The coefficient matrix of (24) is nonsingular if and only if ( )a s  and ( )b s  
are coprime for x I∈ . Let ( )1Q s  be the polynomial 

( ) ( )1
0

1 .
n l n l

l
l

Q s c s −

=

= −∑                      (25) 

We observe that ( ) ( ) ( )( ) ( )2 2 2
11 n b s sa s Q s− − − − = , and since jc  is j-th 

symmetric function of jγ , we have 

( ) ( ) ( )( ) ( ) ( )2 2 2
1

1
1 .

n
n

j
j

b s sa s Q s s γ
=

− − − − = = −∏           (26) 

If ( )a s  and ( )b s  are not coprime, they have a common root 0s , such that 

0 0s ≠ . Let 1s , 2s  be the two distinct square roots of 0s− . Substitute 1s s=  
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and 2s s=  in (26); this yields ( )1 1 0Q s =  and ( )1 2 0Q s =  respectively. Thus 
there exist 

0i
γ , 

0j
γ  such that 

0 1i sγ = , 
0 2j sγ = . 

Since 2 2
1 , , nγ γ�  are assumed distinct, we obtain 2 2

1 2s s≠ , which contradicts 
the fact that 2 2

1 2 0s s s= = − . 
Therefore ( )a s  and ( )b s  must be coprime for x I∈ , and (24) has the 

unique trivial solution: 

1 12 2 0 for 1, , .j j j jT c c c c j n+′′ ′ ′= − + = = �  

Thus jc  solve the second order system (14). 

3.3. Method of Integrating Factor 

We have reduced the second order non-linear system (14) to the first order 
non-linear system (23). To solve the latter system explicitly, we begin by writing 
it in matrix form. Let 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

2 1 0

4 3 2

6 5 4

1 1 1
2 2 2 21 2 0

1
2 2 22 1

1 1 2

0 0 0 0
0 0
0 0
0 0

1 1 1 1 0

0 0 1 1 1

0 0 0

n n n n

n n n
n n n

n

n n n n

c
c c c
c c c

c c c

S
c c c c

c c c

c c

− − −
− −

−

− + × +

− 
 − 
 − −
 

− 
 

=  
 − − − − 
 

− − − 
 
  − 

�
�
�
�

� � � � � �

�

�
� � � � � �

�

(27) 

We will assume n is even from now on. When n is odd, we obtain similar 
results. The Equation (23) can be written as a matrix equation. 

0 0

1 1

1 2 2

1

for 0, , .

k k k

n n

c
c

c c
S j n

c c

c

µ
µ
µ

µ

µ

+

−   
   −   
   ′ −
   

= =   
   ′ −
   
   
   ′   

� � �

� �

                 (28) 

We will show that the nonlinear system (28) can be solved explicitly. 
Let 

0

1 1

0

, .

n n

c
c c

C C

c c

   
   ′   ′= =
   
   

′   

� �
                       (29) 

The nonlinear system (28) can be written as 

( ) ( )1 2 ,S c J C S c J C µ′ − =                      (30) 

where 
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( ) ( )

1

2 1

0 0 0 0
1 0 0 0

.0 1 0 0

0 0 0 1 n n

J

+ × +

 
 
 
 =
 
 
 
 

�
�
�

� � � � �
�

                 (31) 

( ) ( )

2

2 1

1 0 0 0
0 1 0 0

.
0 0 0 1
0 0 0 0 n n

J

+ × +

 
 
 
 =
 
 
 
 

�
�

� � � � �
�
�

                 (32) 

Our goal is to find an integrating factor M such that after multiplication on 
the left by M, (30) takes the form 

( ) ( ) ( )1 2 0.MS c J C MS c J C NC Mµ′′ − = = =             (33) 

Thus we would like to find an ( )1n n× +  matrix M and an ( )1n n× +  
matrix N such that 

( ) 1 ;MS c J N=                          (34) 

( ) 2 ;MS c J N ′= −                        (35) 

0.Mµ =                               (36) 

This leads to 

( ) ( ) ( )1 2 .nMS c B N N B +′= = −                  (37) 

1B  is the first column vector of ( )MS c  and 2+nB  is the last column vector 
of ( )MS c . 

For any 1n n× +  matrix ( )ijN a=  which satisfies (37), and 1B =

( )T
11 21 1, , , nβ β β� , ( )T

2 1 2 2 2 2, , ,n n n n nB β β β+ + + += � , 

11 12 1 1 1 2 11 11 1 1 1

21 22 2 1 2 2 21 21 2 2 1

1 2 1 2 1 1 1

.

n n n n

n n n n

n n n n n n n n n n n n

a a a a a a
a a a a a a

MS

a a a a a a

β β
β β

β β

+ + +

+ + +

+ + +

′ ′ ′   
   ′ ′ ′   = − =   
      ′ ′ ′   

� �
� �

� � � � � � � � � �
� �

 

We must have , 1uv u va a −′ = − , 1 1u ua β′ = − , for 1, , ; 2, , 1u n v n= = +� � . 
Let 1u u nf a += , then these conditions show that N must be of the form 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
1 1 1 1

1 2
2 2 2 2

1 2

,

n n n

n n n

n n n
n n n n

f f f f

f f f f

f f f f

− −

− −

− −

 −
 
 −
 
 
 − 

�

�
� � � � �

�

                (38) 

and moreover ( )1
1

n
u ufβ += − , for 1, ,u n= � . 

To find M, we now rewrite (34) and (36) in matrix form, 
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( )
T
1T

T T
T

.
0

B
S c M N
µ

 
   

=    
   

 

                    (39) 

Thus each of the n rows of M solves an over-determined linear system, con- 
sisting of 3n +  equations and 1n +  unknowns. 

Studying the structure of the matrix ( )S c , we notice the following algebraic 
identity, 

Lemma 7. ( ) 1 0S c J C =  
As an immediate corollary, we have the following 
Lemma 8. Given a nontrivial solution { }( )1, ,ic i n= �  of (28), the overdeter- 

mined system (39) is solvable only if N satisfies 0NC = . Moreover, we also have 
0N C′′ = . 

For each overdetermined system 

( )

( )

( )

( )

1

T T 1 , 1, , .

n
i

n
i

n
i i

i

f

f
S c M i nf

f

+

−

 −
 
 
 = =− 
 
 
 
 

�

�

              (40) 

where T
iM  is the i-th column vector of TM , Lemma 7 and Lemma 8 show that 

the rank of the augmented matrix is less than 2n + . The over-determined 
system has at most 1n +  linear independent equations. 

Let ( )T
1S c  denote the sub-matrix of ( )TS c  obtained by deleting the first 

row, the n-th row, the (n + 1)-th row, first column and last column of ( )TS c . 
We observe that ( )T

1S c  is also a Sylvester resultant matrix. The determinant of 
a Sylvester resultant matrix is the resultant of the two polynomials 

( ) ( )
1 2

2 2 21 3 11 ,
n n n

na s c s c s c
− −

−= − + − + −�  

( ) ( )
1 2

2 2 2 20 2 4 1 .
n n n n

nb s c s c s c s c
− −

= − + + −�  

Two cases need to be considered here. (1) ( )a s  and ( )b s  are coprime: 
Then ( )T

1S c  is nonsingular. The augmented matrix of (40) has the same rank 
1n +  as the corresponding coefficient matrix. Thus (40) is solvable. (2) ( )a s  

and ( )b s  are noncoprime: We then use the following result of Laidacker [12]: 
let ( )d s  be the greatest common divisor of two polynomials ( )a s , ( )b s , 
then the rank of the Sylvester resultant matrix is ( )( ) 1n deg d s− − . Thus the 
rank of the augmented matrix should be also ( )( )1n deg d s+ − , if (40) is to be 
solvable. 

We obtain an algebraic fact about the Sylvester matrix. 
Lemma 9. Suppose that 1 2 3

0 1 1 2 3 1 0n n n n
nc t c t t c t c t t c− − −− + − + + =� , and that 

( )2a t− , and ( )2b t−  do not vanish simultaneously. Then the following alge- 
braic system is always solvable. 
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( )

( )

( ) ( )

( ) ( )

21 3 1

1
T 2 2 10 2 2

1 1

21
2 21 3 1

1
1

2

1 0 0

1 1 0

0 0 1 1

n

n n
n n

nn n

n n

n

n

n

c c c m
mc c c cS c M

m
c c c

t
t t

t

−

−
−−

−
−

−

 − … − …  
  

− … − − …  =   
  
   … − − … − 
 
 
− =  
  
 

�
�� � � � � � �

�

 

Proof. Let ( )j sη  be the polynomial with coefficients consisting of the i-th 
row of ( )T

1S c  and let ( )ie s  be the polynomial with coefficients consisting of 
the i-th row of ( )T

1S c  in echelon form. It should be noted that ( )ie s  is a 
linear combination of the polynomials of ( )j sη . The algebraic system is solva- 
ble if and only if each zero row of ( )T

1S c  in echelon form corresponds to a 
zero row of the augmented matrix in echelon form. 

Suppose the i-th row of ( )T
1S c  in echelon form is zero, that is ( )ie s =  

( ) ( ) ( )0 1 1 2 2 10 .n nk s k s k sη η η− −= + + +�  From the structure of ( )T
1S c , 

( ) ( ) ( )

( ) ( )

1 2 12 2 20 2 2

2 3
2 2 21 3 3

1

1 0.

n n n

i n

n n n

n

e s k s k s k a s

k s k s k b s

− − −
−

− −

−

 
= − + + −  
 
 

+ − + + − =  
 

�

�

 

Let ( )d s  be the greatest common divisor of the two polynomials ( )a s  and 
( )b s , let ( ) ( ) ( )aa s d s d s= , ( ) ( ) ( )bb s d s d s= , where ( ) ( )( ), 1a bgcd d s d s = . 

The above shows that there exists a polynomial ( )0d s  such that 

( ) ( ) ( )
1 2 12 2 20 2 2 01

n n n

n bk s k s k d s d s
− − −

−− + + − =�  

( ) ( ) ( )
2 3

2 2 21 3 3 01
n n n

n ak s k s k d s d s
− −

−− + + − = −�  

We need to prove 

( ) ( )2 2 1 3 3
0 2 2 1 3 3 1 0.n n n n

n nk t k t k t k t k t k t t− − −
− −+ + + − + + + =� �  

Using the above identities, the left side of the equation can be written as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( )

2 2
11 12 2 2 2 2 22 20 1 0 2

1 1 0.
n n

a b

a t b t t
t d t d t t d t t d t

d t
− − − + −

− − − + − = − − =
−

 

The left side of this equation vanishes, since the condition in the hypothesis 
can be represented as ( ) ( )2 2

1 0a t b t t− + − = . 
Inspired by the fact that 0N C′′ =  and by Lemma 9, we prove the existence of 

N by constructing jf  such that Constj jf f′′= ⋅ . To be more specific, let 
2 for 1, , ,j j jf f j nκ′′= = �                    (41) 

where 2
jκ  are arbitrarily distinct and non-zero constants. 

Lemma 8 also shows that (39) is solvable only if N  satisfies 0NC = . 
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To calculate NC , we first introduce some new notation. For each iκ , we 
define ,i iO E  as follows, 

2
0 2 ,n n

i i i nO c c cκ κ −= + + +�                     (42) 

1 3
1 3 1.

n n
i i i i nE c c cκ κ κ− −

−= + + +�                  (43) 

Then, we have 

1 1 1 1
12

1 1 0 1 1 1
2

2 2 2 22 2 0 1 2 2
2

2
0

1

1
.

1

n n
n

n n
n

n n
n n n n n n

n n n n
n

O f E f
f c f f c

O f E ff c f f c
NC

f c f f c
O f E f

κ
κ κ
κ κ

κ

κ κ

κ

−

−

−

 ′− 
  ′− + +    ′−′− + +   = =   
     ′− + +   ′− 
 

�
�

�
�

�

       (44) 

0NC =  only if 1 0j j j j
j

O f E f
κ

′− =  for 1, ,j n= � , i.e j
j j j

j

O
f f

E
κ′ = . 

The following propostion proves that N satisfies both 0NC =  and 0N C′′ = . 
Proposition 10. If (28) is satisfied and , ,j j jO Eκ  are defined as above, then 

( ) 2 21 .j j j j j j
j

O E O E O E
κ

′ ′⋅ − + =                   (45) 

Proof. Straight forward calculation. 
Recall that our objective is to construct an integrating factor to reduce (23) to 

an algebraic system. As described above, let 

( )
d

e for 1, , .
j

j
j

O
x

E
jf x j n

κ ∫
= = �                  (46) 

Thus 

,j
j j j

j

O
f f

E
κ′ =                                  (47) 

2

2 2 .j j
j j j j j j j

j j

O O
f f f f

E E
κ κ κ

   
′′= + =      

   
              (48) 

We assume 0jE ≠  in this transformation. 

Lemma 11. ( ) jl l
j j j

j

O
f f

E
κ=  if l  is odd and ( )l l

j j jf fκ=  if l  is even. 

N can be rewritten as 

1 21
1 1 1 1 1 1 1

1

1 22
2 2 2 2 2 2 2

2

1 2

.

n n n

n n n

n n nn
n n n n n n n

n

Of f f f
E
Of f f f
E

Of f f f
E

κ κ κ

κ κ κ

κ κ κ

− −

− −

− −

 − 
 
 

− 
 
 
 
 − 
 

�

�

� � � � �

�

              (49) 
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With jf  as given above, we can define a matrix 1M , 

( )
( )

( )

2 2 2
1 1 1 1 1

2 2 2
2 2 2 2 2

1

2 2 2

1

1 .

1

nn n

nn n

nn n
n n n n n

f f f

f f fM

f f f

κ κ

κ κ

κ κ

−

−

−

 − … −
 
 − … −

=  
 
 − … − 

� � � �
             (50) 

The following proposition shows that 1
1 2

1

n

M M
E E E

=
�

 is a solution of  

(39), i.e. M is an integrating factor of (30). 

Proposition 12. Given 1
1 2

1

n

M M
E E E

=
�

, fj by (46), and 2
jκ  ( 1, ,j n= � ) 

be distinct roots of ( ) ( )0 1 ln n l
llz zµ −

=
Ψ = −∑ , then M solves (34), (35), (36). 

Proof. Straightforward calculation shows 

( )

1
1 1 1 1 1 1 1 1

1
2 2 2 2 2 2 2 2

1 1

1

,

n n

n n

n n
n n n n n n n n

f O f E f O
f O f E f O

M S c J

f O f E f O

κ κ
κ κ

κ κ

−

−

−

 − −
 
− − =  
  − − 

�
�

� � � �
�

 

thus, ( ) 1MS c J N= . Similar calculation proves ( ) 2MS c J N ′= . At the same 
time, we have 

( ) ( )

( ) ( )

( ) ( )

2
1 1

0

2

01 2

2

0

1

1 .1

1

n n ll
l

l

n n ll
l k k

ln

n n ll
l n n

l

f

M f
E E E

f

µ κ

µ µ κ

µ κ

−

=

−

=

−

=

 − 
 
 
 
 = =−
 
 
 
 

− 
 

∑

∑

∑

�

�
�

0  

Theorem 13. if ( ) ( )1k k jS c c µ+′ − = , then ( )1 1k kM S c c +′⋅ − = 0 , Conversely, if 
( )1 1k kM S c c +′⋅ − = 0  and 0jf ≠ , then ( ) ( )1k k jS c c µ+′ − = , moreover, ck satisfy 

the linear system, 

( ) ( )
0

1 0, 0 .
n kn k

j k
k

NC f c j n−

=

= − = < ≤∑               (51) 

The system (28) is integrable and equivalent to this linear system. 
Remark 14. jf  can be solved directly from Equation (48) as jf =

( )( )sinh j jxκ δ+ . The algebraic system (51) will then lead to the solution kc . 
Proof. Multiplying Equation (30) by 1M , and using Proposition 12, yields  

( )1 1 0k kM S c c +′⋅ − = . Further, multiplying both sides by 
1 2

1

nE E E�
, we have 

( ) ( )1 0.k kM S c c NC+
′′⋅ − = =                   (52) 

Thus ( ) ( )
0 1 Constkn n k

j kk f c−
=

− =∑ . The fact that 
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( ) ( )
1

0
1 0

n k n k
j k

k
MSJ C f c−

=

= − =∑  

forces the constant to be zero. 
Conversely if ( )1 1 0k kM S c c +′⋅ − = , since 1M  is a ( )1n n× +  matrix and 2

jκ  
are assumed distinct, 0jf ≠ , so the dimension of the kernel is 1. The solution 
µ  which satisfies 1 0M µ⋅ =  and 0 1µ =  is unique. Since the first entry of 
( )1k kS c c +′ −  is ( ) ( )0 0 1c c− ⋅ − = , it follows that ( ) ( )1k k jS c c µ+′ − = . 
This proves that (28) is integrable and provides a procedure to obtain explicit 

solutions from the linear system (51). 

4. Exact Analytic Examples 

We will illustrate the procedure of section 2 and section 3 by a simple exact ana-
lytic example in this section. 

We explicitly discuss the case, where 2n =  in (4). Then ( ),A xα =  
( ) ( ) ( ) ( )1 22 2

1 22 e 2 ex xx xαγ αγγ γ− −′ ′− − . We construct the non-linear mapping from 
γ  to c , 

1 1 2

2 1 2

,
.

c
c

γ γ
γ γ

= +
=

                        (53) 

Then 1 2,c c  satisfy (14). To solve for c, we reduce the second order system 
(14) to the first order system (30): 

0
0 0

1
2 1 0 1

1 2
2 1 2

2

0 0 0
0 .

0 0

c
c

c
c c c

c c
c c

c

µ
µ
µ

− 
−    −    − =    ′ −   −     ′ 

            (54) 

Given 1κ , 2κ  where 1 2κ κ≠ , we construct M of the form (50) 
4 2
1 1 1 1 1
4 2
2 2 2 2 2

f f f
M

f f f
κ κ
κ κ
 −

=  
− 

                 (55) 

where 1 2,f f  are solution of (48): 
2

1 1 1,f k f′′=  

2
2 2 2.f k f′′=  

We can write 

( )( )sinh for 1,2.i i if x iκ δ= + =  

with 1 2 0δ δ⋅ ≠ . 
After multiplying (54) by M on the left, the first order system is solved expli-

citly. Indeed, jc  satisfy linear system (51). Let 

( )( )coth .i i i iz xκ κ δ= +                     (56) 

Then (51) takes the form 
2

1 1 2 1 ,z c c κ− =                         (57) 

2
2 2 2 2 ,z c c κ− =                         (58) 
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with solution: 

( )
2 2
2 1

1
2 1

,c x
z z
κ κ−

=
−

                        (59) 

( )
2 2
2 1 1 2

2
2 1

.z zc x
z z

κ κ−
=

−
                     (60) 

To invert the mapping (53) we find ( )1 xγ , ( )2 xγ  as the roots of the 
equation 

( ) ( )2
1 2 0.s c x s c x− + =  

This gives the following exact solutions of A-equation: 

( ) ( ) ( ) ( )1 2 12 2 2q x x x c xγ γ′ ′ ′= − − = −  

( ) ( ) ( ) ( ) ( )1 22 2
1 2, 2 e 2 e .x xA x x xαγ αγα γ γ− −′ ′= − −  

Theorem 15. For any distinct non-zero complex 2 2
1 , , nκ κ� , and 2 2

1 , , nd d� , 
there exists a solution ( ),A xα  of the A-equation with the form 
( ) ( ) ( )2

1, 2 e jn x
jjA x x αγα γ −

=
′= −∑ , where ( )0j jdγ = , 

( ) ( ) ( ) 12 2 2 2
10 n

j m j l jm l jd d dγ κ
−

= ≠
′ = − −∏ ∏  for 1 j n≤ ≤ . 

Proof. This theorem is a direct corollary of the results in section 3. 
Remark 16. This theorem does not cover all solutions of the form 
( ) ( ) ( )2

1, 2 e jn x
jjA x x αγα γ −

=
′= −∑ . Consider an example from [1], 

( ) 0 02 20 0

0 0

e e ,k kc cA
k k

α αα −= − +                        (61) 

( ) ( )
2

20
02 2 0

0

d2 ln 1 sinh d .
d

xcq x k y y
x k

 
= − + 

 
∫             (62) 

Working through the procedure in section 3, we get 

( ) ( )1 2 00 0 ,kγ γ= − = −  

( ) ( ) 0
1 2

0

0 0 ,
2
c
k

γ γ′ ′= − =  

( ) ( )1 10 0, 0 0,c c′= =  

( ) ( )2
2 0 2 00 , 0 .c k c c′= − =  

Here the values of the constants are: 
2

1 1 02 ,kσ µ= =  

4
2 2 0 ,kσ µ= =  

2 2 2
1 2 0 ;kκ κ= =  

so that 2
1κ  and 2

2κ  are not distinct. 
This leads to 0, 0i iO E= = . Proposition 10 holds, but the nonlinear trans-

formation (46) is not defined. 
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5. Conclusion 

A large class of exact Equations to A-Equation was found in this work. Tech-
niques used in our approach include non-linear transformation between coeffi-
cient of a polynomial and its zero, constants of motion, and an interesting inte-
grating factor method. The nonlinear system studied here is of interest not only 
for its connection to inverse problems. It represents a larger category of integra-
ble system than C-integrable system and is worth further investigation. 
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