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Abstract 
Internal physical mechanism of actual sound environment system is often dif-
ficult to recognize analytically, and it contains unknown structural characte-
ristics. Furthermore, the observation data often contain fuzziness due to sev-
eral causes and exhibit level saturation owing to the existence of a finite dy-
namic range. Therefore, it is necessary to propose a new state estimation me-
thod by considering fuzziness and finite amplitude fluctuation of observation 
data. In this paper, a method for estimating the specific signal for sound envi-
ronment system with unknown structure is proposed in an appropriate form 
for the finite level range of the measured fuzzy observation data by introduc-
ing an expansion expression of probability distribution with Bata distribution 
in the first term and new type of membership function. The effectiveness of 
the proposed theoretical method is confirmed by applying it to the actual 
problem in the sound environment. 
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1. Introduction 

The internal physical mechanism of actual sound environment system having a 
complicated relation to various factors is often difficult to recognize analytically, 
and it contains unknown structure. Furthermore, the stochastic process ob-
served in the actual phenomenon exhibits complex fluctuation pattern and there 
are potentially various nonlinear correlations in addition to the linear correla-
tion between input and output time series [1]. 

Furthermore, it is necessary to pay our attention on the fact that the observa-
tion data in the sound environment system often contain fuzziness due to several 
causes, for example, the permissible error of the accuracy in measurements, the 
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quantized error in the digitization of observation data, and the existence of con-
fidence limitation in measuring instruments. In our previous studies, state esti-
mation methods for sound environment system based on fuzzy observation have 
been proposed by considering the standard Gaussian type membership function 
[2] [3]. On the other hand, owing to a finite range of the amplitude fluctuation 
and/or a definite dynamic range of measurement instrument, only the informa-
tion defined within a finite range usually can be obtained as reliable data in the 
measurement of real sound environment [4] [5]. In this situation, in order to 
evaluate more precisely the objective sound environment system, it is necessary 
to introduce a fuzzy theory to estimate the waveform fluctuation of the specific 
signal based on the observed data with fuzziness and amplitude saturation. 

As a typical method in the state estimation problem, the Kalman filtering 
theory and its extended filter are well known [6] [7] [8] [9] [10]. Furthermore, 
several state estimation methods for stochastic system with non-Gaussian fluc-
tuations have previously been proposed [11] [12] [13] [14]. These theories are 
originally based on the additive model of the specific signal and an external 
noise. The actual sound environment systems often contain unknown characte-
ristics in the relationship between the state variable and the observation. Fur-
thermore, the observation data often contain fuzziness and amplitude saturation. 

In this study, based on the fuzzy observations, a Bayesian filter for estimating 
the specific signal of sound environment systems with unknown structural cha-
racteristic is theoretically proposed in an appropriate form for the finite ampli-
tude range of the measured data. More specifically, complex sound environment 
systems which have to be treated as the systems with unknown characteristics 
are paid our attention. By introducing the orthogonal expansion expression of 
the probability distribution with a Beta distribution as the first term, and a new 
type of membership function, which are suitable for the finite amplitude fluctua-
tion range of the signal and observation, a method to estimate the waveform 
fluctuation of the specific signal based on the fuzzy observation data is proposed. 
After adopting a previously reported expansion expression of the conditional 
probability distribution as the correlation information between the specific sig-
nal and observation [1], by regarding the expansion coefficients as unknown pa-
rameters and introducing probability measure of fuzzy events [15], these para-
meters are estimated simultaneously with the specific signal based on the fuzzy 
observation. 

Finally, the effectiveness of the proposed Bayesian filter focusing on the rela-
tionship between variables is confirmed experimentally too by applying the 
theory to the estimation of sound level based on the observation data containing 
fuzziness and amplitude saturation. 

2. Theoretical Consideration 
2.1. Formulation of Sound Environment System with  

Fuzzy Observation 

Let kx  and ky  be the input and output signals at a discrete time k for a sound 
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environment system. It is assumed that there are complex nonlinear relation-
ships between kx  and ky , which are difficult to find a fundamental relation-
ship between them. Since the system characteristics are unknown, a system 
model in the form of a conditional probability is adopted. More precisely, atten-
tion is focused on the joint probability distribution function ( ),k kP x y  reflect-
ing all linear and non-linear correlation information between kx  and ky . Ex-
panding the joint probability distribution function ( ),k kP x y  in an orthogonal 
form based on the product of ( )kP x  and ( )kP y , the following expression can 
be derived.  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0 0
,k k k k rs r k s k

r s
P x y P x P y A x yθ θ

∞ ∞

= =

= ∑∑           (1) 

with 
( ) ( ) ( ) ( )1 2

rs r k s kA x yθ θ≡                        (2) 

where  denotes the averaging operation on the variables. The linear and 
non-linear correlation information between kx  and ky  is reflected hierarchi-
cally in each expansion coefficient rsA . The functions ( ) ( )1

r kxθ  and ( ) ( )2
s kyθ  

are orthonormal polynomials with the weighting functions ( )kP x  and ( )kP y  
respectively, and satisfy the following orthonormal conditions: 

( ) ( ) ( ) ( ) ( )1 1 dr k r k k k rrx x P x xθ θ δ′ ′=∫                 (3) 

( ) ( ) ( ) ( ) ( )2 2 ds k s k k k ssy y P y yθ θ δ′ ′=∫                (4) 

These orthonormal polynomials can be decomposed by using Schmidt’s or-
thogonalization [16]. From Equation (1), the conditional probability distribution 
function ( )|k kP y x  is given as 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 2

0 0

,
|

R S
k k

k k k rs r k s k
r sk

P x y
P y x P y A x y

P x
θ θ

= =

= = ∑∑       (5) 

Though Equation (5) is originally infinite series expansion, finite expansion 
series with r R≤  and s S≤  is adopted because only finite expansion coeffi-
cients are available and the consideration of the expansion coefficients from the 
first few terms is usually sufficient in practice. The expansion coefficients de-
fined by Equation (2) satisfy the following conditions: 

( )00 0 01, 0 , 1, 2,r sA A A r s= = = =               (6) 

Furthermore, let kz  be the fuzzy observation obtained from the output ky  
with a finite fluctuation range [ ],a b  owing to a definite dynamic range of 
measurement instrument. The fuzziness of kz  is characterized by a member-
ship function ( )

kz kyµ . 
Since the objective system contains an unknown specific signal and unknown 

structure, the expansion coefficients rsA  expressing hierarchically the correla-
tion relationship between kx  and ky  must be estimated on the basis of the 
fuzzy observation kz . Considering the expansion coefficients rsA  as unknown 
parameter vector a : 
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( ) ( ) ( ) ( )( )1 2 1 2, , , , , ,I Sa a a≡ ≡ a a a a  

( ) ( ) ( )1 2, , , , 1, 2, ,s s Rss A A A s S≡ = a               (7) 

the following simple dynamical models are introduced for the simultaneous es-
timation of the parameters with the specific signal kx : 

1k k+ =a a                           (8) 

( ) ( ) ( ) ( )( )( )1, 2, , 1 , 2 , ,, , , , , ,k k k I k k k S ka a a≡ ≡ a a a a  

where ( )I R S= ⋅  is the number of unknown expansion coefficients to be esti-
mated. 

On the other hand, the following time transition model for the input signal is 
generally established. 

1k k kx Fx Gu+ = +                        (9) 

where ku  is the random input with mean 0 and variance 2
uσ . Two parameters 

F and G are estimated by using an auto-correlation technique [16]. 
A method to estimate kx  adaptively based on the fuzzy observation kz  is 

derived in this study by introducing probability measure of fuzzy events [15] and 
the expansion series expressions of the conditional probability distribution func-
tion in Equation (5). 

2.2. Derivation of Estimation Algorithm Based on Fuzzy  
Observation with Amplitude Saturation 

In order to derive an estimation algorithm for a specific signal kx , based on the 
successive observations of fuzzy data kz , we focus our attention on Bayes’ 
theorem for the conditional probability distribution [12]. Since the parameter 

ka  is also unknown, the conditional probability distribution of kx  and ka  is 
considered. 

( ) ( )
( )

1

1

, , |
, |

|
k k k k

k k k
k k

P x z Z
P x Z

P z Z
−

−

=
a

a                 (10) 

where ( )( )1 2, , ,k kZ z z z=   is a set of fuzzy observation data up to a time k. 
After applying probability measure of fuzzy events [15] to the right side of Equa-
tion (10), expanding it in a general form of the statistical orthogonal expansion 
series [12], the conditional probability density function ( ), |k k kP x Za  can be 
expressed as: 

( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1

1

1 2
0 1 0 1

0 0

0
0

, , | d
, |

| d

| |

k

k

b
z k k k k k ka

k k k b
z k k k ka

l n k k k k l k k n k
l n

n n k
n

y P x y Z y
P x Z

y P y Z y

B P x Z P Z x I z

B I z

µ

µ

ϕ ϕ

−

−

∞ ∞ ∞

− −
= = =

∞

=

=

=

∫
∫

∑∑∑

∑

m m
m 0

0

a
a

a a
  (11) 

with 

( ) ( ) ( ) ( ) ( )3
0 1| d

k

b
n k z k k k n k ka

I z y P y Z y yµ ϕ−≡ ∫            (12) 
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( ) ( ) ( ) ( ) ( )1 2 (3)
1|l n l k k n k kB x y Zϕ ϕ ϕ −≡m m a             (13) 

( )( )1 2, , , .Im m m≡ m  

The functions ( ) ( )1
l kxϕ , ( ) ( )2

kϕm a  and ( ) ( )3
n kyϕ  are the orthogonal poly-

nomials of degrees l , m  and n  with weighting functions ( )0 1|k kP x Z − , 
( )0 1|k kP Z −a  and ( )0 1|k kP y Z − , which can be artificially chosen as the proba-

bility density functions describing the dominant parts of ( )1|k kP x Z − , 
( )1|k kP Z −a  and ( )1|k kP y Z − . These three functions must satisfy the following 

orthonormal relationships: 
( ) ( ) ( ) ( ) ( )1 1

0 1| dl k l k k k k llx x P x Z xϕ ϕ δ
∞

′ ′−−∞
=∫           (14) 

( ) ( ) ( ) ( ) ( )2 2
0 1

1
| d

i i

I

k k k k k m m
i

P Zϕ ϕ δ
∞

′ ′−−∞
=

=∏∫ m ma a a a         (15) 

( ) ( ) ( ) ( ) ( )3 3
0 1| d

b
n k n k k k k nna

y y P y Z yϕ ϕ δ′ ′− =∫           (16) 

Based on Equation (11), the recurrence algorithm for estimating an arbitrary 
( ),L M th order polynomial type function ( ), ,L k kf xM a  of kx  and ka  can be 
derived as follows: 

( ) ( )
( )

( )
0 0

, ,

0
0

ˆ , , |

L
L
l l n n k

l n
L k k L k k k

n n k
n

C B I z
f x f x Z

B I z

∞

= = =
∞

=

≡ =
∑∑∑

∑

M
M

m m
m 0

M M

0

a a     (17) 

where L
lC M
m  is the expansion coefficient determined by the equality: 

( ) ( ) ( ) ( ) ( )1 2
,

0
,

L
L

L k k l l k k
l

f x C xϕ ϕ
= =

= ∑∑
M

M
M m m

m 0
a a            (18) 

In order to make the general theory for estimation algorithm more concrete, 
the well-known Gaussian distribution is adopted as ( )0 1|k kP x Z −  and ( )0 1|k kP Z −a , 
because this probability density function is the most standard one. 

( ) ( )*
0 1| ; ,

kk k k k xP x Z N x x− = Γ  

( ) ( ),

*
0 1 , ,

1
| ; ,

i k

I

k k i k i k a
i

P Z N a a−
=

= Γ∏a              (19) 

with 

( ) ( )2
2

22

1; , exp
22π

x
N x

µ
µ σ

σσ

 − ≡ − 
  

 

*
1|k k kx x Z −≡ , ( )2*

1|
kx k k kx x Z −Γ ≡ −  

* *
, , 1|i k i k ka a Z −≡ , ( ),

2*
, , 1|

i ka i k i k ka a Z −Γ ≡ −           (20) 

Furthermore, the Bata distribution [17] suitable for the random variable with 
a finite fluctuation range [ ],a b  is adopted as ( )0 1|k kP y Z − . 

( ) ( ) ( )

1

0 1
1|

, 1

k k k
k k

k k
k k k

y a b yP y Z
B b a b a b a

γ α γ

γ α γ

− −

−
− −   =    − + − − −   

   (21) 
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with 

 ( ) ( ) ( ) ( ) ( )1 11
0

, 1 dqpB p q t t t p q p q−−≡ − = Γ Γ Γ +∫ ; Beta function 

( ) ( )* *

2k k
k

k

y a b y
α

− −
≡ −

Ω
 

( ) ( )* **

1k kk
k

k

y a b yy a
b a

γ
 − −−  ≡ − − Ω  

 

*
1|k k ky y Z −≡ , ( )2*

1|k k k ky y Z −Ω ≡ −            (22) 

where ( )Γ ⋅  is the Gamma function. Then, the orthonormal functions with the 
weighting probability density functions in Equations (19) and (21) can be given 
by 

( ) ( )
*

1 1
!

k

k k
l k l

x

x xx H
l

ϕ
 − =
 Γ 

                (23) 

( ) ( )
,

*
2 , ,

1

1
! i

i k

I
i k i k

k m
i ai

a a
H

m
ϕ

=

 −
 =
 Γ 

∏m a              (24) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

3 1 2
, ;

1 ! 1
k k k k k k

n k n k k
k k k k

n n n y ay G
n n b a

α γ α α γ
ϕ α γ

α α γ γ
Γ − + + Γ + Γ + − =  Γ + Γ + − + Γ − 

 (25) 

where ( )lH ⋅  is the Hermite polynomial with lth order [18] and ( )nG ⋅  is the 
Jacobi polynomial with nth order [4]. As the membership function, the follow-
ing function matching to the Beta distribution is newly introduced. 

( ) ( ) ( )
( )1

11
k k

k k

k

s s w w
s w ws k k

z k k k
y a b yy w w
b a b a

µ
−

−− − −   = −    − −   
 

( ) ( )( )k kw z a b a≡ − −                   (26) 

where s is a parameter.  
Accordingly, Equation (12) can be given by 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

0

1 1
1

1 1

1
1

1 2
, ; d

1 ! 1

k k

k k k

s w w k k k ks
n k k k

k k k k

A B A
b k k k
a

k k k

n
k k k k k k

nr r k k k
rk k k k

A B A
I z w w

B

B y a b y
A B A b a b a

n n n y ad G B A y
n n b a

α
γ α γ

α γ α α γ
α α γ γ

−−

− −

=

Γ + Γ Γ − +
= −

Γ Γ − + Γ +

Γ + − −   ⋅    Γ Γ − + − −   

Γ − + + Γ + Γ + − ⋅  Γ + Γ + − + Γ − 

∫

∑

 (27) 

with 

k kA sγ≡ + , ( )1k k k kB s w w sα≡ − + +             (28) 

The fuzzy data kz  are reflected in kw  and kB . Furthermore, nrd  
( 0,1, 2, ,r n=  ) are the expansion coefficients in the equality on Jacobi poly-
nomial: 

0
, ; , ;

n
k k

n k k nr r k k
r

y a y aG d G B A
b a b a

α γ
=

− −   =   − −   
∑         (29) 
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By considering the orthonormal condition of Jacobi polynomial [4], Equation 
(27) can be expressed as follows: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1

0

1 1
1

1 1

1 2
,

1 ! 1

k ks w w k k k ks
n k k k

k k k k

k k k k k
n

k k k k

A B A
I z w w

B

n n n
d

n n

α
γ α γ

α γ α α γ
α α γ γ

−− Γ + Γ Γ − +
= −

Γ Γ − + Γ +

Γ − + + Γ + Γ +
⋅

Γ + Γ + − + Γ

 (30) 

where a few concrete expressions of 0nd  in Equation (30) can be expressed as 
follows: 

00 1d = , 10
11

1
k k

k k

Ad
B

α
γ
+

= −
+

 

( ) ( )
( )

( )
( ) ( )20

3 2 121 2
1 1 2 1

k k k kk k

k k k k k k

A AAd
B B B

α αα
γ γ γ

+ + ++
= − +

+ + + +
 

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

30
4 3 131 3 3

1 1 2 1

5 4 3 2 1
.

2 1 3 2 1

k k k kk k

k k k k k k

k k k k k k

k k k k k k

A AAd
B B B

A A A
B B B

α αα
γ γ γ

α α α
γ γ γ

+ + ++
= − +

+ + + +

+ + + + +
−

+ + + + +

    (31) 

In two special cases when ( )1, ,k k kf x x=0 a , ( ) ( )2
2, ˆ,k k k kf x x x= −0 a , esti-

mates related to mean and variance of the specific signal are expressed as fol-
lows: 

{ } ( )

( )

1 1
0 0 1 1

0

0
0

ˆ |
n n n k

n
k k k

n n k
n

B C B C I z
x x Z

B I z

∞

=
∞

=

+
≡ =

∑

∑

0 0
0 0 0 0

0

           (32) 

( )
{ } ( )

( )

2 2 2
0 0 1 1 2 2

2 0

0
0

ˆ |
n n n n k

n
k k k k

n n k
n

B C B C B C I z
P x x Z

B I z

∞

=
∞

=

+ +
≡ − =

∑

∑

0 0 0
0 0 0 0 0 0

0

    (33) 

with 
1 1
0 1, ,

kk xC x C∗= = Γ0 0
0 0  

( ) ( )22 2 2
0 1 2ˆ ˆ, 2 , 2 .

k k kx k k x k k xC x x C x x C∗ ∗= Γ + − = Γ − = Γ0 0 0
0 0 0        (34) 

Using the property of conditional expectation and Equation (5), the two va-
riables *

ky  and kΩ  in Equation (22) can be expressed in functional forms on 
predictions of kx  and ka  at a discrete time 1k −  (i.e. the expectation value 
of arbitrary functions of kx  and ka  conditioned by 1kZ − ),as follows: 

( )

( ) ( )

( ) ( )

*
1 1

1

1
1

1 1
0 0

1

1 1,
0

| , |

| d |

|

| ,

k k k k k

k k k k k

s rs r k k
r s

s k ks k
s

y y x Z Z

y P y x y Z

e A x Z

e x Z

θ

− −

−

∞

−
= =

−
=

=

=

=

= Θ

∫

∑∑

∑ A

                 (35) 
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( ) ( )

( ) ( )

( ) ( )

2*
1

2
1

2 1
0 0

2

2 1,
0

| d |

|

|

k k k k k k k

s rs r k k
r s

s k ks k
s

y y P y x y Z

e A x Z

e x Z

θ

−

∞

−
= =

−
=

Ω = −

=

= Θ

∫

∑∑

∑ A

              (36) 

with 

( ) ( )( ) ( ), ,0, , 1, 2,s k s k s≡ = A a , ( ) ( )0 , 1, 0,0, , 0k ≡ A  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )T1 1 1
0 1, , ,k k k R kx x x xθ θ θΘ ≡ 

            (37) 

where T denotes the transpose of a matrix. The coefficients 1se  and 2se  in 
Equations (35) and (36) are determined in advance by expanding ky  and 

( )2*
k ky y−  in the following orthogonal series forms: 

( ) ( )
1

2
1

0
k i i k

i
y e yθ

=

= ∑ , ( ) ( ) ( )
22 2*

2
0

k k i i k
i

y y e yθ
=

− = ∑          (38) 

Furthermore, using Equation (5) and the orthonormal condition of Equation 
(4), each expansion coefficient l nB m  defined by Equation (13) can be obtained 
through the similar calculation process to Equations (35) and (36), as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3
1

1 2 1
1

0 0

1 2
1,

0

| d |

|

|

l n l k k n k k k k k

n

l k k ns rs r k k
r s

n

ns l k k k ks k
s

B x y P y x y Z

x e A x Z

e x x Z

ϕ ϕ ϕ

ϕ ϕ θ

ϕ ϕ

−

∞

−
= =

−
=

=

=

= Θ

∫

∑∑

∑

m m

m

m

a

a

a A

 

( ( ) ( ) ( ) ( )3 2

0
,

n

n k ni i k
i

y e yϕ θ
=

= ∑  nie : appropriate coefficients).    (39) 

In the above, the expansion coefficient l nB m  can be given by the predictions 
of kx  and ka . 

Finally, by considering Equation (9), the prediction step which is essential to 
perform the recurrence estimation can be given by 

*
1 1 ˆ|k k k k kx x Z Fx G u+ +≡ = +              (40) 

( ) ( )2 2* 2 2
1 1 1 |k k k k k k kx x Z F P G u u+ + +Γ ≡ − = + −      (41) 

By replacing k  with 1k + , the recurrence estimation of kx  can be 
achieved. 

3. Experimental Consideration 

In order to confirm the effectiveness of the proposed method, it was applied to 
real data observed in a sound environment system. Acoustic signals observed by 
two microphones in indoors and outdoors for a house were adopted as input 
and output data for the sound insulation system shown by the frame in Figure 1. 
The rock music was selected as an input signal by considering the aggravation of 
“Karaoke” noise pollution problem. 
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Figure 1. A schematic drawing of the experimental set up in sound insulation system. 

 
After generating the music sound inside the house, the indoor and outdoor 

sound pressure levels were regarded as the input signal kx  and the output ob-
servation ky . The data were measured with a sampling interval of 1 s. The sta-
tistics of the input signal and the output signal used in the experiment are shown 
in Table 1 and Table 2. Applying the proposed estimation method to actually 
observed output data quantized roughly with 1 dB, 2 dB and 3 dB widths as ex-
amples of fuzzy observation, the fluctuation wave form of the input signal was 
estimated. Comparison of the accuracy for the estimated probability distribution 
between the case considering a finite fluctuation range of the observation data 
and the case without consideration of the fluctuation range was discussed in our 
previous study [5]. 

Figures 2-4 show the estimation results of the fluctuation wave form of the 
input signal for Data 1 in a typical case of widely fluctuating signals, by applying 
the proposed algorithm to the quantized observation data with 1 dB, 2 dB and 3 
dB widths. Furthermore, Figures 5-7 show the estimation results for Data 2 in a 
typical case of narrowly fluctuating signals. In these estimations, the finite num-
ber of expansion coefficients ( ), 2rsA r s ≤  are used for the simplification of the 
estimation algorithm. In these figures, the horizontal axis shows the discrete 
time k, of the estimation process, and the vertical axis expresses the sound pres-
sure level. For comparison, the estimation results calculated by using the usual 
method are also shown in these figures. Since Kalman’s filtering theory is widely 
used in the field of stochastic system, the extended Kalman filter [8] is also ap-
plied to the observation data as a trail by introducing the following observation 
model. 

k k k k kz a x b ε= + +                    (42) 

where kε  denotes the quantized noise. A uniform distribution within 
[ ]2, 2q q−  (q: the quantized width) is assumed as the probability distribution 
of kε . Since the parameters ka  and kb  are unknown, these parameters are 
also estimated simultaneously with the input signal kx  by introducing the fol-
lowing time transition models in addition to Equation (9): 

1 1,k k k ka a b b+ += =                   (43) 

The results estimated by the proposed method show good agreement with the  
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Figure 2. Estimation results for Data 1 of the input signal by applying the proposed me-
thod based on the quantized output observation data with 1 dB width. 
 

 
Figure 3. Estimation results for Data 1 of the input signal by applying the proposed me-
thod based on the quantized output observation data with 2 dB width. 
 

 
Figure 4. Estimation results for Data 1 of the input signal by applying the proposed me-
thod based on the quantized output observation data with 3 dB width. 
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Figure 5. Estimation results for Data 2 of the input signal by applying the proposed me-
thod based on the quantized output observation data with 1 dB width. 
 

 
Figure 6. Estimation results for Data 2 of the input signal by applying the proposed me-
thod based on the quantized output observation data with 2 dB width. 
 

 
Figure 7. Estimation results for Data 2 of the input signal by applying the proposed me-
thod based on the quantized output observation data with 3 dB width. 
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Table 1. Mean and standard deviation of the input signal (in dB). 

Data Number Data 1 Data 2 Data 3 Data 4 Data 5 

Mean Value 80.8 79.6 80.4 82.4 80.8 

Standard Deviation 2.25 1.31 2.38 2.26 2.50 

 
Table 2. Mean and standard deviation of the output signal (in dB). 

Data Number Data 1 Data 2 Data 3 Data 4 Data 5 

Mean Value 60.4 58.2 59.7 60.8 60.0 

Standard Deviation 1.92 1.45 1.74 1.85 1.75 

 
true values. On the other hand, there are great discrepancies between the esti- 
mates based on the standard type dynamical estimation method (i.e., extended 
Kalman filter). For these differences on estimated results, the following reasons 
can be considered: 1) The standard method assumes the simple observation 
model in Equation (42). On the other hand, the proposed method introduces the 
conditional probability distribution in Equation (5) as the observation model, 
which can be considered the whole fluctuation of input and output signals; 2) 
The standard method is not considered the finite amplitude fluctuation of the 
observation data; 3) To consider the quantized observation by introducing fuzzy 
theory is more useful than the standard method by introducing the quantized 
noise. 

The squared sums of the estimation error are shown in Tables 3-5. It can be 
found numerically that the proposed method is more useful than the extended 
Kalman filter. 

4. Conclusions 

In this study, based on the observed data with fuzziness and the finite level range, 
a new adaptive method for estimating the input signal for sound environment 
systems with unknown structure has been proposed. The proposed estimation 
method has been realized by introducing a system model of conditional proba-
bility type and the probability measure of fuzzy events. The proposed method 
has been applied to the estimation for the input signal of an actual sound envi-
ronment system, and it has been experimentally verified that better results are 
obtained as compared with the standard estimation method without considering 
fuzzy theory. 

The proposed approach is quite different from the traditional standard tech-
niques. However, we are still in an early stage of development, and a number of 
practical problems are yet to be investigated in the future. These include: 1) ap-
plication to a diverse range of sound signals in actual noise environment; 2) ex-
tension to cases with multi-noise sources, and 3) finding an optimal number of 
expansion terms for the expansion-based probability expressions adopted. 
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Table 3. Comparison between the proposed method and the extended Kalman filter for 
root-mean squared error of the estimation based on the quantized observation data with 
1 dB width (in dB). 

Data Number Data 1 Data 2 Data 3 Data 4 Data 5 

Proposed Methods 1.61 1.39 1.32 1.25 1.45 

Extended Kalman Filter 2.93 3.18 2.01 1.55 2.60 

 
Table 4. Comparison between the proposed method and the extended Kalman filter for 
root-mean squared error of the estimation based on the quantized observation data with 
2 dB width (in dB). 

Data Number Data 1 Data 2 Data 3 Data 4 Data 5 

Proposed Methods 1.63 1.47 1.34 1.38 1.50 

Extended Kalman Filter 2.93 3.80 2.01 1.40 2.58 

 
Table 5. Comparison between the proposed method and the extended Kalman filter for 
root-mean squared error of the estimation based on the quantized observation data with 
3 dB width (in dB). 

Data Number Data 1 Data 2 Data 3 Data 4 Data 5 

Proposed Methods 1.63 1.53 1.39 1.53 1.51 

Extended Kalman Filter 2.83 4.38 2.09 1.78 2.80 
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