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Abstract 

It is practically impossible and unnecessary to obtain spatial-temporal infor-
mation of any given continuous phenomenon at every point within a given 
geographic area. The most practical approach has always been to obtain in-
formation about the phenomenon as in many sample points as possible within 
the given geographic area and estimate the values of the unobserved points 
from the values of the observed points through spatial interpolation. Howev-
er, it is important that users understand that different interpolation methods 
have their strength and weaknesses on different datasets. It is not correct to 
generalize that a given interpolation method (e.g. Kriging, Inverse Distance 
Weighting (IDW), Spline etc.) does better than the other without taking into 
cognizance, the type and nature of the dataset and phenomenon involved. In 
this paper, we theoretically, mathematically and experimentally evaluate the 
performance of Kriging, IDW and Spline interpolation methods respectively 
in estimating unobserved elevation values and modeling landform. This paper 
undertakes a comparative analysis based on the prediction mean error, pre-
diction root mean square error and cross validation outputs of these interpo-
lation methods. Experimental results for each of the method on both biased 
and normalized data show that Spline provided a better and more accurate 
interpolation within the sample space than the IDW and Kriging methods. 
The choice of an interpolation method should be phenomenon and data set 
structure dependent. 
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1. Introduction 

Interpolation aims at finding the values of a function ( )f x  for an x  between 
different x  values 0 1, , , nx x x  at which the values of ( )f x  are given. The 
given values  

( ) ( ) ( )0 0 1 1, , ,= = = n nf f x f f x f f x               (1) 

can be obtained from a mathematical function or from an empirical function 
modelled from observations or experiments [1]. Spatial interpolation therefore 
aims at estimating values of a spatial phenomenon or function (temperature, 
elevation, etc.) at unobserved/estimated points, given values of the phenomenon 
at observed/estimated points. 

Spatial interpolation has continued to be an important tool for estimating 
continuous spatial environmental variables for effective decision making. Many 
modeling tools including Geographic Information System offer the earth and 
environmental scientist the ability to carry out spatial interpolation routinely to 
generate useful spatial continuous data for all kinds of analysis [2]. Interpolation 
becomes very useful and essential in scenarios where, the resolution, orientation, 
or cell size of a discretized surface varies from what is needed. It is also em-
ployed when continuous surface is represented by a data model different from 
what is desired, and when data spread does not cover an area of interest totally 
[3]. Spatial interpolation methods give a means of predicting values of an envi-
ronmental parameter at unmeasured location using data from point measure-
ments within the sample space [4]. In an ideal situation, a finite set of inputs es-
tablishes variations in an environmental parameter and they exactly conform to 
an established physical law. If a relationship is established, the values of the de-
sired parameter can be correctly estimated. The relationship between target va-
riable and the physical environment cannot be modeled exactly because of its 
complexity [5]. This is due to a lack of sufficient knowledge of: (a) the complete 
list of inputs into the model (b) the relationship needed to determine the output 
from these inputs and (c) the importance of the random part of the system. Es-
timating a model using field measurement of the parameter of interest then be-
comes the only way [6]. 

For a sample of a target variable Z , denoted as ( ) ( ) ( )1 2, , , nz s z s z s   
(where ( ),=i i is x y  is the location context, ,i ix y  are the coordinates in geo-
graphical space and n  is the number of observations), the geographical domain 
of interest can be denoted as A. Consideration is given to only samples ( )nz s  
that realizes a process ( ){ },= ∀ ∈Z Z s s A  [6]. 

According to Mitas and Mitasova [7], the choice of suitable interpolation me-
thods for different phenomena and dataset presents many difficulties. The com-
plexity of the modeled fields, diverse spatial data sampled non-optimally, pres-
ence of significant discontinuities, and noises are common challenges. In addi-
tion, datasets obtained from diverse sources with different accuracies are usually 
very large ( )3 610 -10≈N . Reliable interpolation methods suitable for GIS ap-
plications should meet some necessary requirement such as accuracy and pre-
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dictive power, dimensional formulation, direct estimation of derivatives, appli-
cability to large datasets, 3 + computational efficiency, and ease of use. 

Currently, it is difficult to find a method that fulfils all the above-mentioned 
requirements for a wide range of georeferenced data. Therefore, the right choice 
of the most adequate method with appropriate parameters for applications is 
paramount. Different methods produce different spatial representations in dif-
ferent datasets; also, in-depth knowledge of the phenomenon in question is ne-
cessary in evaluating which of the interpolation methods produces results closest 
to reality. The use of an unsuitable method or inappropriate parameters can re-
sult in a distorted model of spatial distribution, leading to potentially wrong de-
cisions based on misleading spatial information. A wrong interpolation results 
becomes very critical when the estimates are inputs for simulations, as small er-
ror or distortion can cause models to produce false spatial patterns [7].  

While external factors e.g. data density, spatial distribution of sample data, 
surface type, sample size and sampling design, etc. [4] may affect the perfor-
mance of an interpolation method, an understanding of the mathematical for-
mulation of these methods will provide some information on their suitability for 
terrain modeling.  

This paper attempts to examine the accuracy of spatial interpolation me-
thods in modeling landform (topography) in relation to their mathematical 
formulation. The experimental study of this work employs an area comprising 
a slope and a plain as landform-adaptability test area and focuses on the com-
parative analysis of three commonly used interpolation methods of Kriging, 
Spline, and Inverse Distance Weighting, IDW. The following section summa-
rizes the theoretical and mathematical basis of different known interpolation 
methods including the three interpolation methods in question. Section 3 in-
troduces the accuracy analysis methods used in this paper while Section 4 
presents the experimental analysis. Section 5 discusses the results and Section 
6 concludes. 

2. Mathematical and Theoretical Concept of IDW,  
Spline and Kriging 

Different spatial interpolation methods have been developed in different domain 
for different applications. According to [6], many standard linear models are 
special cases of a more general prediction model. Tobler’s first Law of Geogra-
phy, everything is related to everything else, but near things are more related 
than distant things [8] forms the general principle of many interpolation me-
thods. Some of the methods are only suitable for continuous data fields that as-
sume normal distribution of the dataset. Spatial Interpolation methods could be 
classified into two major groups: 
a) Mechanical/deterministic/non-geostatistical methods; these include among 

other methods, Inverse Distance Weighting (IDW) and Splines. 
b) Linear statistical/stochastic/geostatistical methods; which include Kriging 

among others [4], [6]. 
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2.1. Inverse Distance Weighting (IDW) 

This method assumes that the value at an unknown location can be approx-
imated as a weighted average of values at points within a certain cut-off distance, 
or from a given number of the closest points (typically 10 to 30). Weights are 
usually inversely proportional to a power of distance [9] which, at an un-sam- 
pled location s, leads to an estimator as contained in Equation (2) below. 

( ) ( )

( )1
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=

=
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= =
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ii
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where p is a parameter (typically = 2) [7]. IDW is a method that is easy to use 
and readily available; it frequently does not produce the local shape implied by 
data and produces local extrema at the data points [7]. Some modifications have 
given rise to a class of multivariate blended IDW surfaces and volumes [9]. The 
assumption for IDW is that measured points closer to the unknown point are 
more like it than those that are further away in their values. The weight is given 
as: 
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p

d

d

                           (3) 

where id  is the distance between 0x  and ix , p is a power parameter, and n is 
the number of measured points used for the estimation. The main factor affect-
ing the accuracy of IDW is the value of the power parameter [10]. Weights di-
minish as the distance increases, especially when the value of the power parame-
ter increases, so nearby samples have a heavier weight and have more influence 
on the estimation, and the resultant spatial interpolation is local [10]. The choice 
of power parameter and neighborhood size is arbitrary [11]. The most popular 
choice of p is 2 and the resulting method is often called inverse square distance 
or inverse distance squared (IDS). The power parameter can also be chosen 
based on error measurement (e.g., minimum mean absolute error), resulting in 
optimal IDW [2]. The smoothness of the estimated surface varies directly with 
the power parameter, and it is found that the estimated results become less sa-
tisfactory when p is 1 and 2 compared with when pis 4 [12]. IDW is referred to 
as “moving average” when pis zero [13], “linear interpolation” when pis 1and 
“weighted moving average” when pis not equal to 1 [3]. 

2.2. Spline 

Splines belong to a group of interpolators called Radial Basis Functions (RBF). 
Methods in this group include Thin-Plate Spline (TPS), Regularized Spline with 
Tension, and Inverse Multi-Quadratic Spline [14]. These models use mathemat-
ical functions to connect the sampled data points. They produce continuous ele-
vation and grade surfaces while limiting the bending of the surface produced to a 
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minimum. RBF models are best employed in smooth surfaces for which the 
available sample data size is large as their performance is less than optimum for 
surfaces with appreciable variations spanning short ranges.RBF does not force 
estimates to maintain the range of the sampled data in these models like in IDW 
[14]. Spline functions are the mathematical equivalents of the flexible ruler car-
tographers used, called splines, to fit smooth curves through several fixed points. 
It is a piecewise polynomial consisting of several sections, each of which is fitted 
to a small number of points in such a way that each of the sections join up at 
points referred to as break points. This has the advantage of accommodating lo-
cal adjustments, if there is a change in the data value at a point, and is preferable 
to a simple polynomial interpolation because more parameters can be defined, 
including the amount of smoothing [3]. Splines are normally fitted using low 
order polynomials (i.e. second or third order) constrained to join up. They may 
be two-dimensional (e.g. when smoothing a contour line) or three dimensional 
(when modeling a surface). The smoothing spline function also assumes the 
presence of a measurement error in the data that needs to be smoothed locally 
[3]. Among the many versions and modifications of spline interpolators, the 
most widely used technique is the thin-plate splines [15] as well as the regula-
rized spline with tension and smoothing [7].  

2.2.1. Regularized Spline with Tension 
For regularized spline with tension and smoothing, the prediction is given by:  

( ) ( )0 1 1=
⋅= +∑ n

i ii
z s a w R v                     (4) 

where a1 is a constant and R(vi) is the radial basis function given by: 

( ) ( ) ( )1= − + +  i i i ER v E v In v C                  (5) 

and 

[ ]20 2ϕ= ⋅iv h                           (6) 

where ( )1 iE v  is the exponential integral function, 0.577215=EC  is the Euler 
constant, ϕ  is the generalized tension parameter and 0h  is the separation be-
tween the new and interpolation point. The coefficients 1a  and iw  are ob-
tained by solving the system, 

1
0

=
=∑ n

ii
w                            (7) 

( ) ( )1 01
; 1, , .δ ϖ ϖ

=
 + + = = ⋅ ⋅∑ 

n
i i ij i ii

a w R v z s j n           (8) 

where 0ϖ ϖ i  are positive weighting factors for a smoothing parameter at each 
location [7]. The tension parameter ϕ  determines the distance over which the 
given points influence the resulting surface, while the smoothing parameter 
controls the vertical deviation of the surface from the sample locations. The use 
of an appropriate combination of tension and smoothing produces a surface that 
correctly fits the empirical knowledge about the expected variation [7]. 

2.2.2. Thin Plate Spline 
Wahba and Wendelberger [16] formulated thin plate splines (TPS), previously 
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called Laplacian smoothing splines, for modeling climatic data [4]. A basic solu-
tion to the bi-harmonic equation, has the form 

( ) 2 log=z r r r                             (9) 

where r is the distance between sample points and un-sampled locations [17]. 
The relation below approximates the surface with minimum bend 

( ) ( )1 2 3 01=
= + + + −∑ n

i ii
f s a a x a y w z s s                (10) 

where the terms 1 2 3, ,a a x a y  model the linear portion of the surface defining a 
flat plain that best fits all control points using least squares, the last term models 
the bending forces due to m sampled points, iw  are control points coefficients 
and 0−is s  is the separation of sampled point is  and location 0s . The un-
knowns 1 2 3, ,a a x a y  and iw  are evaluated using the relation 

( )T1
1 2 3|− =L V w a a a                        (11) 

where  

T 0
 

=  
 

K P
L

P
                          (12) 

and V is a vector of point heights. K is a matrix of the distance between sampled 
points and P is a matrix of the sampled points coordinates. 1−L  is obtained by 
calculating the inverse of L or solving EQ.11 with V replaced with the matrix of 
the heights of sampled points H padded with zeros [18]. Once the unknowns are 
evaluated, one can compute EQ.10 to determine the heights of unknown 
points.TPS computes a smoothing factor by limiting the Generalized Cross Va-
lidation function, GVC, making for a comparatively sturdy model as limiting the 
GVC improves the accuracy of estimations and is less reliant on the accuracy of 
the model itself. TPS gives a determination of spatial accuracy [7]. 

2.2.3. Inverse Multi-Quadratic Spline 
The relation below gives the inverse multi-quadratic spline function  

( ) 2
1

1
=

+ −
i

i

f s
s s

                        (13) 

where − is s  is the Euclidean distance between control points is  and the 
unknown point s  [15]. The surface is modelled by the function  

( ) ( )1=
= ∑ n

i ii
z s a f s                         (14) 

where the weights ia  are selected to ensure exact estimations at each data point 
such that  

( ) ( )1
, 1, ,

=
= = =∑ 

n
i i j j ij

z z s a f s i n                (15) 

and is computed by the relation  

=z Fa                             (16) 

where z is replaced by a vector of sampled data values, F is a square function 
matrix given by,  
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( ) , , 1, ,= = IJ i jF f s i j n                 (17) 

The estimation function generated with these weights is smooth and exact at 
sampled data points [19]. 

Splines have been widely seen as highly suitable for estimation of densely 
sampled heights and climatic variables [7], [15]. Among its disadvantages, the 
inability to integrate larger amounts of auxiliary maps in modeling the determi-
nistic part of change as well as the arbitrary selection of the smoothing and ten-
sion parameters have been widely criticized [7]. Predictions obtained from 
splines therefore are largely dependent on decisions like the order of polynomial 
used, number of break points, etc. taken by the user. Splines may also be mod-
eled not to be exact to avoid the generation of excessively high or low values 
common with some exact splines [3]. Unlike the IDW methods, the values pre-
dicted by RBFs are not constrained to the range of measured values, i.e., pre-
dicted values can be above the maximum or below the minimum measured value 
[14]. 

2.3. Kriging 

Kriging, synonymous to geostatistical interpolation, began in the mining indus-
try as a means of bettering ore reserve estimation in the early 1950’s [6]. Mining 
engineer D. G. Krige and statistician H. S. Sichel formulated it. After almost a 
decade, French mathematician G. Matheron derived the formulas, establishing 
the entire field of linear geostatistics [11]. Kriging is founded on a concept of 
random functions with the surface or volume assumed one realization of a ran-
dom function with a known spatial covariance [7]. 

Regionalized variable theory assumes that the spatial variation of any variable 
can be expressed as the sum of the following three components: 
a) A structural component having a constant mean or trend. 
b) A regionalized variable, which is the random but spatially correlated compo-

nent. 
c) A random but spatially uncorrelated noise or residual component. 
d) Mathematically, for a random variable z at x, the expression is 

( ) ( ) ( )ε ε′ ′′= + +Z x m x x                     (18) 

where ( )m x  is a structural function modeling the structural component, ( )ε ′ x  
is the spatially auto-correlated stochastic residual from ( )m x  (the regionalized 
variable), and ε ′′  is random noise which is normally distributed with an aver-
age of zero and a variance 2σ  [3]. 

Ordinary Kriging 
Ordinary Kriging (OK) is a standard version of Kriging where predictions are 
based on the model, 

( ) ( )µ ε= +Z s s                       (19) 

where µ  is the fixed stationary function or global average, and ( )ε s  is the 
stochastic but spatially correlated part of the variation. Predictions are made as 
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( ) ( ) ( ) T
0 0 01

λ
=

= ⋅ = ⋅∑ zn
OK i ii

z s w s z s                (20) 

where 0λ  is the vector of kriging weights ( iw ) and z is the vector of n samples 
at primary locations. Kriging, in a way, is an improvement of the inverse dis-
tance interpolation where the key problem of inverse distance interpolation (the 
determination of how much importance is given to each neighbor) is addressed 
in such a way that the estimated weights account for the true spatial autocorrela-
tion structure. The novelty Kriging has in the analysis of point data is the deriva-
tion and plotting of the semi-variance differences between the neighboring val-
ues [6]. 

Assuming stationarity, one can estimate a semi-variogram, ( )γ h , for data 
( )iz s , defined as 

( ) ( ) ( )0
1 var
2

γ  = − ih z x z x                  (21) 

where h is the distance between point ix  and 0x  [21]. This relates to the spa-
tial covariance ( )C h  by,  

( ) ( ) ( )0γ = −h C C h                     (22) 

where ( )0C  is the semi-variogram value at infinity(sill) [7]. The Ordinary 
Kriging (OK) weights are evaluated by multiplying the covariances, 

1
0 0λ −= ⋅C C                        (23) 

where C is the covariance matrix derived for an n x n samples matrix with one 
additional row and column added to ensure the sum of weights is equal to one, 
and 0C  is the vector of the covariances at a new location [6]. The covariance at 
a distance of zero ( )( )0C  is by definition the mean residual error [6]. Experi-
mental variograms usually have some characteristic features among which are: 
1) Low values of h have small variance with variance increasing in direct propor-

tion to h, leveling off at a certain point to form the sill. 
2) At distances less than the range (the distance at which the variance levels off), 

points closer together are more likely to have similar values than points fur-
ther apart while at distances greater than the range, points have no influence 
upon themselves. The range therefore gives an idea of how large the search 
radius needs to be for a distance-weighted interpolation. 

3) The semivariance when h is zero has a positive value referred to as the nugget 
and indicates the amount of non-spatially autocorrelated noise [3]. 
The semivariance displayed in an experimental variogram is modeled by a 

mathematical function depending on the shape of the experimental variogram. 
A spherical model is used when the variogram has a classic shape, an exponen-
tial model when the approach to the sill is more gradual. A Gaussian model is 
used when the nugget is small and the variation is very smooth, and a linear 
model when there is no sill. A variogram containing a trend that has to be mod-
eled separately is increasingly steep with larger values of h. If the nugget variance 
is large and the variogram shows no tendency to gradually vanish with smaller 
values of h, or the distance between observations is larger than the range (i.e. 
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sample points are too far apart to influence one another), then interpolation is 
not reasonable and the best estimate is the overall mean of the observations. 
Anoise-filled variogram showing no particular pattern may mean that the ob-
servations are too few. A variogram that dips at distances greater than the range 
to create a hole effect shows the sample space may be too small to reflect some 
long wave-length variation in the data [3]. The interpolated surface is con-
structed using statistical conditions of unbiasedness and minimum variance [7]. 
Three important requirements for Ordinary Kriging are:  

(i) The trend function is fixed 
(ii) The variogram is invariant in the entire area of interest  
(iii) The target variable is (approximately) normally distributed. 
These requirements are often not met and constitute a serious disadvantage of 

Ordinary Kriging [6]. However, a major benefit of the various forms of kriging 
(and other stochastic interpolation methods) is that estimates of the model’s 
prediction errors can be calculated, incorporated in the analysis, and plotted 
along with the predicted surface. Such error information is an important tool in 
the spatial decision making process [14]. 

3. Accuracy Assessment Methodology 

The accuracy evaluation indices commonly used include, the Mean Error (ME), 
Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean 
Squared Error (RMSE). For n observations, p predicted value, and o observed 
value these indices are evaluated using the expressions listed below: 

( )
1

1ME
=

= −∑
n

i i
i

p o
n

                       (24) 

1

1MAE
=

= −∑
n

i i
i

p o
n

                       (25) 

( )2

1

1MSE
=

= −∑
n

i i
i

p o
n

                      (26) 

( )
1 2

2

1

1RMSE
=

 = −  
∑ n

i ii
p o

n
              (27) [4] 

ME is used for determining the degree of bias in the estimates often referred 
to as the bias [10]. Since positive and negative estimates counteract each other, 
the resultant ME tends to be lower than the actual error prompting caution in its 
use as an indicator of accuracy [4]. RMSE provides a measure of the error size, 
but is sensitive to outliers as it places a lot of weight on large errors [4]. MSE 
suffers the same drawbacks as RMSE. Whereas MAE is less sensitive to extreme 
values [20] and indicates the extent to which the estimate can be in error [21]. 
MAE and RMSE are argued to be similar measures and they give estimates of the 
average error, but do not provide information about the relative size of the av-
erage difference and the nature of differences comprising them [20]. Of course, 
cross-validation is used together with these measurements to assess the perfor-
mance of the interpolation methods [4]. In this paper the ME and RMSE (avail-
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able on the software used) are used to evaluate the performances of the IDW, 
Spline and Kriging interpolation methods considered in the experimental analy-
sis part of this study. Cross validation is performed as further test of prediction 
accuracy. 

4. Experimental Analysis 

The study area as described in Figure 1 and Figure 2 is an expanse of land 
measuring about twenty-one (21) hectares located in Ikot Ukapon latitude 
5 10 '0 '' N  and longitude 7 59 '0 ''E  in the North-Eastern part of Akwa Ibom 
state of Nigeria. The area is largely hilly with a plain covering about twenty 
(20%) percent of its total area. Orthometric height data, obtained from the Of-
fice of the State Surveyor General, consist of four hundred and sixty-two (462) 
randomly sampled points spread across the area collected through field survey 
using a Kolida K9-T series differential GPS. 

Data so obtained from the field samples was in Microsoft Excel .xls format. 
The lowest elevation of the area is 27.018m while the highest elevation is 
98.719m above mean sea level. Preliminary data exploration using ESRI’s Arc-
GIS (version 9.3) shows the data is not normally distributed as shown by distri-
bution parameters in Table 1. 
 

 
Figure 1. Map of the studying area showing the distribution of data points within the 
study area. 
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Figure 2. The contour map of the studying area. 

 
Table 1. Distribution parameters of the biased elevation data. 

Count 462 

Minimum value 27.018 

Maximum value 98.719 

Mean 71.754 

Standard deviation 21.633 

Skewness −0.69162 

Kurtosis 2.0252 

Median 81.497 

1st quartile 52.994 

3rd quartile 88.886 

4.1. IDW Method 

The following contour fill surface shown in Figure 3, is generated for IDW in-
terpolation with power, p of 2, smoothing factor of 0.5and neighborhood size of 
15 for the biased data. 

4.2. Spline Method 

Regularized Spline interpolation, implemented as Radial Basis Function(RBF), 
with order 2 gives the contour fill map in Figure 4 for power = 2, smoothing 
factor = 0.5 and neighborhood size = 15. 

4.3. Kriging 

Kriging works on the assumption that the data set is normalized, therefore, we 
carried out Box-Cox normalization on the data before implementing Kriging in-
terpolation. 
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Figure 3. IDW contour fill map. 
 

 
Figure 4. The regularized Spline contour fill map. 
 

The data was divided into a training and test subsets in a ratio of 80:20 using 
the Geostatistical Analyst tool in ArcGIS and optimal parameter values (gener-
ated by ArcGIS and sets the best possible value for each parameter) used for pre-
dictions on the training subset. The test subset was then used with these optimal 
parameters for validation. The data distribution parameters after Box-Cox nor-
malization is as shown in Table 2. 

The contour fill maps generated using Kriging with the Gausian model and  
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Table 2. Distribution parameter of data after normalization using Box-Cox with trans-
formation. 

count 462 

Minimum value 26.018 

Maximum value 97.719 

mean 70.754 

Standard deviation 21.633 

skewness −0.69162 

kurtosis 2.0252 

median 80.497 

1st quartile 51.994 

3rd quartile 87.886 

 
Spherical model respectively for auto-calculated values for nugget, sill, mid- 
range, a lag size of 54.401, and lag number = 12 are as shown Figure 5(a) and 
Figure 5(b). 

The maps for IDW, Spline and Kriging after the optimal validation of the data 
are shown in Figures 6(a)-(c). 

5. Result and Discussion 

From the prediction errors tabulated in Table 3 and Table 4, the level of bias in 
estimation is lowest for Kriging and highest for IDW as indicated by the respec-
tive MEs. This presence of bias is expected, as the height data was not random as 
shown in Table 1. Box-Cox normalization of the data did not result in a normal 
distribution either (see Table 2), this means the data was very biased. This sce-
nario is frequently encountered in practice as field collection of elevation data 
usually focuses on capturing perceived changes in elevation rather than on ran-
domness. The bias for the validated data however, is highest for Kriging and 
lowest for Spline likely because of the reduction in the number of samples used 
for validation. A better measure of the error in prediction, the RMSE, is lowest 
for Spline and highest for Kriging for both prediction and validation shown in 
Table 3 and Table 4. This indicates an elevation model that is closer to what is 
on ground for Splines. However, outside the areas where interpolation data 
where obtained, Spline produces unreliable predictions. It is therefore not suita-
ble for cases where data outside the captured area is desired (extrapolation). 
IDW produces a model that is better than that of Kriging but not as good as the 
Spline model. Its predictions outside the captured area are also better than that 
of Kriging and Spline. This does not imply Kriging is not suitable for terrain 
modeling or will not perform better than both IDW and Spline. Kriging assumes 
normal distribution of data and models the spatial distribution of a geographical 
event as a realization of a function that is random. Its predictions therefore are 
dependent on the data satisfying the statistical criteria of unbiasedness and mi-
nimumvariance. Its mathematical formulation makes it unsuitable for data that  
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(a) 

 
(b) 

Figure 5. (a) and (b) depicts the Kriging contour fill map after Box-Cox normalization 
created with Gaussian model and with spherical model respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) Inverse Distance Weighted (IDW) Prediction Map; (b) Spline; (c) Ordinary 
Kriging Prediction Map. 
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Table 3. Prediction errors for the three interpolation methods at optimal parameters.  

METHOD IDW SPLINE KRIGING 

ME 0.1589 0.0608 0.01989 

RMSE 3.488 2.101 4.374 

ME is the mean prediction error and RMSE is the root mean square standardized error of prediction. 

 
Table 4. Prediction errors after validation. 

METHOD IDW SPLINE KRIGING 

ME 0.396 0.06838 0.4912 

RMSE 3.176 1.892 4.012 

ME is the mean prediction error and RMSE is the root mean square standardized error of prediction. 

 
is not normally distributed or difficult to normalize. Splines on the other hand 
use a physical model varying in accordance to the variation in the elastic proper-
ties of the estimation function. It tends to do well with modeling physical phe-
nomena such as terrain. IDW uses a linear combination of values at captured 
event locations, assigns weights by an inverse function of the separation between 
the event location to be estimated and points captured to estimate values of the 
unknown location. Though weights are specified arbitrarily, ArcGIS software 
provides an optimal weight management function that assigns a weight that is 
most suitable for points within the captured data set. Predictions are influenced 
by this weight assignment but are more reliable in terms of error than what is 
obtained using Kriging. It is acknowledged that the Kriging does very well with 
covariate data such as temperature data, but the data has to be captured as ran-
domly as possible. This is often not achieved. A good knowledge of the data used 
as well as the strengths and weaknesses of the available interpolation methods is 
necessary in deciding on a method to use for interpolation for a given purpose. 

6. Conclusion 

In this study, Spline provides a more accurate model and result for the elevation 
data obtained directly from field survey that was not homogenously randomized 
and not normalized. From the interpolation result we obtained, Spline method 
outside the data area also reaffirms that predictions by RBFs are not constrained 
to the range of measured values, i.e., predicted values can be above the maxi-
mum or below the minimum measured value. Tan and Xu [22] concluded from 
their experiment on terrain modeling using data from a digitized map that IDW 
gave a better model in terms of accuracy than Spline or Kriging. This is most 
likely due to means from which the test data were acquired. Their test data were 
digitized from a contour map and were homogenously distributed. The know-
ledge of the source of data may therefore be of importance in the choice of in-
terpolation method. 
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