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Abstract 
Let G be a finite and undirected simple graph on n vertices, ( )A G  is the 

adjacency matrix of G, 1 2, , , nλ λ λ  are eigenvalues of ( )A G , then the 

energy of G is ( ) 1
n

iiε λ
=

= ∑ . In this paper, we determine the energy of 
graphs obtained from a graph by other unary operations, or graphs obtained 
from two graphs by other binary operations. In terms of binary operation, we 
prove that the energy of product graphs 1 2G G×  is equal to the product of 
the energy of graphs 1G  and 2G , and give the computational formulas of 
the energy of Corona graph G H , join graph G H∇  of two regular graphs 
G and H, respectively. In terms of unary operation, we give the computational 
formulas of the energy of the duplication graph mD G , the line graph ( )L G , 

the subdivision graph ( )S G , and the total graph ( )T G  of a regular graph 
G, respectively. In particularly, we obtained a lot of graphs pair of 
equienergetic. 
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1. Introduction 

Let G be a finite and undirected simple graph, with vertex set ( )V G  and edge 
set ( )E G . The number of vertices of G is n, and its vertices are labeled by 

1 2, , , nv v v . The adjacency matrix ( )A G  of the graph G is a square matrix of 
order n, whose ( ),i j -entry is equal to 1 if the vertices iv  and jv  are adjacent 
and is equal to zero otherwise. The characteristic polynomial of the adjacency 
matrix, i.e., ( )( )ndet xI A G− , where nI  is the unit matrix of order n, is said to 
be the characteristic polynomial of the graph G and will be denoted by ( ),G xφ . 
The eigenvalues of a graph G are defined as the eigenvalues of its adjacency 
matrix ( )A G , and so they are just the roots of the equation ( ), 0G xφ = . since 
( )A G  is a real symmetric matrix, so its eigenvalues are all real. Denoting them 
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by 1 2, , , nλ λ λ  and as a whole, they are called the spectrum of G. Spectral pro- 
perties of graphs, including properties of the characteristic polynomial, have 
been extensively studied, for details, we refer to [1]. In the 1970s, I. Gutman in 
[2] introduced the concept of the energy of G by  

( )
1

n

i
i

Gε λ
=

= ∑                           (1) 

In the Hückel molecular orbital (HMO) theory, the energy approximates the 
the molecular orbital energy levels of π-electrons in conjugated hydrocarbons 
(see [3] [4] [5] [6]). Up to now, the energy of G has been extensively studied, for 
details, we refer to [7] [8] [9]. In this paper, we determine the energy of graphs 
obtained from a graph by other unary operations, or graphs obtained from two 
graphs by other binary operations. In terms of binary operation, we prove that 
the energy of product graphs 1 2G G×  is equal to the product of the energy of 
graphs 1G  and 2G , and give the computational formulas of the energy of 
Corona graph G H , join graph G H∇  of two regular graphs G and H, 
respectively. In terms of unary operation, we give the computational formulas of 
the energy of the duplication graph mD G , the line graph ( )L G , the sub- 
division graph ( )S G , and the total graph ( )T G  of a regular graph G, re- 
spectively. In particularly, we obtained a lot of graphs pair of equienergetic. 

Two nonisomorphic graphs are said to be equienergetic if they have the same 
energy. Let G and H be two vertex disjoint graphs, G H∪  denotes the union 
graph of G and H. mG  denoted the union graph of m copies of G. nK  
denotes the complete graph with n vertices. For more notation and terminology, 
we refer the readers to standard textbooks [10]. 

2. The Binary Operations of Graphs  

Let 1G  and 2G  be two graphs with vertex set ( )1V G  and ( )2V G  respec- 
tively. the product 1 2G G×  is the graph with vertex set ( ) ( )1 2V G V G× , in 
which two vertices, say ( )1 1,x y  and ( )2 2,x y , are adjacent if and only if 1x  is 
adjacent to 2x  in 1G  and 1y  is adjacent to 2y  in 2G . Let ( )ij m n

A a
×

= , 
( )ij p q

B b
×

=  be two matrices, the Kronecker product A B⊗  of A and B is the 
mp nq×  matrix obtained from A by replacing each element ija  with the block 

ija B . 
Lemma 2.1. [1] Let ( )1A G , ( )2A G  be adjacency matrices of graphs 1G , 

2G , respectively. Then the product graph 1 2G G×  has as adjacency matrix 
( ) ( )1 2A G A G⊗ . 
Lemma 2.2. [11] Let A, B, C, D be matrices and the products AC, BD exist. 

Then  

( ) ( ) ( ) ( ).A B C D AC BD⊗ ⊗ = ⊗                   (2) 

Theorem 2.1. Let G, H be two graphs. Then  

( ) ( ) ( ).G H G Hε ε ε× = ×                     (3) 

Proof. Let 1 2, , , nλ λ λ  and 1 2, , , mµ µ µ  be the eigenvalues of G and H, 
respectively, suppose ( )1, 2, ,ix i n=   are linearly independent eigenvectors of 
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( )A G  corresponding to 1 2, , , nλ λ λ  respectively, and ( )1, 2, ,iy i m=   are 
linearly independent eigenvectors of ( )A H  corresponding to 1 2, , , mµ µ µ  
respectively, Consider the vector ( )1, 2, , , 1, 2, , .ij i jz x y i n j m= ⊗ = =    
Using Lemma 2.1, we see that  

( ) ( )( ) ( )( ) ( )( ) .ij i j i j i j i j ijA G A H z A G x A H y x y zλ µ λ µ⊗ = ⊗ = ⊗ =  

In this way ,we find mn  linearly independent eigenvectors, and hence 
( )1, 2, , , 1, 2, ,i j i n j mλ µ = =   are the eigenvalues of G H× . 

And so  

( ) ( ) ( )
1 1 1 1

.
n m n m

i j i j
i j i j

G H G Hε λ µ λ µ ε ε
= = = =

× = = =∑∑ ∑ ∑  

 
Corollary 2.1. Let 1 2, , , kG G G  be k graphs. Then  

( ) ( ) ( ) ( )1 2 1 2 .k kG G G G G Gε ε ε ε× × × =               (4) 

Let G be a graph with n vertices, and let H be a graph with m vertices. The 
Corona G H  is the graph with n mn+  vertices obtained from G and n 
copies of H by joining the i-th vertex of G to each vertex in i-th copy of 

( )1, 2, , .H i n=   
Lemma 2.3. [1] Let G be a graph with n vertices, and let H be an r-regular 

graph with m vertices. Then the characteristic polynomial of the corona G H  
is given by  

( ) ( )( ), , , .
nmG H x G x H x

x r
φ φ φ = − − 

                (5) 

Theorem 2.2. Let G be a graph with n vertices, and let H be an r-regular 
graph with m vertices. If 1 2, , , nλ λ λ  and 2, , , mr µ µ  be the eigenvalues of G 
and H, respectively. then  

( ) ( ) ( ) ( )( )2 2

1

1 4 4 .
2

n

i i i i
i

G H r r m r r m n H rε λ λ λ λ ε
=

 = + + − + + + − − + + − 
 

∑  (6) 

Proof. By Lemma 2.3, we have  

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2
1

2
2

1

,

.

nnn n
m i

i
nnn

m i i
i

mG H x x r x x x
x r

x x x r x r m

φ µ µ λ

µ µ λ λ

=

=

 = − − − − − − 

= − − − + + −

∏

∏

 



 

And so  

( ) ( ) ( )

( ) ( ) ( )( )

2 2

1 2

2 2

1

1 4 4
2

1 4 4 .
2

n m

i i i i j
i j

n

i i i i
i

G H r r m r r m n

r r m r r m n H r

ε λ λ λ λ µ

λ λ λ λ ε

= =

=

  = + + − + + + − − + +   
   
 = + + − + + + − − + + − 
 

∑ ∑

∑



 

 
Corollary 2.2. Let 1H  and 2H  be two equienergetic r-regular graph with m 

vertices, and let G be a graph with n vertices. Then 1G H  and 2G H  are 
equienergetic. 
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Corollary 2.3. Let 2, 3m n≥ ≥ . Then  
( ) ( ) 22 1 4 .n mK K mn m n m mε = + − + − +  
Proof. mK  has spectrum 1, 1n − −  ( 1n −  times). Since  

( ) ( )21 1 1 1 4 0m m m− − − − + + ≤ , and 2, 3m n≥ ≥  means  

( ) ( ) ( )21 1 4 0m n m n m− + − − − + ≥ . Hence 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )
( )

2
1

2

2

2

1 1 1 4
2

1 1 4 1

2 1 4 1

2 1 4 .

n
n m i ii

i i

K K m m m

m m m n H m

m n n m m n m

mn m n m m

ε λ λ

λ λ ε

=
= − + + − − +


+ − + − − − + + − −


= + − + − + + −

= + − + − +

∑

  

Let G and H be two graphs, The join G H∇  of (disjoint) grapgs G and H is 
the graph obtained from G H∪  by joining each vertex of G to each vertex of 
H. 

Lemma 2.4. [1] If 1G  is 1r -regular with 1n  vertices, and 2G  is 2r - 
regular with 2n  vertices, then the characteristic polynomial of the join 1 2G G∇  
is given by  

( ) ( ) ( )
( )( ) ( )( )( )1 2

1 2 1 2 1 2
1 2

, ,
, .

G x G x
G G x x r x r n n

x r x r
φ φ

φ ∇ = − − −
− −

          (7) 

Corollary 2.4. Let iG  be ir -regular graph with in  vertices, 1, 2.i =  Then  

( ) ( ) ( ) ( ) ( ) ( )2
1 2 1 2 1 2 1 2 1 2 1 24 .G G G G r r r r n n r rε ε ε∇ = + − + + + + −      (8) 

Corollary 2.5. Let 1G  and 1H  be two equienergetic 1r -regular graph with 

1n  vertices, and let 2G  and 2H  be two equienergetic 2r -regular graph with 

2n  vertices, then 1 2G G∇  and 1 2H H∇  are equienergetic. 
Lemma 2.5. [1] Let 1 2, , , kG G G  be regular graphs, let iG  have degree ir  

and in  vertices ( )1, 2, ,i k=  . where the relations  

1 1 2 2 k kn r n r n r s− = − = = − =  hold. Then the graph 1 2 kG G G G= ∇ ∇ ∇  has 

1 2 kn n n n= + + +  vertices and is regular of degree r n s= − , the charac- 
teristic polynomial of the join G is given by  

( ) ( ) ( ) ( )1

1

,
, .

k
k i

i i

G x
G x x r x n r

x r
φ

φ −

=

= − + −
−∏                (9) 

By Lemma 2.5, we have following Corollary. 
Corollary 2.6. Let 1 2, , , kG G G  be regular graphs, let iG  have degree ir  

and in  vertices ( )1, 2, ,i k=  . where the relations  

1 1 2 2 k kn r n r n r s− = − = = − =  hold. Then  

( ) ( ) ( )1 2
1

2 1 .
k

k i
i

G G G k s Gε ε
=

∇ ∇ ∇ = − +∑              (10) 

3. The Unary Operations of Graphs  

Let G be a graph with vertex set ( ) { }1 2, , , ,nV G v v v=   the duplication graph 
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mD G  is the graph with mn  vertices obtained from mG  by joining iv  to 
each neighbors of iv  in the j-th copy of ( )1, 2, , , 1, 2, ,G j m i n= =  . 

Theorem 3.1. Let G be a graph. Then  

( ) ( ).mD G m Gε ε=                        (11) 

Proof. If ( )A G  is the adjacency matrix of graph G, then, it is obviously that 
the adjacency matrix of the duplication graph mD G  is ( )mJ A G⊗ , where mJ  
is all 1 matrix of order m. the spectrum of mJ  is ( ), 0 1m m −  times, similar to 
the proof of Theorem 2.1, we have ( ) ( ).mD G m Gε ε=   

Corollary 3.1. Let G and H be two equienergetic graph, then mD G  and 

mD H  are equienergetic. 
Let G be a graph, the line graph ( )L G  of graph G is the graph whose vertices 

are the edges of G, with two vertices in ( )L G  adjacent whenever the corre- 
sponding edge in G have exactly one vertex in common. 

Lemma 3.1 [1] If G is a regular graph of degree r, with n vertices and  
1
2

m nr = 
 

 edges, then  

( )( ) ( ) ( ), 2 , 2 .m nL G x x G x rφ φ−= + − +               (12) 

Corollary 3.2. Let G be a regular graph of degree r, with n vertices and  
1
2

m nr = 
 

 edges, If ( )1 2, , , nrλ λ λ=   is the eigenvalues of G, then  

( )( ) ( )
1

2 2 .
n

i
i

L G m n rε λ
=

= − + + −∑                (13) 

Corollary 3.3.  

( )( ) ( )

22 6 4 ,
4 2 2 3.n

n n n
L K

n n
ε

 − ≤= 
− ≤ ≤

                (14) 

Let G be a graph, the subdivision graph ( )S G  of graph G is the graph 
obtained by inserting a new vertex into every edge of G. The graph ( )R G  of 
graph G is the graph obtained from G by adding, for each edge uv, a new vertex 
whose neighbours are u and v. The graph ( )Q G  of graph G is the graph 
obtained from G by inserting a new vertex into every edge of G, and joining by 
edges those pairs of new vertices which lie on adjacent edges of G. The total 
graph ( )T G  of graph G is the graph whose vertices are the vertices and edges 
of G, with two vertices of ( )T G  adjacent if and only if the corresponding 
element of G are adjacent or incident. 

Lemma 3.2. [1] If G is a regular graph of degree r, with n vertices and  
1
2

m nr = 
 

 edges, then 

1) ( )( ) ( )2, , ,m nS G x x G x rφ φ−= −  

2) ( )( ) ( )
2

, 1 , ,
1

nm n x rR G x x x G
x

φ φ−  −
= +  + 

 

3) ( )( ) ( ) ( ) ( )2 2
, 2 1 , .

1
m n n x r x r

Q G x x x G
x

φ φ−  − − −
= + +   + 
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4) The total graph ( )T G  has m n−  eigenvalues equal to −2 and the 
following 2n eigenvalues: 

( ) ( )21 2 2 4 4 , 1, 2, , .
2 i ir r i nλ λ+ − ± + + =   

Theorem 3.2. Let G be a regular graph of degree r, with n vertices and  
1
2

m nr = 
 

 edges, If ( )1 2, , , nrλ λ λ=   is the eigenvalues of G, then 

1) ( )( ) 12 ,n
iiS G rε λ

=
= +∑  

2) ( )( ) ( )2
1 4 ,n

i iiR G rε λ λ
=

= + +∑  

3) ( )( ) ( ) ( )2
12 4,n

iiQ G m n rε λ
=

= − + + +∑  

4) 
( )( ) ( ) (

)
2

1

2

12 2 2 4 4
2

2 2 4 4 .

n
i ii

i i

T G m n r r

r r

ε λ λ

λ λ

=
= − + + − + + +

+ + − − + +

∑
 

Proof. (1) By Lemma 3.2 (1), we know that the spectrum of ( )S G  is 
( ) ( ){ }0 times , 1, 2, ,im n r i nλ− ± + =  . So ( )( ) 12 .n

iiS G rε λ
=

= +∑  
(2) By Lemma 3.2 (2), we know that the spectrum of ( )R G  is  

( )
( )

( )
2 4

0 times , 1, 2, ,
2

i i ir
m n i n

λ λ λ ± + + − = 
  

 . So  

( )( ) ( )2
1 4 .n

i iiR G rε λ λ
=

= + +∑  

(3), (4) Proof is similar to (1).  
Corollary 3.4. 1) If 2,n ≥  then ( )( ) ( )( )2 2 2 1 2 .nS K n n nε = − + − −  
2) If 2,n ≥  then ( )( ) ( )2 6 7 1 4 7.nR K n n n nε = + − + − −  

3) ( )( ) ( )2 2 23 2 2 2 1 4 8.nQ K n n n n n n nε = − + − + + − − +  

4) If 2,n ≥  then ( )( )
22 2 4 3,

4 2.n
n n nT K

n
ε

 − − ≥
= 

=
 

4. Conclusion 

In this paper, we prove that ( ) ( ) ( ) ,G H G Hε ε ε× = ×  ( ) ( ).mD G m Gε ε=  
For regular graphs G and H, we give the computational formulas of ( )G Hε ∇ , 
( )G Hε  , ( )( )L Gε , ( )( )S Gε , ( )( )R Gε , ( )( )Q Gε , and ( )( )T Gε  re- 

spectively. In particularly, we obtained a lot of graphs pair of equienergetic. 
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