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Abstract 
In the present paper we investigate the relationship between Wiener number 
W , hyper-Wiener number R , Wiener vectors WV , hyper-Wiener vectors 
HWV , Wiener polynomial H , hyper-Wiener polynomial HH  and dis- 
tance distribution DD  of a (molecular) graph. It is shown that for 
connected graphs G  and *G , the following five statements are equivalent: 

1) ( ) ( )*DD G DD G= , 2) ( ) ( )*WV G WV G= , 3) ( ) ( )*HWV G HWV G= , 4) 

( ) ( )*H G H G= , 5) ( ) ( )*HH G HH G= ; and if G  and *G  have same dis- 

tance distribution DD  then they have same W  and R  but the contrary is 
not true. Therefore, we further investigate the graphs with same distance 
distribution. Some construction methods for finding graphs with same 
distance distribution are given. 
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1. Introduction 

The Wiener index is one of the oldest topological indices of molecular structures. 
It was put forward by the physico-chemist Harold Wiener [1] in 1947. The 
Wiener index of a connected graph G  is defined as the sum of distances 
between all pairs of vertices in G :  

( )
{ } ( )

( )
,

, .G
u v V G

W W G d u v
⊆

= = ∑  

where ( )V G  is the vertex set of G , and ( ),Gd u v  is the distance between 
vertices u  and v  in G . 

As an extension of the Wiener index of a tree, Randić [2] introduced Wiener 
matrix W  and hyper-Wiener index R  of a tree. For any two vertices ,i j  in 
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T , let ( ),i jπ  denote the unique path in T  with end vertices ,i j  and the 
length ijd , let ( )1, ,i jT π  and ( )2, ,i jT π  denote the components of ( )( ),T E i jπ−  
containing i  and j , respectively, and let ( )1, ,i jn π  and ( )2, ,i jn π  denote the 
numbers of the vertices in ( )1, ,i jT π  and ( )2, ,i jT π , respectively. Then the Wiener 
matrix W  and the hyper-Wiener number R  of T  can be given by ( )ijw=W , 

( ) ( )1, , 2, ,ij i j i jw n nπ π= ⋅ , and iji jR w
<

= ∑ . 
In Refs. [3] [4], Randic and Guo and colleagues further introduced the higher 

Wiener numbers and some other Wiener matrix invariants of a tree T . The 
higher Wiener numbers can be represented by a Wiener number sequence 
1 2 3, , ,W W W  , where 

, ,i j

k
ijd k i jW w

= <
= ∑ . It is not difficult to see 1W W= , and 

1,2,
k

kR W
=

= ∑


. 
After the hyper-Wiener index of a tree was introduced, many publications 

[5]-[11] have appeared on calculation and generalization of the hyper-Wiener 
index. Klein et al. [5] generalized the hyper-Wiener index so as to be applicable 
to any connected structure. Their formula for the hyper-Wiener index R  of a 
graph G  is  

( )
{ } ( )

( ) ( )( )2

,

1 , , .
2 G G

u v V G
R R G d u v d u v

⊆

= = +∑  

The relation between Hyper-Wiener and Wiener index was given by Gutman 
[11]. 

The Hosoya polynomial ( )H G  of a connected graph G  was introduced by 
Hosoya [12] in 1988, which he named as the Wiener polynomial of a graph:  

( ) ( )
0

, , ,k

k
H H G x d G k x

≥

= = ∑  

where ( ),d G k  is the number of pairs of vertices in the graph G  that are 
distance k  apart. 

In Ref. [13], Cash introduced a new hyper-Hosoya polynomial  

( ) ( ) ( )
0

1
, , .

2
k

k

k
HH HH G x d G k x

≥

+
= = ∑  

The relationship between the Hosoya polynomial and the Hyper-Hosoya 
polynomial was discussed [13]. 

The sequence ( ) ( )( ),1 , , 2 ,d G d G   is also known (since 1981) as the dis- 
tance distribution of a graph G  [14], denoted by ( )DD G . It is easy to see that 

( )0 ,kW k d G k
≥

= ⋅∑ . 
Later the definition of higher Wiener numbers is extended to be applicable to 

any connected structure by Guo et al. [15]. For a connected graph G  with n 
vertices, denoted by 1, 2, , n , let { }, max 1,0ij k ijw d k= − +  where ijd  is the 
distance between vertices i  and j . Then ,

k
ij ki jW w

<
= ∑ , 1, 2,k =  , are 

called the higher Wiener numbers of G . The vector ( )1 2, ,W W   is called the 
hyper-Wiener vector of G , denoted by ( )HWV G . The concept of the Wiener 
vector of a graph is also introduced in ref. [15]. For a connected graph G  with 
n  vertices, denoted by 1, 2, , n , let ( ),k iji j d ij kW d

< =
= ∑ , 1, 2,k =  . The vector 

( )1 2, ,W W   is called the Wiener vector of G , denoted by ( )WV G . 
Moreover, a matrix sequence ( ) ( ) ( )( )1 2 3, , ,W W W  , called the Wiener matrix 
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sequence, and their sum ( ) ( )
1,2,

k H
k= =∑ W W



, called the hyper-Wiener matrix, 
are introduced, where ( )1 D=W  is the distance matrix. A Wiener polynomial 
sequence and a weighted hyper Wiener polynomial of a graph are also in- 
troduced. 

In this paper, based on the results in ref. [15], we study the relation between 
Wiener number W , hyper-Wiener number R , Wiener vector WV , hyper- 
Wiener vector HWV , Hosoya polynomial H , hyper-Hosoya polynomial HH  
and distance distribution DD  of a graph. It is shown that for connected graphs 
G  and *G , the the contrary is not true. This means that the distance dis- 
tribution of a graph is an important topological index of molecular graphs. 
Therefore, we further investigate the graphs with same distance distribution. It is 
shown that the graphs with same vertex number, edge number, and diameter 2 
have same distance distribution. Some construction methods for finding graphs 
with same distance distribution are given. 

2. The Relation between W R WV HWV H HH DD, , , , , ,  

Let ( )diam G  denote the diameter of a graph G . 
Theorem 2.1. Let G  and *G  be connected graphs. Then the following five 

statements are equivalent: 
1) G  and *G  have same distance distribution DD ; 
2) G  and *G  have same Wiener vector WV ; 
3) G  and *G  have same hyper-Wiener vector HWV ; 
4) G  and *G  have same Wiener polynomial H ; 
5) G  and *G  have same hyper-Wiener polynomial HH . 
Proof. We shall show the equivalent statements by  

(1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(1). 
(1)⇒(2). By the definitions of DD  and WV , 

( ) ( ) ( ) ( )( )( ),1 , , 2 , , ,DD G d G d G d G diam G=  , and 

( ) ( )( ) ( ) ( ) ( ) ( )( )( )1 2, , , 1 ,1 , 2 , 2 , , ,diam GWV G W W W d G d G diam G d G diam G= =  . 

Clearly, if ( ) ( )*DD G DD G= , then ( ) ( )*WV G WV G= . 
(2)⇒(3). If ( ) ( )*WV G WV G= , then *

* *
, ,ij ijk ij k iji j d k i j d kW d W d

< = < =
= = =∑ ∑   

for ( )1, 2, ,k diam G=  . So  

{ } { }* * *
, ,max 1,0 max 1,0k k

ij k ij ij ij ki j i j i j i jW w d k d k w W
< < < <

= = − + = − + = =∑ ∑ ∑ ∑
for ( )1, 2, ,k diam G=  . Hence ( ) ( )*HWV G HWV G= . 

(3)⇒(4). Suppose ( ) ( )*HWV G HWV G= . Then *k kW W=  for 1, 2,k =  , 
and ( ) ( )*diam G diam G= . 

If ( ) ( )*k diam G diam G= = , then  

{ } ( )( )
{ } ( )( )* * * *

max 1,0 ,

max 1,0 ,

k
iji j

k
iji j

W d k d G diam G

W d k d G diam G
<

<

= − + =

= = − + =

∑
∑

. 

Assume, for ( )1 l k diam G< ≤ ≤ , ( ) ( )*, ,d G k d G k= . Let 1k l= − . Then  

{ } ( ) { }
( ) ( )( )

1
, 1

, 1

max 2,0 , 1 max 2,0

, 1 , 2
ij

ij

l
ij iji j i j d l

i j d k l

W d l d G l d l

d G l d G k k l

−
< < > −

′< = > −

= − + = − + − +

′ ′= − + − +

∑ ∑
∑

, and  
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{ } ( ) { }
( ) ( ) ( )

*

*

1 * * * *
, 1

* * 1
, 1

max 2,0 , 1 max 2,0

, 1 , 2
ij

ij

l
ij iji j i j d l

l
i j d k l

W d l d G l d l

d G l d G k k l W

−
< < > −

−
′< = > −

= − + = − + − +

′ ′= − + − + =

∑ ∑

∑
.  

By induction hypothesis, 
( ) ( ) ( ) ( )*

*
, 1 , 1, 2 , 2

ij iji j d k l i j d k ld G k k l d G k k l′ ′< = > − < = > −
′ ′ ′ ′− + = − +∑ ∑ . So we have  

( ) ( )*, 1 , 1d G l d G l− = − . 
Now it follows that ( ) ( )*, ,d G k d G k=  for 1, 2,k =  , and so 

( ) ( ) ( ) ( )* *
0 0, , , ,k k

k kH G x d G k x d G k x H G x
≥ ≥

= = =∑ ∑ . 

(4)⇒(5). By the definitions of Hosoya polynomial H  and hyper-Hosoya 
polynomial HH , it is easy to see that, if ( ) ( )*, ,H G x H G x= , then  

( ) ( )*, ,HH G x HH G x= . 
(5)⇒(1). If ( ) ( )*, ,HH G x HH G x= , then ( ) ( )*, ,d G k d G k=  for  

1, 2,k =  . Therefore ( ) ( )*DD G DD G= . □ 
Theorem 2.2. Let G  and *G  be two graphs with same distance dis- 

tribution. Then G  and *G  have same W  and R . 
Proof: By the definitions of DD , W  and R ,  

( ) ( ) ( ) ( )( )( ),1 , , 2 , , ,DD G d G d G d G diam G=  , ( ) { } ( ) ( ),= ,Gu v V GW G d u v
⊆∑ ,  

and ( ) { } ( ) ( ) ( )( )2
,

1 , ,
2 G Gu v V GR G d u v d u v

⊆
= +∑ . 

Clearly, if ( ) ( )*DD G DD G= , then ( ) ( )*W G W G=  and ( ) ( )*R G R G= .  
However, the contrary of the theorem doesn’t hold. For instance, the trees 1T  

and *
1T  (resp. 2T  and *

2T ) in Figure 1 have same W  and R , but they have 
different distance distributions. 

3. Graphs with Same Distance Distribution  

From the above theorems, one can see that, if two graphs G  and *G  have  
 

 

Figure 1. ( ) ( )*
1 1 86W T W T= = , ( ) ( )*

1 1 166R T R T= = , ( ) ( )1 8,14,6,8DD T = ,  

( ) ( )*
1 8,13,9,5,1DD T = . ( ) ( )*

2 2 98W T W T= = , ( ) ( )*
2 2 217R T R T= = ,  

( ) ( )2 8,10,8,5,4,1DD T = , ( ) ( )*
2 8,11,6,5,6DD T = . 
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same distance distribution DD , then they have same , , , ,W WW WV HWV H  and 
HH . So it is significant to study the graphs with same distance dis- tribution. 

1) The minimum non-isomorphic acyclic graphs with same DD 
By direct calculation, we know the minimum non-isomorphic acyclic graphs 

with same distance distribution are the following two pairs of trees in Figure 2 
which have 9 vertices. 

2) The minimum non-isomorphic cyclic graphs with same DD 
The minimum non-isomorphic cyclic graphs with same distance distribution 

are the following graphs with 4 vertices (see Figure 3). 
Note that, for the above graphs with same distance distribution, their Wiener 

matrix sequences and hyper-Wiener matrices are different. 
The following theorem gives a class of graphs with same distance distribution. 
Let ,n m  be the set of all the graphs with n  vertices and m  edges. 
Theorem 3.1. Let *

,, n mG G ∈ , and ( ) ( )* 2diam G diam G= = . Then  
( ) ( )*DD G DD G= . 

Proof. Since *
,, n mG G ∈  and ( ) ( )* 2diam G diam G= = , we have  

 

 

Figure 2. ( ) ( )*
3 3 82W T W T= = , ( ) ( )*

3 3 149R T R T= = , ( ) ( ) ( )*
3 3 8,13,12,3DD T DD T= = . 

( ) ( )*
4 4 92W T W T= = , ( ) ( )*

4 4 188R T R T= = , ( ) ( ) ( )*
4 4 8,10,10,6,2DD T DD T= = . 

 

 

Figure 3. ( ) ( )*
1 1 8W G W G= = , ( ) ( )*

1 1 10R G R G= = ,  

( ) ( ) ( )*
1 1 4,2DD G DD G= = . 
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( ) ( )*,1 ,1d G d G m= = ,  ( ) ( )*, 2 , 2
2
n

d G d G m 
= = − 

 
,  ( ) ( )*, , 0d G k d G k= =   

for 3k ≥ , and so ( ) ( )*DD G DD G= . 

Corollary 3.2. If 1
2 2
n n

m n   
> > − +   

   
, then all graphs in ,n m  have same  

distance distribution. 

Proof. For ,n mG∀ ∈  with 1
2 2
n n

m n   
> > − +   

   
, clearly ( ) 2diam G ≥ . 

We assert that ( ) 2diam G = . 
Otherwise, there exist two vertices ( ),u v V G∈  such that ( ), 3d u v ≥ . Let 

P  be a shortest ( ),u v -path. Then any vertex not on P  is not adjacent to at 
least one of u  and v , and the number of pairs of non-adjacent vertices on P  
is equal to ( )( ) ( )( ) ( )( ) ( )( )2 3 1 2 1 2V P V P V P V P− + − + + = − − . So  

( )( ) ( )( ) ( )( )

( )( ) ( )( )

2 1 2
2

2 3 4 2 1
2 2

n
m n V P V P V P

n n
n V P V P n

 
≤ − − − − − 
 
    = − − − − − ≤ − +       

, contradicting that 

1
2
n

m n 
> − + 
 

. 

Hence, by Theorem 3.1, if 1
2
n

m n 
> − + 
 

, all graphs in ,n m  have same  

distance distribution. □ 
Let G HV  denote the graph obtained from vertex-disjoint graphs G  and 

H  by connecting every vertex of G  to every vertex of H . 
Corollary 3.3. Let 

1 1

1 1
1 2 ,, n mG G ∈  and 

2 2

2 2
1 2 ,, n mG G ∈ . Then 1 2

1 1G GV  and 
1 2
2 2G GV  have same distance distribution. 
Proof. Obviously, ( ) ( )1 2 1 2

1 1 2 2 1 2V G G V G G n n= = +V V ,  

( ) ( )1 2 1 2
1 1 2 2 2diam G G diam G G= =V V , and  

( ) ( )1 2 1 2
1 1 2 2 1 2 1 2E G G E G G m m n n= = + + ⋅V V . By Theorem 3.1,  

( ) ( )1 2 1 2
1 1 2 2DD G G DD G G=V V .  

For graphs with diameter greater than or equal to 2, we will give some 
construction methods for finding graphs with same distance distribution. 

Let G  be a connected graph with vertices set { }1 2, , , nv v v , and let 
( ) ( )ijG d=D  be the distant matrix of the graph G. Let ( )G

k id v  denote the 
number of the vertices at distance k  from a vertex iv  in G , and let  

( ) ( ) ( ) ( ) ( )( )1 2, , ,G G G
G i i i idiam GDD v d v d v d v=  ) be the distance distribution of iv  

in G . 
Theorem 3.4. Let 1G  and 2G  (resp. 1G′  and 2G′ ) be the connected 

graphs with 1n  (resp. 2n ) vertices and with same distance distribution. For 
( )1 1v V G∈ , ( )2 2v V G∈ , ( )1 1v V G′ ′∈ , and ( )2 2v V G′ ′∈ , let G  (resp. *G ) be 

the graph ob- tained from 1G  and 1G′  (resp. 2G  and 2G′ ) by identifying 1v  
and 1v′  (resp. 2v  and 2v′ ). If ( ) ( )

1 21 2G GDD v DD v=  and  
( ) ( )

1 21 2G GDD v DD v′ ′′ ′= , then G  and *G  have same distance distribution. 
Proof. It is enough to prove ( ) ( )*, ,d G k d G k=  for 1, 2,k =  . 
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Clearly, ( ) ( ) ( ) ( ) ( )1 1
1 1 1 11 , ,, , , G G

i ji j k i j kd G k d G k d G k d v d v′
≤ ≤ + =

′ ′= + +∑ . Similarly,  
( ) ( ) ( ) ( ) ( )2 2*

2 2 2 21 , ,, , , G G
i ji j k i j kd G k d G k d G k d v d v′

≤ ≤ + =
′ ′= + +∑ . Because  

( ) ( )1 2DD G DD G= , ( ) ( )1 2DD G DD G′ ′= , ( ) ( )
1 21 2G GDD v DD v= ,  

( ) ( )
1 21 2G GDD v DD v′ ′′ ′= , we have ( ) ( )*, ,d G k d G k=  for 1, 2,k =  . Hence  
( ) ( )*DD G DD G= . □ 

Theorem 3.5. Let ,i n mG ∈ , 1, 2i = , and let ( )i iS V G⊂  such that any two 
vertices in iS  have distance less than or equal to 2 in iG , and 1 2S S= . Let 

{ }i iG S  denote the graph obtained from iG  by contracting vertices in iS  to a 
vertex is . Let *

iG  be the graph obtained from iG  by adding a new vertex ix  
and connecting ix  to every vertex in iS . If ( ) ( )1 2DD G DD G=  and  

{ } ( ) { } ( )
1 1 2 21 2G S G SDD s DD s= , then ( ) ( )* *

1 2DD G DD G= . 
Proof. Clearly, by the conditions of the theorem,  

( ) ( ) ( ) ( ) { } ( ) { } ( )( )*
*

1 2,1 ,1 ,i i i i

i

G S G S
i i i i i i iG

DD G DD G DD x DD G S d x d x= + = + + +  , 
1, 2i = . So, if ( ) ( )1 2DD G DD G=  and ( ) ( )1 2DD G DD G′ ′=  and  

{ } ( ) { } ( )
1 1 2 21 2G S G SDD s DD s= , then * *

1 2G G
DD DD= . □ 

From Theorem 3.4, we have the following corollary: 
Corollary 3.6. Let 1 2 ,, n mG G ∈  and ( ) ( )1 2DD G DD G= . Let H  be a con- 

nected graph vertex-disjoint with 1G  and 2G . For ( )1 1v V G∈ , ( )2 2v V G∈ , 
and ( )u V H∈ , let G  (resp. *G ) be the graph obtained from 1G  (resp. 2G ) 
and H  by identifying 1v  and u  (resp. 2v  and u ). If  

( ) ( )
1 21 2G GDD v DD v= , then G  and *G  have same distance distribution. 

From Theorem 3.5, one can obtain graphs with same distance distribution in 

,n m  from graphs in 1,n m s− −  with same distance distribution by adding a new 
vertex and some edges. 

Figure 4 shows two pairs of graphs with 5 vertices and 5 edges and with same 
DD , one of which has diameter 2 and the other has diameter 3.  

Figure 5 shows three pairs of graphs with 6 vertices and 6 edges and with  
 

 

Figure 4. ( ) ( )*
2 2 15W G W G= = , ( ) ( )*

2 2 20R G R G= = ,  

( ) ( ) ( )*
2 2 5,5DD G DD G= = . ( ) ( )*

3 3 16W G W G= = ,  

( ) ( )*
3 3 23R G R G= = , ( ) ( ) ( )*

3 3 5,4,1DD G DD G= = . 
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Figure 5. ( ) ( )*
4 4 26W G W G= = , ( ) ( )*

4 4 39R G R G= = ,  

( ) ( ) ( )*
4 4 6,7,2DD G DD G= = . ( ) ( )*

5 5 27W G W G= = ,  

( ) ( )*
5 5 42R G R G= = , ( ) ( ) ( )*

5 5 6,6,3DD G DD G= = .  

( ) ( )*
6 6 29W G W G= = , ( ) ( )*

6 6 49R G R G= = ,  

( ) ( ) ( )*
6 6 6,5,3,1DD G DD G= = . 

 
same DD , two of which have diameter 3 and the other has diameter 4. 

It is easy to see that the graphs in Figure 5 can be obtained from graphs in 
Figure 3, Figure 4 by the construction methods given in Theorems 3.4, 3.5. 

However, the construction methods are not complete. There might be some 
graphs with same DD  which could not be obtained by the above construction 
methods. 

Open Problem. Is there a construction method for finding all graphs with 
same distance distribution?  
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