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Abstract

In the present paper, we define Dislocated Soft Metric Space and discuss
about the existence and uniqueness of soft fixed point of a cyclic mapping in
soft dislocated metric space. We also prove the unique soft fixed point theo-

rems of a cyclic mapping in the context of dislocated soft metric space. Exam-
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1. Introduction

The soft set theory is one of the branches of mathematics, which aims to describe
phenomena and concepts of an ambiguous, undefined vague and imprecise
meaning, which was initiated by Molodtsov [1]. This theory is applicable where
there are no clearly defined mathematical models. Recently many papers con-
cerning soft sets have been published (see [2]-[8]). In many aspects of Mathe-
matics, fixed point theory has wonderful applications. Shabir and Naz [9] pre-
sented soft topological spaces and they investigated some properties of soft to-
pological spaces. Later many researchers were studied about soft topological
spaces. In these studies, concepts of soft fixed point are expressed by different
approaches. Das and Samanta [10] [11] introduced a different notion of soft
metric space by using different concept of soft point and investigated some basic
properties of these. In 2000, Hitzler and Seda [12] introduced the notion of dis-
located metric space, in which self distance of a point need not be equal to zero.
Aage and Salunke [13] established some important fixed point theorem in single
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and pair of mappings in dislocated metric space. Later Karapnar and Salimi [14]
discussed the existence and uniqueness of fixed point of a cyclic mapping in the
context of metric like space. The study of common fixed point of mapping in
dislocated metric space satisfying certain contractive condition has been at the
Centre of vigorous research activity (see [15] [16] [17] [18]). Dislocated metric
space plays very important role in topology, logical programming and in elec-
tronic engineering. Recently Wadkar ef al. [19], Mishra et al [20] [21] [22] [23],
Deepmala and pathak [24], Wadkar et al [25], [26] discussed and proved fixed
point theorems by employing different concepts.

In the present paper, we discuss about the investigations concerning the exis-
tence and uniqueness of soft fixed point of a cyclic mapping in soft dislocated
metric space. We also prove the unique soft fixed point theorems of a cyclic
mapping in the context of dislocated metric space. To check the validity of the
result we give the examples. Before starting to prove main result, some basic de-
finitions are required.

Definition 1.1: Let X and E are respectively an initial inverse set and a para-
meter set. A soft set over X1is pair denoted by (Y, E) if and only if Y'is a mapping
from FE into the set of all subsets of the set X, i.e. Y: E-> P(x), where P(x) is the
power set of X.

Example of Soft Set: Let (C, D) be soft set, which describes the Nature of
workers at Industry. Suppose that U ={u,u,,u,,U,}, Ze. universe of four work-
ers. Let a set of decision parameters be D = {s1,5,,53,5,,5;} - Now
s,(i=1,2,3,4,5) stand for the parameters: high working speed, slow working
speed, average working speed, work delay working speed and no working speed
properly respectively.

Now consider C (s,) = {u,,u,} , C(s,)={u,us,u,}, C(s;)=U,
C(s,)={u,,u,} and C(s5)=empty. By consisting of the following collection

of approximations, the soft set (C , Ij) can be viewed.
(C. D) ={(high working speed, {u,,u,}), (slow working speed, {u;,us,u,}),
(average working speed, U ),(Work delay working speed, {u,, uA}),

(no working speed, empty)}.

Definition 1.2: The intersection of two soft sets (Y,A) and (Z,B) over X
is a soft set over X denoted by (I,C) and is given by (Y,A)~A(Z,B)=(1,C),
where C=ANB and VeeC, I(g)=Y(e)nZ(e).

Definition 1.3: The union of two soft sets (Y,A) and (Z,B) over Xis the
soft set (1,C),where C=AUB andforall kinC

Y (k), ifk is anelement of A—B,
I(k)=<Z(k), ifk isanelementof B— A,
Y (k)uZ(k), if k isan element of AN B.

This relationship is denoted by (Y,A)J(Z,B)=(1,C).
Definition 1.4: A soft set (¥, A) over Xis said to be a null soft set if
Y (k) =empty , for all kin A and is denoted by @ .
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Definition 1.5: For all ke A, if Y (k)=X then (Y,A) is called an abso-
lute soft set over X.

Definition 1.6: The difference of two soft sets (F,E) and (G,E) over Xis
asoft set (H,E) over X, denotedby (F,E)\(G,E) and is defined as

H(x)=F(x)\G(x), VxeE.

Definition 1.7: The complement of soft set (Y,A) is denoted by (Y, A)C
and is defined as (Y, A)C = (YC, A) , where Y°®:A— P(X) isa mapping given
by Y¢(B)=X-Y(B),forall B.

Definition 1.8: Let B(R) be the collection of all non-empty bounded subsets
of R and E taken as a set of parameters. Then the mapping Y :E — B(R) is
called a soft real set. It is denoted by (1] E).

Definition 1.9: For two soft real numbers M and N the following condi-
tions holds:

(i) M<A if m(s)<nf(s),forall seE;

(i) M>A if m(s)> ﬁ(s), forall seE;

(iii) M<A if Mm(s)<fA(s),forall seE;

(iv) m>A if m(s)>f(s),forall sSeE

Definition 1.10: A soft set (P, E) over X is said to have a soft point if there is
exactly one S€E such that P(s)={x}, for some Xe X , alsoP(s')=¢,
vs'e E/{s} . It will be denoted by X,.

Definition 1.11: Two soft points %, ¥, are said to be equal if i=] and
P(i)=P(j) ie x=y. HenceX =y, < x=y or i#].

Definition 1.12: A mapping 0 SP()Z)X SP()Z ) —R(E)* is soft metric on
soft set X with following properties.

SML. forall X, €X, ,5(&1,)752)

V1
ol

SM2. ,5()?51, v, ) =0,ifand onlyif X, =9 ;

SM3. forall X, Y, € X, ,3(;(51, ySZ):,}(ySZ,xSI);

SM4. forall X, Ys,,Z, € X, ,3(x%,253)gﬁ(>~<%, y52)+,3(y52,253)_

The soft set X with a soft metric p defined on X is called a soft metric
space and denoted by (X P E) .

Definition 1.13: Let us consider a soft metric ()Z , P E) and a be a
non-negative soft real number. The soft open ball with center at X, and radius
a is given by

B(X,@)={J, € X:p(%,¥;) <@} SP(X),
and the soft closed ball with center at X, andradius & is given by
B(X,,&)={% € X:5(% V) <@} SP(X).

on

Definition 1.14: A sequence {X%} of soft points in soft metric space

(X,,B, E) is said to be convergent in (X o E) if there is a soft point §, & X
such that Ib(f(gn , )7#) —0 as n—>o, thatis for every &>0, there is a natu-
ral number N =N (&) suchthat 0< ,5()?;'11 , yﬂ) Z &, whenevern> N.

Definition 1.15: Let ()Z, [D,E) be a soft metric space, then the sequence

110

K2
o5
“t:o

Scientific Research Publishing



B. R. Wadkar et al.

{)"(En} of soft points in ()z D E) is said to be a Cauchy sequence in X, if
corresponding to every £ > 0, thereexist me N such that
~( ji,ylj)sg,vh j=m, ie p(xjﬂ,yﬂj)—>0 as I, j > oo,

Definition 1.16: The soft metric space ()Z o E) is called complete, if every
Cauchy sequencein X converges to some point of X .

Definition 1.17: Let ()Z o E) be a soft metric space. A function
(f,(p) : ()Z,ﬁ, E) — ()Z,,f}, E) is called a soft contraction mapping if there is a
soft real number o eR,0<a <1 such that for every point X,, ¥, €SP(X),

A((F.0)(%).( L)< ep(%..9,)-

0)(9
Definition 1.18: A mapping P SP( )XSP( )—)R(E)* is said to be

dislocated soft metric on the soft set X if j satisfies the following condi-

we have

I/\

tions:

(A1) A(%,.9,)=0 then %, =79,
(d2) ,5()131,)752)=/3(y52, Sl) forall X ySZEX
(d3) 5(%,.2, )< p(%. 9, )+ (9,2, ) forall %92 €X.

The soft set X with soft dislocated metric p defined on X is called a
dislocated soft metric space and denoted by ()Z o E).

2. Main Results

Theorem 2.1: Let A and B be two non-empty closed subsets of a complete dis-
located soft metric space ()Z,[), E). Suppose (f,p):AUB— AUB is cyclic
and satisfy the following:

(c) There exist a constantk e (0,1) such that

ﬁ(( f ,(D)Xl,( f ,(/)) y#) < kﬁ(Xl, y#) forall x, €A, y, eB.

Then (f,p) hasa unique soft fixed point that belongsto ANB.

Definition 2.2: Let ()Z,ﬁ, E) be dislocated soft metric space and U be a
subset of X . We say that Uis p -open subset of Xif Vxe X, there exists r>
Osuchthat B, (x,r)cU. Also, V < X isa p-closed subset of X if
()Z /V) is p -open subset of X .

Lemma 2.3; Let ()Z,[), E) be dislocated soft metric space and Vbe a p -
closed subset of X. Let {x;‘n} be a sequence in V. If xjn —> X, as n— oo,
then X, eV.

Proof: Let X, ¢V, by definition 2.2, X\V isa p -open set then there exist
r>0such that B, (x,,r)= X \V. On the other hand, we have
lim
N>

N, € N such that

ﬁ(xzn,xi)—,b(xl,xl)‘zo,Since X2n—>X,1 asn — o0, So there exist

162, %, )= A (%%, )| <,
{ 2n} (er)QX\V, for all
n > n,. This is contradiction since { } V, forall nin N.

for all n>n,. Hence we conclude that
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~ n
sequence in (X,ﬁ,E) such that {xﬂn}—>xﬂ as N—o and p(x,,x,)=0.

Then
lim5(x; .y, )= A(x..y,), forall y, (X, 5.E).

Lemma 2.5: If ()Z,,B, E) be soft dislocated metric space, then the following

Lemma 2.4: Let ()Z,ﬁ, E) be dislocated soft metric space and {x" } be a

conditions holds
A If ,5(x;‘11 X5 ) =0, then /B(X,IXA) = /3()’,1' y,u) =0;

n+l

B.If {xgn} be a sequence such that lim ,5(Xﬂ X 1) 0, then we have

Ilmp( h %)_Ilmp( X7 xg:jl):o;

n—o

C.If x, =y, thenp(Xl,y#)>O;
pA(x,x;)= Zp(xi,x;i), holds for all Xl,xi& e X, where 1<i<n,

D. At first we define the class of ® and ¥ by the following ways:

Y= {y/ :[0,00) = [0,0) such that y is non decreasing and continuous} and

={$:[0,00) —>[0,) such that ¢ is lower semicontinuous} .

Definition 2.6: Let ()Z,,ﬁ, E) be a soft dislocated metric space, me N, let
A A, A, be p-closed non empty subsets of X and let Y :U::TA . We
say that (f,¢) isa cyclic generalized ¢—y contractive mapping if

i Y= U:jA is a cyclic representation of Y with respect to (f.9),
ii. y(t)-w(s)+¢(s)>0 forall t>0 and s=t or s=0 and

l//('b((f‘(D)Xl’(f'(p)yu))<W(Mﬁ(x/l'y#))_¢(Mf’(Xi’yﬂ))’ (1)
for any X, €Ay, €A, i=12,3,---,m,where A, =A,pcdye¥ and

Mﬁ(xzvyﬂ):max{lb(xmyy)’/}(xw(f ¢)Xa) (y (f (0))’ )

/s(yu,(f,go)xl)ﬂs(yu,(f,go)y,,)w(xﬂ,(f,w)xﬂ)}_

6

Let X bea non-empty set and( f ,go) : ()Z,,E, E) —>()Z,[), E) be given map.
The set of all soft fixed points of (f,¢p) will be denoted by FiX(( f,(o)) Le.
Fix((f,go)):{xl eX:x, :(f,qo)xl}.

Theorem 2.7: Let (X,[),E) be a complete dislocated soft metric space,
meN, let A,A,---,A, be non-empty p-closed subsets of ()Z,[),E) and
let Y= U:TA, . Suppose that (f,p):Y —Y is a cyclic generalized ¢-y con-
tractive mapping. Then (f,¢) has fixed point in ﬂin:lA . Moreover if
,5()(,1’ y#) > p(x,,x,) forall x,yeFix(f,p),then (f,p) hasa unique fixed

point in ﬂin:lA.
Proof: Let XS@ be an arbitrary point of Y, so there exists some i, such
that xj’o € AO. We know that (f,(p)(A0 ) c A, .., we conclude that

(f q))( )e A,..- Thus there exist Xil in A, such that (f.0) xfo = XZ'
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n+1

Recursive (f, (p) X, .+ whereX; €A . Hencefor n>0 there exist
i, €{1,2,3,---,m} such that X €A, .Incase Xi0 = X/1°+1 for some

N, =0,1,2,---, then it is clear that X,{n)0 is a soft fixed point of (f,w). Now as-

n+l

sume that Xjﬂ #X;,,, forall n. Hence by lemma 2.5(c) we have

,3(x2;_11,x2ﬂ)>0 for all n. We shall show that the sequence{d,} is non-in-

creasing, where d, = /3( X5, xgn*ll) . Assume that there exists some n, € N such
that

w(B(xetoxw)) <w(p(xe.xel)- 2)
Set )?ﬁl=(f,(p)()?g)=(f(ig))w(l),f(i=(f,go)()?il)z(fz(ig))(pzu),...,
(10 (R) (1 (R) 1,

Using conditions (1) together with (2), we get

w(p(X,, 2:1)) (((fm X (1o)X )< B((F.0) X2 (F.0)x) )

3)

On the other hand, from lemma 2.5(D) we have

0.:.. Scientific Research Publishing 113
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< max{ﬁ(x}ﬂj,x}ﬂ ) A(x] X )}
Therefore from (3) we get

n+l

v (B0, xa)) < w(max{p(xt o, ) A (3 x% )})

Now, if max{5(x; %% ), 5 (x5 X )} = 5, X ), then
PG ) = ap (6,060, ) = 5, L)
This is contradiction. Hence we have
v (6,60 sv R (0l ) —ela (el )] @
for all NeN. By taking x, =x;" and y,=x? in (4) and keeping (2) in

mind, we deduce that

V/ﬁ(xﬁfil X ) <y {p(xﬁ;’;, X )} - ¢{p(><2°’1 Xio )} :
This is a contradiction. Hence we conclude that d, <d, , ‘e
p(xln Xg:ll) p(xﬂ x5 ) hold for all neN. Thus there exist >0 such

that limd, =lim p( X X5 ) =r . We shall show that r=0 by the method of

n— n—o
reductio ad absurdum. For this purpose, we assume that I >0. By (4) together
with the property of ¢ and ¥ we have

w(r)=limsupy (d,) < limsup[y (d,,) - ¢(d,.) | <y (r)-¢(r).
This yields that ¢(r)<0. This is contradiction. Hence we obtain that

Mld <I|m( o xgn*l) 0. (5)

We shall show that {xgn} isa p -Cauchy sequence. To reach this goal, first
we prove the followings claim:
(k) For every €>0, thereexists N€ N suchthatif r,q=n with

r—q=1(m), then p(x,I , j'u"><e.

Suppose, on the contrary that there exist € >0 such that forany ne N, we
canfind r, >q,>n with r,—q, =1(m) satisfying

/B(qu"n,x;”rn)Ze. (6)

Now we consider N>2m. Then, corresponding to @, >n, we can choose T,
in such a way that it is the smallest integer with r, >q, satisfying
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r,—g,=1(m) and [)(xg;n , XZ’;n ) >e¢. Therefore /S(Xg:n , x;”r:" ) <e. By using

triangular inequality, we obtain

m
< h Gn qn =i+l
_'D(X ' )+Z ( 7i’X/1rnfi+1 :
<e+ i ~ Xrn—i Xrn—i+1
- o p ﬂrn—i ! Z1’n—i-+-1

Passing to the limit as N — oo in the last inequality and taking (5) into ac-

count, we obtain that

|Imp(Xq“ x;“rn)ze. (7)

n—o

Again by (d;) we derive that
e<p(xs %)
< p(xin ok, (X )+ A(x5 )
<p(xn ot ) p(x xi )+ a(xh x )
(Xi ! /r{:fl) (X£n+il’xz )
<25(x x|+ 5 ) r2p( o )

Taking (5) and (7) in account we get

lim 74, i) = ®

By (d,) we have the following inequality
Pt s )= (ot )+ 2 (x5, i) ©)
and p(xie X0 < p(xt X )+ p(xp X ). (10)

Letting limn — o in (9) and (10), we have

lim 5 75 =< an

Again by (d, ) we have
Al )= At ke )+ a0 ) (12
and p( xi, ‘*n“) ,5( XpL X )+p( Xp Xt ) (13)

Letting N — o in (12) and (13), we derive that

||mp( X0 %“)ze. (14)

n—w Aan+1

Since xﬂq and x;’; lie in different adjacently labeled sets A;and A;.;, for
certain 1<i<m. By using (5), (7), (8), (11) and (14) together with the fact that

(f,p) isageneralized cyclic -y contractive mappings, we find that
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o{p(e x| =v (A1) (10, )
<y maX{p( X i )AL (Fao)xt ). p(xE (fae)X] ),

R A, CRC A, GRS

6

[max{,s Ko X ) A(x (Fo)xt ). A(%: (0% )
(f,(p Xn )+p(x2 ,(f(o) ) p( (f,(p)xjgn)

6

<y max{p(xj;n Xarn) ﬁ(xj:n qu1 ) /3( S 5";1)

N\

(K )+ 2 i)+ %, i)
6

—¢[ma><{/3(><3§n'xi”m ),ﬁ(xizn R G|

In+1 In+1
6

Regarding the property of ¢ and y in the last inequality, we obtain that
v (€)<w(e)—¢(€), which is a contradiction. Hence the condition (k) is a satis-
fied. Fix €>0. By the claim we find n, € N such thatif r,q>n, with

r-q=1(m),
— 15
,o(x,Lr xiq)<2 (15)
Since |Imd( X )=0,we also find n, e N such that
(g, X0 ) <o (16)

for any n>n . Suppose that r,s>max{n,,n} and s>r. There exist
ke{1,2,3---,m} suchthats—r=k(m). Therefore s—r+¢=1(m), for
g=m-Kk+1.

So we have for je{1,2,3,---,m} and s+ j—r=1(m),

s+1 s

s+j-1 st)‘

ﬁ(x;r,xjs)sﬁ(x;r,xs*j )+p( x5 X )+ +p(
By (15) & (16) and from the last inequality, we get
€

o(x x5 <Shjx<fimxt—e.
A(x, %)212m2 2m

This proves that {x}n} isa p -Cauchy sequence. Since € is arbitrary,
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{xln} is a Cauchy sequence. Since Yis p -closed in ()Z s E) then (Y~, D E)
is also complete, there exists X, €Y = U A such that I|m X
(Y D, E) equivalently

l"—X n

p(xl,xi)—llmp(xﬁ, )—mILerp( i x;“m):o. (17)

In what follows, we prove that X, is a soft fixed point of (f,¢). In fact,

since lim x; =x, and Y= U A s a cyclic representation of Y with respect to

(f,p). The sequence {x}n} has infinite terms in each A, for ie€{1,2,3,---,m}.
Suppose that x, € A, (f,p)x, €A, and we take a subsequence {x;:k } of
{xgn} with X,?:k € A, (the existence of this subsequence is guaranteed by above-

mentioned comment). By using the contractive condition we can obtain

‘//( ((f ?)%.(f.0) ﬂnk))
sw[max{ml,xz:k)ﬁ(»(f«o)x )52 (£
A(XE L (F.0)x, )+ A(x5, kk)+/3(xw(f,¢)xa)ﬂ

6

_¢[max{/3(xl,xz:k),ﬁ(Xl,(f,(ﬂ)X ) /3( (f (p) )
/3<X2;k,(f7¢)xl)+,5( ()X ) (X,p(f,co)xa)H_

6

Passing to the limit as N — o and using X;::k — X, , lower semi-continuity
of ¢, wehave

‘r”([’(xw(f-‘/’)xz)) ‘/’( (.. (f.0)x )) ¢(/5(Xu(f'¢’)xa))'

So, ,b(xl,( f,p) X;,) =0. Therefore x, is a soft fixed point of (f,¢). Fi-
nally to prove the uniqueness of soft fixed point, suppose that Y,,Z, € ()Z ' P E)
are two distinct soft fixed points of (f,¢). The cyclic character of (f,¢) and
the fact that Y,,Z, ()Z , P E) are soft fixed points of (f,p) implies that

XY, € ni:lA . Suppose that x, #y, andforall p,,q, € FiX(( f ,(p)),

p2(Pp,,0,)= p(P,, p;) - Using the contractive condition, we obtain

v (A((1.0)%.(.0)y,))
S‘/’[max{,b(xwyﬂ):ﬁ(xw(f'w)x/l)’ﬁ(yﬂ’(f’q))yu)’
ﬁ(y,,,u,(p)xw(yﬂ,(f«o)yﬂ)ws(xp(f«p)xl)}}

6
—¢[max{,5(xl,y#),ﬁ(xl,(f 9)X,), (y J(f, q))yﬂ)
ﬁ(y,,.(f,w)xl)ﬂa(yﬂ,(f,¢>yu)+ﬁ(x1.(f,¢)xl)}]

6
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Then we have y/(ﬁ(xl, yy)) st//(,b(xl, y#))—¢([7(xl, yy)).

This is a contradiction. Thus we derive that ﬁ(yﬂ, z,]=0cy » =1, Hence
proved.

In the theorem 2.7, if we take ()Z,ﬁ, E) =A,forall 0<i<m, then we de-
duce the following theorem.

Theorem 2.8: Let ()Z, 0, E) be a complete soft dislocated metric space and
(f.p) be self map on ()Z,/}, E
that

({1,000 (1.00%,)) <0 (M, (5,.5,)) (M, (1.3,)) o
X Y, e(X,,B, E),where

). Assume that there exist pe®, y eV such

M13<Xl’yﬂ):max{'é(xi'y#)"a(xl’(f'go)xﬁ)’ﬁ(yu’(f'¢)y#)’

ﬁ(y;,.(f,co)xz)ﬂé(y;,.(f,¢)y;,)+/3(xl.(f,¢)xﬂ)}
- .

Then (f,p) has a soft fixed point. Moreover if ﬁ(xl,yy)zﬁ(xl,xl) for
all X;,Y, € FiX(( f, (0)), then (f,p) hasa unique soft fixed point.

If in theorem (2.7) we take y(t)=t and ¢#(t)=(1-r)t, where re[0,1)
then we deduce the following corollary.

Corollary 2.9: Let ()Z e E) be a complete soft dislocated metric space,
me N', let A,A,--, A, benonempty p-closed subsets of ()Z,[), E) and let
Y = U:TA - Suppose that (f,@):Y >Y isan operator such that

i Y= U:;mA is a cyclic representation of ()Z P E) with respectto ( f,p),

ii. thereexist re[0,1) such that

[)((f,(p)xl,(f,(p)y,,)

=rmax{,b(xl,yy),,ﬁ(xﬂ.(f,¢)Xl),/3(y¢,,(fxw)yu),

ﬁ(y#,(f,qo)xﬂ)+ﬁ(y,,,(f,¢)y;,)+ﬁ(xl,(fm)m)}
- ,

forany xe A and yeA,, i=123,--,m. Where A, =A,then (f, o)
has a soft fixed point z, () A . Moreover if ﬁ(xl, yﬂ) >p(x;,x,) forall
x, e Fix(f,p), then (f,p) hasa unique soft fixed point.

Example 2.10: Let X = R with soft dislocated metric

y?”},forall X;.Y, € X . Suppose A =[-2,0],

2

ﬁ(xz,y#):ma\x{x2

A =[0,2] & Y =|J7A.Define (f,p):Y >Y by

ﬁ, ifx, e[-2,0
(1.0)-) 8 , €[-2.0]

X, .
TA, ifx, €[0,2]

It is clear that U:;ZA is a cyclic representation of ¥ with respect to ( f,¢).

3
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Let x, € A =[-2,0] and y,eA =[0,2] then

A(f.0)x.(T.0)Y,)
E3Rca e

Aot

X, Y 1 X, Y 1.
< N 24 el o=
_max{4,4}_2max{2,2} 2p(xl,y#)

A(f.0)%.(T.0)Y,)
:rmax{lb(xﬂ.'yy)!ﬁ(xﬂ.’(f’w)xﬂ)'ﬁ(yﬂ'(f'w)yﬂ)’

g

and so

ﬁ(yﬂ,(f,w)xﬂ)+ﬁ(yﬂ,(f,co)y,,)+/3(xl,(f,w)xﬂ)}
. .

Hence the condition of corollary (2.9) (theorem 2.7) holds and ( f ,go) has a
fixed pointin A N A,.Here x, =0 isa fixed point of (f,¢).

Example 2.11: Let X= Rwith soft dislocated metric
ﬁ(xﬂ, yﬂ) = max {|X/1|,|yﬂ } ,forall x,,y, e X.Suppose A =[-10] and

AZ:[O,l] & Y=U:;2A we define (f,p):Y ->Y by

(Xi)z ifx, e[-
(f.0)= , fx, e[-1,0],

X, .
TA' ifx, €[0,1].

It is clear that U:le is a cyclic representation of Y with respect to ( f.p).
Let x, € A =[-10] and y, e A =[0,1], then
ﬁ((f,(p)xl,(f,go) yy)
=lb(ﬁ:1J= ax{ ,__y"}gmax{x_l,_y”}
2 2 4 2 2

1 1 1.
< Lmax -y, < Smax |y < 2 A0,

2
X2

2

:rmax{ (%09, ). 806 (F.0)%). AV, (F.0) ),

ﬁ(y,,.(f,co)xz)+/5(y,,.(f.co)yﬁ,)+ﬁ(xﬂ.(f.w)xﬁ)}_

6

Hence the condition of corollary (2.9) (theorem 2.7) holds and ( f ,gp) has a
soft fixed pointin A N A,. Here X, =0 is a soft fixed point of (f,p).

In the above corollary we take A = ()Z P E) for all 0<i<m, then we de-
duce the following corollary.
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Corollary 2.12: Let (X, ol E) be a complete soft dislocated metric space and
let (f,p) beaself map on X. Assume that there exist re [0,1) such that

ﬁ((fnﬁﬁ)xw(f’g”)y#)

srmax{mxwyﬂ>,/s<xﬂ,<f,¢>xﬂ).ﬁ(v;,.<f,¢>vﬂ),

ﬁ(yﬂ,(fl(ﬂ)xi)ﬂ?(y,ﬂ(f,co)yy)+/5(xl.(f,¢)xi)}
. ,

holds for all x;,y, €(X,3,E). Then (f,p) has a soft fixed point. More-
over if ﬁ(Xi,yﬂ)Zﬁ(Xl,Xi)for all Xl,y#eFix«f,(p)), then (f,p) has a
unique soft fixed point.

Example 2.13: Let X= R with soft dislocated metric space and
A(X:Y,)=max{x,,y,} . For any x,, let (f,@):(X,5E)—>(X,5,E) be

defined by
%, if0<x, <=
XZ
(f.o)x, = ?ﬁ if —<x, <1
X—‘, if x>1
7

Proof: To show that the existence and uniqueness of soft point of ( f,¢), we

need to consider the following cases

Let Osxl,yﬂ<% then
- 1 1 1.
p((f,(p)xi,(f,(p)y#):gmax{xi,y#}SEmax{xl,yﬂ}:Ep(xl,yﬂ).

Let %é X;,Y, <1 then

Let x,,y,>1 then
ﬁ((f,(p)xl,(f,(p)yﬂ):%max{x/l,yy}s%max{xi,yﬂ}:%ﬁ(xi,y#),

Let Osx,1<l and 1sy,sl then
2 2

N 1 1.
p((f’(p)xi'(f’(o)y#):max{%’%}gimax{xﬂyﬂ}=Ep(xl’yﬂ)'
Let 0£x1<% and y, >1 then

/3((f,(p)xﬂ,(f,(p)y#)zmax{x—g,%}s%max{xi,y#}:%,b(xi,yp),

K2
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1
Let ESXiSl and 0<y, < then

N |-

[)((f,(p)xl,(f,go)y#):max{x—;,%}sémax{xl,yy}:%ﬁ(xﬁ,yy),

and so

ﬁ((fy¢7)xz!(f'¢)yu)

grmax{ﬁ(xl,yﬂ),ﬁ(xl,(f,(P)Xi),ﬁ(y/,,(f,(ﬂ)y#)y

ﬁ(y,,,(f,¢)Xl)+/3(y;,.(f,co)y;,)+/3(xp(f,co)x4)}
- .

Hence we conclude that all the condition of corollary (2.12) (theorem 2.7)
holds and (f,¢) has a soft fixed point in [0,0). By corollary 2.9 we deduce
the following result.

Corollary 2.14: Let (X ' P E) be a complete soft dislocated metric, me N,
let A,A,---,A, be non empty p-closed subsets of Xand Y = U:;mA Sup-
pose that ( f,p):Y > Y isan operator such that

i Y= U:;mA is a cyclic representation of ()Z P E) with respectto (f,p).
ii. thereexist re[0,1) such that
j’s((""’)X"“”’)y“)p(t)dtgr " p(t)dt,

0

where ﬁ(y”,(f,go)xl)+ﬁ(yu,(f,¢)y”)+,5(xl,(f,go)xl)} for any xe A
6

yeA,, i=123--,m, where A ,=A and p: [0,00) - [0,00) be Lebesgue-
integrable mapping satisfying J‘OF p(t)dt>0, for €>0. Then(f,p) has a fixed
point Zz,€ HLA . Moreover if ﬁ(Xl, yﬂ) > [)(XE,XE) for all

XY, € FiX(( f ,(0)) ,then (f,p) hasa unique soft fixed point.

Definition 2.15: Let (f,9):(X,5,E)—>(X,p,E) with
w:(X,5,E)—>[0,0) and ye[0,1]. A mapping (f,p) issaidtobea y-y
sub admissible soft mapping if ¥ (X,)<y = !//(( f.p) xl) <y, for
X, € (X y Py E) .

Example 2.16: Let (f,@):[-m,n]—>[-n,n] and y:[-n,n] >R, be de-

fined by (f,q))xl:%(tanxl) and y(X,)=

Xa—%“ +% then (f,p) isa

7y —y sub admissible mapping, where y = %, indeed if

1 1 1
+_SE then X, =7

‘//(Xﬁ): 2

Xﬂ, —ZTC

Hence (f,(/))(xl):%n and y/((f,g))xi):%.

K2
035: Scientific Research Publishing

121



B. R. Wadkar et al.

Let A be the class of all the functions ¢: [0,00)3 - [0,00) that are a conti-
nuous with the property: ¢(x,y,z)=0 ifandonlyif X=y=2=0.
Definition 2.17: Let (X \ P E) be a soft dislocated metric space, me N, let
A,A,,--- A be p-closed non empty subsets of (X,p,E) andletY = U:jA .
Assume that (f,9):Y —>Y is -y-sub admissible mapping, where y = %
Then (f,¢) is called y-cyclic generalized weakly C-contraction if
i Y= U:;mA is a cyclic representation of Y with respect to ( f,¢),
(( f.o)x,.(f.0)y F)
<y (%) A (Y (f.0)x)+
+t//((f,¢) X )A(¥,(F,

o oA

< © €
N N~
<
=
N—
+
<
—_
s~
=
S
N—
w
>
N
>
oYl
—
Ny
—
.
S
N—
N—

(18)

+t//((f,¢

%[ﬁ(xp(f,(p)y”)+,5(yﬂ,(f,go)xlﬂ}

forany xe A, yeA,, i=123--,m and A, =A and JdeA.
Theorem 1.18: Let (X, [),E) be a complete soft dislocated metric space,
meN,let A,A,--- A, ,be p-closed non-empty subsets of (X,p,E) and let

Y =U:zlmA Assume that (f,p):Y >Y is a y-cyclic generalized weakly C-

contraction. If there exists xj’o €Y such that W(XE)S%, then (f,p) has a
soft fixed point z, eﬂ A. Moreover if gy( z° )<%, then Z‘?VO is unique.

Proof: Let X €Y be such that 1//( )<% Since (f,p) is a sub y-ad-
missible mapping with respect to g , then (( f.0) xgo ) < %

17 (( f,p) X3, ) < % forall ne N UO. Also, there exist some i, such that

XSO € A,- Now (f,go)(AO ) c A, implies that (f,(p)(xo )e A, Thus there
exist Xil in A, suchthat (f,p) Xgo = Xﬁl. Similarly (f,¢)x; in , where

" €A . Hencefor n>0 thereexist i, €{1,2,3,--,m} such that Xin €A,

n+l

and X

€ A 1. In case Xz‘: = X;{:*ll, for some n,=0,1,2,---, then it is clear

n+l

that X;:O is a fixed point of (f,p). Now assume that X; #X; ", forall .

Since (f,p):Y >Y isa cyclic generalized weak C-contraction, we have for

all neN” we have
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LPLGR X )A06 X)) A4 )
1+,6(x2:1,x';ﬂ) 1+,5(x';n xgn)

On the other hand from (d3) we have
'b(xﬁl'xﬁl)g ﬁ(X;:l, X2n)+'5(xf?n'x/n1n+1)'

And by lemma (2.5D) we have

'5()(211711 X/?n)'b(xgq:ll’ 2:1)<ﬁ(xgnll XQ )[)(X/?nll Xg:fl)
+A(6,%,) p(%,:%,)
A0 A 060, )+ 406,60 )]

From (19) we have

123

K2
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Therefore we have
(X, %) < A%, )- (20)
Forany N21,set t = p(X% x; ) On the occasion of the facts above {t,}

is a non-increasing sequence of non negative real numbers. Consequently, there
exist L>0 such that

Ilmp(x x ) (21)

n—o

We shall prove that L=0. Since (x ) 2¢p( X} ”*1) then we get

IImd( )=2L.Similarly, Iimp( - 2:}1) 2L. Then

i[5, 5, 304

On the other hand, by taking limitas n — oo in (19), we have,
L<8[4L+{ (x,1 xln)er(xAnl x;‘ﬂ*ll)ﬂ

This implies 4L<I|m{ (ﬂﬂ Aﬂ)+p( i "+l)}.

n+l

Hence |Im{ (ﬂﬂ in)+p(xl o Xﬂnl)} 4L.

n—o0

Now from (18) we have
s <w (41) B3, 0, )+ (36,) (64 X0 )+ (X0 )t

e e
—¢{tn,tm1§[/s(x;1,xzsi)w(x?n'xz)J}-

n-1 n+l

tn+1£%{lb(x2ﬂvx ) ,D( Ana? ﬂﬂl)+tn+l+tn+tn+l+tn—l

oot - 2060

By taking limitas n — co in the above inequality, we deduce that,
L<L-g(L,L,2L).

So ¢(L,L,2L)=0, since ¢(X/1 Yoo w) 0=x,=Y,=2,=0, weget
L=0.

K2
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Due to IImp( QH)SZL and Ilmp( » n+1)<2L we have

n—w n—o An+1

i 506, 0, ) =im 5 (.4 3 ) = lim (0, 1) =0. (22
n—oo

We shall show that {xﬁn} is a p -Cauchy sequence. At first, we prove the
following fact:

(K) for every €>0, thereexist N€ N suchthatif r,q=n with
r—q=1(m), then p(x;r,qu)<e.

Suppose to the contrary that there exist € >0, such that for any nin N, we
canfind r, >q,>n with r,—q, =1(m) satisfying

ﬁ(x;“rn , qu"n )2 €. (23)

Following the related lines of the proof of theorem (1.8) we have

i pd Gn | =
!Lrl]op(qun ' Xirn ) &
H ~ g+l L+l
!L[gp(xﬁqnﬂ’xlrnﬂ)_e’
|Imp(Xq" xrn+ )—e and Iim,b( X x;‘; ) €. (24)
n—w “an n—o +

Since xg; & X7 lie in different adjacently labeled sets A; and A, for a
certain 1<i<m. Using the fact that (f,p) is y-cyclic generalized weakly C-
contraction, we have

Pl )=p((fo)xt (.0)x, )
wMH(ww)hwwwﬁmm
v ((fo )(f wwwwwwwm)
(o )( K )p (6 (1.0 )

1+p(q" XA,)

)mmwmdwmm
1+ p(xXp ()0 )

ol (100 ). A (o))

ol (1o, )+ 10052 )]

<L (it ) pl s o[ s o (s

Pl i)l ) A0 )l )
1+p( XX ) 1+p(X/{‘ ,xj:“)

{0ty o o o ) g A i o (o )]
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Now, by taking limit as N — oo in the above inequality, we derive that

es%[e+e+0+0+0+o]—¢[o,o,e]g%e.

This is a contradiction. Hence condition (k) holds. We are ready to show that

the sequence {xzn} is a Cauchy. Fix €>0. By the claim, we find n, e N such

thatif r,q>n, with r—q=1(m) then

S ™ n <£<£. 25
p(xlrn,qun)_4_2 (25)
: H -y | N+l
Since me(xln,ximl)—o,we find n, e N such that
n+l €

2m

for any n>n,. Suppose that r,s>max{n,,n} with s>r. Then there exist
ke{l,2,---,m} such that s—r=k(m) . Therefore, s—r+¢=1(m),
p=m-k+1.
So we have, for je{1,2,3,---,m}, s+ j—r=1(m),
p¥ %)< A%, %2} J+ A (%, )
+,0( s+] Xi+111)+ +,0( x5+ Xi)

By (25) and (26) and from the last inequality, we get

- or €
X, X, )<=+ ><—< +Mx—=€.
p(X,%,) =5 AT m -

n

n
Since Y is p-closed in (X,5,E), then (Y,5,E) is also complete, there

This proves that {x } isa p -Cauchy sequence.

exists z, €Y = U A suchthat lim %} =z, in (Y,5,E), equivalently

p(z,, w)—llmp( o X )_ml!]r_rjwp( i x;‘m):o. (27)

n—o

In what follows, we prove that X, is a soft fixed point of (f,¢). In fact,

since limx] =z, andas Y = U A is cyclic representation of ¥ with respect

n—o n

n

n
iefl, 2,3,-~,m}. Suppose that x, € A, (f,p)x, € A,, and we take a subse-

to (f,p), the sequence {x } has infinite terms in each A for

quence {x';:k} of {xgn} with Xz:k € A, (the existence of this subsequence is

guaranteed by the above mentioned comment). By using the contractive condi-

tion, we can obtain
Pl (fo)x s =5((F0)x (T.0)x,)
gy/(x&ﬁk),b(xﬂ,(f,(p)xi:k)+y/((f,go)x2:k),6(xjk ,(f,go)XA)
sy ((Fa0) 3 )A(x(Fao)x, )+w ((F.0) X3 )A(x3 (L)X )
‘n ﬁ(xﬁ:k,(f,(p)x”k) (x,.(f.0)x, )
wl(rora) 1+5(xz, %)
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Sa{ﬁ@w@mﬁ+ﬁhm«fﬂaa%¢%m4ﬁ¢>> A, )

+p@mxxn~v«fwwn+ﬁ(wxrwp@W(fwnJ}

15, ) 1+p (%527
o{p{ o ) 2 (101 A 0n) +a2)

Passing to the limit as limn— o and using X;'ﬂkk — X,, lower semi-conti-

nuity of ¢ , we have
ﬁ(xw(fv(”)x/l)

S%{O+ﬁ(xl,(f,(p)Xi)+/3(Xi,(f,go)Xl)—i-O-i-O-i-O}
—¢{0,[)(Xl,(f,(/J)X/I),%[[)(Xl,(f,(p)xl):l}

ji’( (f.0)x,).

So ﬁ(Xl,( f,0) Xz) =0 and therefore x, isfixed pointof (f,¢).

Finally to prove the uniqueness of soft fixed point theorem, suppose that
Y2, e(X,p,E) are soft fixed points of (f,p). The cyclic character of
(f,@) and the fact that y,,z, € (X,p,E) are soft fixed points of (f,¢p) im-

plies that y,,z, eﬂLA. Also suppose that W(yﬂ)s%. By using contrac-

tive condition we derive that
p(vinz.)=A((f.0)y

<y (%.)p(2,.(f.0) A+W(

+u((1.0)°,)A(2:(T10)

P ,
Ay, (f,

w((f0)'v,)

%[ﬁ(y,,xf,¢)zw)+ﬁ(zw,(flw)yﬂ)]j
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L+ A(Yu2)

—¢p(,6(yy,y”),i)(zw,zw),§

This gives us ﬁ(Zw, y ) =0, thatis z, = y,, - This finishes the proof.
Corollary 2.19: Let (X /B,E) be a complete soft dislocated metric space,

meN,let A,A,---, A, benonempty p-closedsubsetsof (X,d,E) and
let Y = U:;mA . Suppose that (f,@):Y =Y isan operator such that
i)Y Ui:mA is cyclic representation of (X, 5,E) with respectto (f,¢)

ii) there exist f € [0,%) such that

A((f.0)x.(.0)y,)

f
sﬂ{mum) (5 (1.0)y,)¢ <yﬂ,<,>yﬂ)

y,
)%:) A (Yo (F.0)Y,) (28)
(%

+,5(X/1’(f’¢’)x/1)+ (Xi, - 1¢+)/(!;1 )
A% (o) %) (31, wm)}
1+ 5(y,.(f.0)x,) |

,m, where A, =A. Then (f,p)

for any x, €A, y,eA,, i=123-

has fixed point z,, € ﬂ:jA .
Example 2.20: Let (X p,E)=R with soft dislocates metric space

~(xﬂ,yﬂ) max{|x/1| |y#} forany X Y e(X,p,E), suppose A = [ 20]
U A we define (f,p):Y ->Y by

and A, =[0,2] &
_3%* if x, e[-2,0],

(f"ﬂ)XA: V.
1_(;’ ifx, €[0,2],

It clear that UiZZA is cyclic representation of ¥ with respectto ( f,¢)

Proof: Let Xil eA= [—2,0] and sz eA = [0,2]

ﬁ((f,(p)xi,(f,@)yy)
=max{_xl | }s max{i ,ﬁ}smax{i,y—”}
32|16 32| 16 16 16

s%max{|xl|,|yﬂ|} =%/3(Xp Yu)'
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—
—_
S
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<
=
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L ALa(F0)x) p(x(F0)y,)
1+ 5(Y,.(f.0)x,)
Hence the condition of corollary (2.19) (theorem 2.18) holds and (f,¢)) has
a soft fixed pointin A N A,. Here X, =0 isa soft fixed point of (f,¢).
In the above theorem 2.18, if we take A =(X,5,E), forall 0<i<m then
we deduce the following theorem.
Theorem 2.21: Let (X,5,E) be a complete soft dislocated metric space and
(f.@):(X,5,E)—>(X,p,E) beasub y-admissible mapping such that
A((f.o)x.(f.0)y,)
SW(Xi)ﬁ(yyi(f!¢)Xi)+

w(
+u (o) Xz)ﬁ(yﬂ,(f,w)yﬂ)W/((f,co)B Xl)ﬁ(xl,(f,w)xﬂ)
?)

—¢{/5(x1,(f.co)xi),ﬁ(y#,(f,(p)yy),

%[la(xw(f’w)yy)“Lﬁ(yw(f"p)xzﬂ};

forany x,,y, € (X,p,E),where g, we¥.Then (f,p) hasunique soft
fixed pointin (X, p,E).

Corollary 2.22: Let (X, 5,E) be a complete soft dislocated metric space and
(f.@):(X,5,E)—>(X,p,E) beasub y-admissible mapping such that

ﬁ((f'f")xw(f’(/’)yﬂ)

Sﬂ{ﬁ(yﬂ,(f,w)xﬁ)m(xw(f,¢>yﬂ>+,s(yy,(f,¢>y#)

fixed pointin (X, p,E).
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Example 2.23: Let (X, 5,E)=R with soft dislocated metric space
~(X,l,y )=maX{Xl,yﬂ},forany X, Y, €(X,p,E). Let
(f.@):(X,p,E)—>(X,p,E) be defined by
(xﬂ)2+xﬂ _
———=, if0<x, <],
18
X .
é, ifx, >1,

Proof: To show the existence and uniqueness soft point of (f go) we inves-

(f.o)x, =

tigate the following cases
Let 0<x,,y, <1 then

A(f0)x.(T.0)y,)

XCHx, Yo+, 1
=m x{—’llg ’—18 }<Emax{xﬂy}=lo (ly)

Let x,,y,>1 then
1 1
A(F.0)x(F0)y,) = omax{x,y, <
Let 0<X, <1 and y,6 >1 then
. X2+x, Y, 1 1.
p((f,¢)xi,(f,¢)y/,)=max{il—;,ﬁ}sﬁmax{xz,y#}ZEP(XA,V,J)'

Hence
ﬁ((f,gp)xl,(f,go)yﬂ)
S%{[)(yﬂ,(f,co)xl)+/3(xm(f,w)yﬂ)+ﬁ(yy,(f,¢)yﬂ)

+ 5(x X +ﬁ(xl’(f'(D)x/l)ﬁ(yu’(f’(p)y#)
,0( /I!(f1¢) /1) l+/5(X/1,y”)
( X (f.0)x )'5( X (f, ¢’)yﬂ)}
1+ 5(Y,(f.0)%)

Hence all the condition of corollary (2.22) (theorem 2.21) are satisfied. Thus
(f.@) has a unique soft fixed point in (X,d,E) indeed 0 is the unique soft

fixed point of (f,¢).
Corollary 2.24: Let (X .d, E) be a complete soft dislocated metric space,

meN,let A,A,---,A, benonempty p -closed subsets of (X,p,E) and let
Y = U:TA . ?uppose that ( f,p):Y >Y isan operator such that
i) Y= U'_mA is cyclic representation of (X,p,E) withrespectto (f,¢)

) J. fszz(fqoy;,) dt<ﬂj

where
m=5(Y,.(f.0)x)+5(x.(f, fﬂ) y)+/5(yw(f,¢)yﬂ)+/5(xp(f,<0)><1)
(% ( f(/’ () AV (f.0)Y,) 'b(xw(f 4”) )/5
Yo (f,

% Y,)

<

A
+p
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forany x, eA,y,eA,, i=12--,m. Where A ,=A and
p:[0,0) >[0,0) is
Lebsegue-integrable mapping satisfying _[;p(t)dt , for ¢€>0 and the con-

stant fe {0,%). Then (f,p) has unique soft fixed point z, € ﬂ:jA

In corollary 2.24, if we take A =(X,p,E), for i=1,2,---,m. We obtain the
following result.

Theorem 2.25: Let (X, 5,E) be a complete soft dislocated metric space and
(f.@):(X,5,E)—>(X,p,E) beamapping such that for any
X0 Y, e(X,p,E) then

AT o F.0)Ya) "
i Hp(t)de< gl p(t)dt.

0

where
m=5(y,.(f.0)x,)+5(x.(f.0)y,)+5(y,.(f.0)y,)+5(x:.(f.0)x,)

+ﬁ(xw(fv(o)xz),b(yﬂ-(f:?)yﬂ)_i_/a(x/w(fl([’) )ﬁ(xw(f’(ﬂ)yﬂ)
1+ p(x

X,
zvy,,) 1+[7(yﬂv(fa¢)x/1) ’
Let p:[0,00)—[0,00) is Lebsegue-integrable mapping satisfying _[;p(t)dt

1
for €>0 and the constant ﬂe[o,gj. Then (f,p) has unique soft fixed

point.

3. Conclusion

In this paper, the investigations concerning the existence and uniqueness of soft
fixed point of a cyclic mapping in soft dislocated metric space are established.
Examples are given in the support of established results. These results can be ex-
tended to any directions, and can also be extended to fixed point theory of
non-expansive multivalued mappings. These proved results lead to different di-

rections and aspect of soft metric fixed point theory.
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