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Abstract 
The paper is concerned with spherically symmetric static problem of the Clas-
sical Gravitation Theory (CGT) and the General Relativity Theory (GRT). 
First, the Dark Stars, i.e. the objects that are invisible because of high gravita-
tion preventing the propagation of light discovered in the 18th century by J. 
Michel and P. Laplace are discussed. Second, the Schwarzchild solution which 
was obtained in the beginning of the 20th century for the internal and external 
spaces of the perfect fluid sphere is analyzed. This solution results in singular 
metric coefficients and provides the basis of the Black Holes. Third, the gen-
eral metric form in spherical coordinates is introduced and the solution of 
GRT problem is obtained under the assumption that gravitation does not af-
fect the sphere mass. The critical sphere radius similar to the Black Hole ho-
rizon of events is found. In contrast to the Schwarzchild solution, the radial 
metric coefficient for the sphere with the critical radius referred to as the Dark 
Star is not singular. For the sphere with radius which is less than the critical 
value, the GRT solution becomes imaginary. The problem is discussed within 
the framework of the phenomenological theory which does not take into ac-
count the actual microstructure of the gravitating objects and, though the 
term “star” is used, the analysis is concerned with a model fluid sphere rather 
than with a real astrophysical object. 
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1. Introduction 

The existence of Dark Stars was predicted by J. Michel in 1783 and P. Laplace in 
1796 [1] [2]. As known, the escape velocity for a spherical body with radius R 
and mass m is 

e gv c r R=                             (1) 
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in which c is the velocity of light and 
22gr mG c=                           (2) 

is the so-called gravitational radius which depends on the gravitational constant 
G and the sphere mass. For the sphere with constant density µ in the Euclidean 
space  

34 3πm Rµ=                            (3) 

Substituting Equations (2) and (3) in Equation (1), we get 

2 2 3πev R Gµ=                         (4) 

According to the reconstructed Laplace calculation, for Earth with density µE 
= 5520 kg/m3 and radius RE = 6371032 m, Equation (4) yields ve = 11,000 m/s 
which is 27,270 times less than the velocity of light. Because ve in Equation (4) is 
proportional to R increasing R up to 1.62 × 1011 m which is 249.6 times higher 
than the radius of Sun (6.96 × 108 m) we arrive at ve = c. This calculation allowed 
Laplace to conclude that the star with the density of Earth and the radius which 
is about 250 times larger than the radius of Sun is not visible and can be referred 
to as the Dark Star. Later, the idea of Dark Stars based on CGT and the corpus-
cular model of light was abandoned by Laplace and the subsequent authors [1] 
[2]. The present paper contains an attempt to revive this idea within the frame-
work of GRT. Under some assumptions, we obtain the solution of GRT equa-
tions which corresponds to the object that can be treated as the Dark Star. 

2. General Relativity Equations 

The general form of the line element in spherical coordinates r, θ, ϕ can be pre-
sented as 

( )2 2 2 2 2 2 2
11 22 44d d d sin d ds g r g g c tθ θ ϕ= + + −              (5) 

For spherically symmetric static problems, the components of the metric ten-
sor gij depend only on the radial coordinate r. Material properties of space are 
determined by three components of the energy tensor 1

1T , 2 3
2 3T T= , 4

4T  which 
satisfy the conservation equation [3] 

( ) ( ) ( )1 2 1 1 422 44
1 2 1 1 4

22 44

0
2

g gT T T T T
g g
′ ′′ − − + − =                 (6) 

where (…)′ = d(…)/dr. 
In accordance with the basic mathematical idea of GRT, Equation (6) is satis-

fied identically if the tensor j
iT  is expressed in terms of the metric coefficients 

by the following Einstein equations: 

1 22 22 44
1

22 11 22 44

1 1
2 2
g g gT

g g g g
χ

 ′ ′ ′ 
= − +  

  
                   (7) 

2 2
2 22 44 22 44 22 44 11 11 44

2
11 22 44 22 44 22 44 11 11 44

1
2 2 2 2 4 4
g g g g g g g g gT

g g g g g g g g g g
χ

 ′′ ′′ ′ ′ ′ ′ ′ ′ ′     
 = − + − − + − −     
       

(8) 
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2
4 22 22 11 22

4
22 11 22 22 11 22

1 1
2 2

g g g gT
g g g g g g

χ
 ′′ ′ ′ ′ 
 = − − − 
   

             (9) 

Here,  
48πG cχ =                         (10) 

is the GRT gravitational constant. Because the left-side parts of these equations 
are linked by Equation (6), only two of three Equations (7)-(9) are mutually in-
dependent. Traditionally [3], the simplest combination of these equations, in-
cluding Equations (7) and (9) is used to determine the metric coefficients g11 and 
g44 whereas Equation (8) is satisfied identically for any function g22(r) Possible 
forms of the solution of two equations (7) and (9) with three unknown functions 
are discussed by Vasiliev and Fedorov [4]. 

Because the metric coefficients must be positive, introduce new functions, i.e., 
take g11 = g2(r), g22 = ρ2(r), g44 = h2(r). Consider the external and the internal 
spaces for the sphere with radius R.  

For the external empty space (r ≥ R) we have 0j
iT = . Then, Equation (6) is 

satisfied automatically, whereas Equations (7) and (9) reduce to 

( )22
2

21 0, 2 2 0e e e e
e e e e e e

e e e ee

h gg
h gg

ρ ρ ρ ρ ρ ρ ρ
ρ ρ

′ ′ ′ ′   
′′ ′ ′− + = − + − =   

   
     (11) 

Index “e” corresponds to the external space. Thus, we have two equations for 
three functions ge(r), ρe(r), he(r) and to solve the problem, we need one more 
equation. 

For the internal space of the solid sphere (0 ≤ r ≤ R),  
1 2 3 4 2

1 2 3 4, ,rT T T T cθσ σ µ= = = =  

where σr and σθ are the radial and the circumferential stresses acting in a solid 
sphere. Then, Equations (7) and (9) become 

2 2
21 1 i i i

r
i i ii i

h
hg

ρ ρ
χσ

ρ ρρ
′ ′ ′ 

= − + 
 

                   (12) 

2
2

2 2
2 21 1 i i i i

i i i ii i

gc
gg

ρ ρ ρχµ
ρ ρ ρρ

 ′ ′′ ′ ′ 
 = − + − 
   

                (13) 

Index “i” corresponds to the internal space. The conservation equation, Equa-
tion (6), takes the form 

( ) ( )22 0i i
r r r

i i

h c
hθ

ρσ σ σ σ µ
ρ
′ ′

′ − − + − =                 (14) 

This is actually the equilibrium equation for a solid sphere [5]. As known, to 
determine the stresses, the equilibrium equation should be supplemented with 
constitutive equations which link stresses and strains in a deformable solid and 
with the compatibility equations for the strains. Such equations do not exist in 
GRT, and this theory cannot be applied to study gravitation in deformable solids 
[6]. The only particular case for which the solution can be found corresponds to 
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the sphere consisting of perfect fluid. In this case, σr = σθ = –p(r) where p is the 
pressure in the fluid. Then, Equation (14) reduces to 

( )2 0i

i

hp p c
h

µ
′

′ + + =                          (15) 

Thus, for the case of a fluid sphere we have three equations, Equations (12), 
(13) and (15), which include four unknown functions gi(r), ρi(r), hi(r) and p(r). 
Again, to solve the problem we need one more equation. 

The solution for the external space must satisfy the asymptotic condition ac-
cording to which it must degenerate into CGT solution with a distance from the 
sphere, the solution for the internal space must satisfy the regularity condition at 
the sphere center, and both solutions must meet the boundary conditions on the 
sphere surface. 

3. Schwarzchild’s Solution and Black Holes 

Both external and internal problems for a fluid sphere were solved by K. 
Schwarzchiuld in 1916. The equation that forms the complete set with the equa-
tions presented above was taken in the form p(r) = r. 

3.1. External Space 

Putting pe = r in Equations (11), we arrive at 

( )2
2

1 d1 , 0
2 d

e
e

e e

h rg r
h r r g

 ′
= − − = 

 
 

The solutions of these equations are 

2 2 1
2

1

1 , 1
1e e

Cg h C
C r r

 = = + +  
                    (16) 

The integration constants C1 and C2 can be found from the asymptotic condi-
tions according to which for r → ∞ the obtained solution must reduce to the 
CGT solution that is expressed in terms of the Newton gravitation potential ϕ 
[7], i.e., to 

2 2
0 02 2

2 21 , 1 , Gmg h
rc c

ϕ ϕ ϕ= − = + = −                  (17) 

As a result, Equations (16) take the well known form [3] 

2 21 , 1
1

g
e e

g

r
g h

r r r
= = −

−
                      (18) 

As follows from the derivation of Equations (18), they include the radius rg 
which is specified by Equation (2) and corresponds to the classical gravitation 
theory. Equations (18) show that the Schwarzchild solution determines the me-
tric coefficients of the external space in terms of the sphere gravitational radius 
which depends on the sphere mass only and does not take into account the in-
ternal structure of the sphere, i.e., the structure of the source of gravitation. Such 
situation is typical for CGR, i.e., for the solution in Equations (17), which is 
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unique. However, for GRT the situation can be different, because the function 
g22 = ρ2(r) in Equation (5) can be chosen in different forms. Consider, for exam-
ple, De-Donder-Fock solution which satisfies the so-called harmonic coordinate 
condition. Omitting mathematical formulation and physical interpretation of 
this condition which can be found elsewhere [8] [9], presume that the function 
ρ(r) has the following form: ρ(r) = r + rg/2. Then, the solutions of Equations (11) 
become [8] [9] 

2 22 2
,

2 2
g g

e e
g g

r r r r
g h

r r r r
+ −

= =
− +

                 (19) 

For r → ∞, these solutions asymptotically reduce to Equations (17). Thus, 
Equations (19) satisfy all GRT equations and asymptotic conditions, but do not 
coincide with the Schwarzchild solution in Equations (18). 

3.2. Internal space 

For the internal space of the fluid sphere and ρ(r) = r, Equations (12) and (13) 
reduce to 

2 2
31 1 1i

ii

h p
r hrg r

χ
′ 

+ − = 
 

                     (20) 

2
2 2

1 d
d i

rr c
rr g

χµ
 

− = 
 

                     (21) 

In conjunction with Equation (15) for the pressure we have three equations 
for three unknown functions gi(r), hi(r) and p(r) For the sphere with constant 
density µ, the solution of Equation (21) which satisfies the regularity condition 
at the sphere center r = 0 is [3] 

( )
2

2 2

1
1 3ig

c rχµ
=

−
                       (22) 

This solution must satisfy the boundary condition on the sphere surface ac-
cording to which gi(R) = ge(R). Using Equations (18), we have 

2 31
3 gc R rµ =                           (23) 

and finally get [3] 

2
2 3

1
1i

g

g
r r R

=
−

                          (24) 

Consider Equation (20) for hi. Substituting Equation (24), we arrive at 

2 3 2
1 1 1
2 1

i

i g

h r p
h rr r R r

χ
 ′  = + −  −    

               (25) 

Substituting Equation (25) in Equation (15) and using Equation (10) for χ, we 
get the following equation for the pressure in the fluid: 

( ) ( )2
23 2

31 0
2

g

g

r r pp p c
cR r r

µ
µ

 ′ + + + = 
−  

              (26) 
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The general solution of this equation is [3] 
2 3

32

2 3
3

1

1 3
g

g

r r R C
p c

r r R C
µ

− −
= −

− −
                     (27) 

The integration constant C3 can be found from the boundary condition on the 
sphere surface according to which p(R) = 0. The resulting expression for the 
pressure is [3] 

2 3
2

2 3

1 1

1 3 1
g g

g g

r r R r R
p c

r r R r R
µ

− − −
= −

− − −
                 (28) 

Thus, the Schwarzchild solution is specified by Equations (18) for the external 
space and Equations (24), (25), (28) for the internal space of the fluid sphere 
with constant density. 

3.3. Analysis 

To demonstrate the specific features of the Schwarzchild solution, consider it for 
the sphere surface r = R. For this surface, we have 

1 ,
1

1

e i R
g

e i R g

g g g
r R

h h h r R

= = =
−

= = = −

 

As can be seen, for the sphere with radius R = rg, gR becomes singular and hR is 
zero. This result has not been accepted by A. Einstein [10] who expected that 
GRT could not be valid for the sphere with radius close to rg. Later, the singular-
ity of the Schwarzchild solution gave rise to the idea of Black Holes and rg was 
referred to as the radius of the horizon of events of the Black Hole [1] [2]. How-
ever, recent results in Mechanics of Solids [11] allow us to conclude that singular 
solutions do not have physical nature and are the formal consequences of the 
discrepancy between physical and mathematical models. Particularly, the ma-
thematical model of space specified by Equation (5) is simplified by the condi-
tion ρ(r) = r which is not properly justified. As a result, the Schwarzchild solu-
tion suffers from several shortcomings discussed below. 

First, the critical radius rg in GRT solution in Equations (18) and (24) is the 
same that in Equation (2) which follows from CGT. 

Second, the solution for gi in Equation (24) satisfies the boundary condition 
on the sphere surface only if Equation (23) is valid. Substituting rg from Equa-
tion (2) and χ from Equation (10) in Equation (23), we can derive the equation 
for the sphere mass which becomes m = 4/3πµR3 and coincides with Equation 
(3) corresponding to the Euclidean space. However, the space inside the sphere, 
in accordance with the basic idea of GRT, is Riemannian. The mass of the sphere 
with constant density corresponding to the metric form for the line element in 
Equation (5) is 

2

0

4π d
R

i im g rµ ρ= ∫                         (29) 
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Substituting gi from Equation (24) and taking ρi = r, we get 
2

4 1 3 32π 4 9sin 1 π 1
3 10 56

g g g g

g g

r r r rRm R R
r r R R R R

µ µ−
    
  = − − ≈ + + + ⋅ ⋅ ⋅        

(30) 

The second part of this equation is the power decomposition with respect to 
rg/R. As follows from Equations (3) and (30), the sphere mass corresponds to the 
Euclidean space only if rg = 0. In the general case, rg ≥ 0 and the sphere mass, 
corresponding to the Schwarzchild solution must be specified by Equation (30). 
However, in this case ge(R) ≠ gi(R) and the boundary condition for the external 
and internal spaces cannot be satisfied on the sphere surface. 

Third, Equation (28) for the pressure demonstrates rather specific behavior of 
the function p(r, R) [12]. Consider the pressure at the sphere center. Taking r = 0 
in Equation (28), we get 

2
0

1 1

3 1 1
g

g

r R
p c

r R
µ

− −
=

− −
                    (31) 

The denominator of this expression becomes zero if R = Rs = 9/8rg = 1.125rg 
[13]. Thus, the pressure becomes infinitely high at the sphere center if R = Rs. 
This result is traditionally used to justify the existence of Black Holes [1]. How-
ever, Rs does not coincide with rg. Then, Equation (31) specifies the pressure if R 
< Rs but this pressure is negative (or the density is negative) which does not have 
physical meaning. Finally, if we use the general solution in Equation (27) and 
take r = rg, we get 

( )
( )

2
32

2
3

1

1 3

r R C
p c

r R C
µ

− −
= −

− −
 

On the sphere surface r = R, we have p(R) = –µc2/3 and the boundary condi-
tion p(R) = 0 cannot be satisfied. 

3.4. Generalized Schwarzchild Solution for the Internal Space 

The original Schwarzchild solution for the internal space discussed in Section 3.2 
has been obtained for the sphere with constant density µ. Within the framework 
of the Schwarzchild assumption, i.e. ρ(r) = r, consider the sphere for which µ(r) 
is an arbitrary function of the radial coordinate. In this case, the solution of Eq-
uation (21) that generalizes the solution in Equation (22) for the constant densi-
ty is 

( )
1

2 2 2

0

11 d
r

ig c r r r
r

χ µ
−

 
= − 
 

∫                   (32) 

For the sphere surface, we get 

( )
12

2 1
4πi
cg R mχ

−
 

= − 
 

 

where 
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( ) 2

0

4π d
R

m r r rµ= ∫  

is the sphere mass corresponding to the Euclidean space. If we use Equations 
(18), (2) and (10) for ge, rg and χ, we can conclude that Equation (32) satisfies 
the boundary condition gi(R) = ge(R). However actually, the sphere mass with 
the metric coefficient specified by Equation (32) does not correspond to the Euc-
lidean space. 

Thus, in the general case of the sphere whose density is an arbitrary function 
of the radial coordinate and ρ(r) = r, the boundary condition for g(r) can be sa-
tisfied only if the geometry of the internal space is Euclidean which is not the 
case. The reason of this situation follows from Equation (13) which has, in gen-
eral, the second order. Under the condition ρ(r) = r, it reduces to the equation of 
the first order and the corresponding solution does not contain the proper 
number of integration constants that are required to satisfy the boundary condi-
tions. 

4. Dark Stars 
4.1. General Solution 

Consider the general metric form of the line element specified by Equation (5) in 
which 2

22( ) ( )g r rρ=  is some unknown function. For the external space, the 
second equation in Equations (11) can be reduced to  

( )2

2
1 d 1

d
e e

e er g
ρ ρ

ρ

 ′
= 

′   
 

and has the following general solution: 

( )2
2

4

e e
e

e

g
C

ρ ρ
ρ

′
=

+
                            (33) 

Substituting this result in the first equation in Equations (11) and integrating, 
we get 

2 4
5 1e

e

Ch C
ρ

 
= + 

 
                            (34) 

Assume (and further prove) that the following asymptotic conditions are valid 
for ρe→ ∞: 

( ) ( )lim , lim 1e er r rρ ρ′= =                       (35) 

i.e., that at a distance from the sphere ρe degenerates into r. Then, Equations (33) 
and (34) asymptotically reduce to Equations (17) corresponding to CGT if C4 = 
-rg and C5 = 1. Finally, 

( )2
2 2, 1 ge e
e e

e g e

r
g h

r
ρ ρ
ρ ρ

′
= = −

−
                     (36) 

For the internal space, Equation (13) can be transformed to 



V. V. Vasiliev 
 

1095 

( )2 2 2
2

1 d1
d

i
i i

i i

c
r g

ρ
ρ χµ ρ

ρ
 

′− = ′  
                   (37) 

Assume (and further prove) that at the sphere center 

( )0 0i rρ = =                             (38) 

For the sphere with constant density µ, the solution of Equation (37) that sa-
tisfies the regularity condition at the sphere center is 

( )
( )

2
2

2 21 3
i

i
i

g
c
ρ

χµ ρ

′
=

−
                         (39) 

For ρ(r) = r Equations (36) and (39) coincide with the Schwarzchild solutions 
in Equations (18) and (22). However, in contrast to Equations (18) and (22), the 
obtained equations include the derivative ρ′(r).  

4.2. Internal Space 

Now, we need to specify the function ρ(r). Recall that the main shortcoming of 
the Schwarzchild solution is the discrepancy between the Euclidean form of the 
sphere mass which allows us to satisfy the boundary condition ge(R) = gi(R) and 
the actual mass (30) which corresponds to the Riemannian internal space of the 
sphere.  

Note that the mass in Equation (30) depends on gravitation. Being discussed 
by, e.g. Zeldovich and Novikov [14], the dependence of mass on gravitation, 
does not seem to correspond to the principle of equivalence of gravitational and 
inertial masses. Indeed, the inertial mass shows itself under the action of forces 
whose nature is different from the nature of gravitation. Anyway, as known [3], 
any assumption may exist in GRT if the resulting solution is feasible. Thus, sup-
pose that gravitation does not affect the sphere mass which remains the same 
that in the absence of gravitation and corresponds to the Euclidean space. As 
follows from Equation (29), the sphere mass corresponds to the Euclidean space 
if 

2 2
i ig rρ =                              (40) 

which is the equation for the function ρi(r). Now, since the mass is Euclidean, 
Equation (23) of the Schwarzchild solution is valid and we can transform Equa-
tion (39) to the following final form: 

( )2
2

2 31
i

i
g i

g
r R
ρ
ρ
′

=
−

                           (41) 

Substituting Equation (41) in Equation (40), we arrive at the following diffe-
rential equation for the function ρi(r):  

2 2 2 31i i g ir r Rρ ρ ρ′ = −  

The solution of this equation which satisfies the condition in Equation (38) is 

( )
3

4

2
3

g
i i

r r
F

R
ρ =                          (42) 
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where 

( )
2

1
3sin 1g g ii i

i i
g

r rRF
r R R R R

ρρ ρρ −
 
 = − −
 
 

 

Equation (42) implicitly specifies the function ρi(r) which changes from ρi = 0 
that corresponds to the sphere center to ρi(R) = ρR that corresponds to the 
sphere surface. Taking r = R in Equation (42), we arrive at the following implicit 
equation for ρR: 

( )
2
3

g
i R

r
F

R
ρ =                             (43) 

4.3. External Space 

The metric coefficients for the external space must satisfy the asymptotic condi-
tions in Equations (35) and the following boundary conditions on the sphere 
surface r = R: 

( ) ( ) ( ) ( ),e i e ig R g R R Rρ ρ= =                        (44) 

To satisfy these conditions, assume that Equation (40) is valid not only for the 
internal space, but for the external space as well, i.e., 

2 2
e eg rρ =                            (45) 

Matching Equations (40) and (45), we can conclude that if the second boun-
dary condition in Equations (44) is satisfied, the first of these conditions is satis-
fied automatically because r is continuous. Substituting the first equation in Eq-
uations (36) in Equation (45), we get the following differential equation for the 
function ρe(r): 

2 2 1 g
e e

e

r
rρ ρ

ρ
′ = −                          (46) 

The solution of equation (46) which satisfies the second boundary condition 
in Equations (44) is 

( ) ( )
3

3
1 1
3e e e R

rF F
R

ρ ρ
 

− = − 
 

                     (47) 

where 

( ) ( )2 2
3

3

1 1 5 5
3 12 8

5 ln
8

e e e g e g e e g

g e g e

F r r r
R

r r
R R R

ρ ρ ρ ρ ρ

ρ ρ

 = + + − 
 

 − 
 + +      

 

This solution is valid for ρR ≤ ρe < ∞ where ρR corresponds to the sphere sur-
face. For the external space, we need to check the asymptotic conditions in Equ-
ations (35). Dividing Equation (47) by 3

eρ  and taking ρe → ∞, we can readily 
prove that ρe → r. Differentiating Equation (47) with respect to ρe and dividing 
the result by 3

eρ , we can prove that the second condition in Equations (35) is 
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also valid. Thus, for ρe → ∞, Equations (36) reduce to the Schwarzchild solutions 
in Equations (18) which, in turn, degenerate into the CGT solutions in Equa-
tions (17). 

4.4. Critical Radius 

Consider Equation (47) from which it follows that the real solution exists if ρe ≥ 
ρR ≥ rg. Thus, the minimum possible value of the function ρR that corresponds to 
the sphere surface is rg specified by Equation (2). Taking ρR = rg in Equation 
(43), we arrive at the following equation for the minimum possible value of the 
sphere radius Rg: 

3

1 2
sin 1

3
g g g g g g

g g g g g g

R r r r r r
r R R R R R

−
   
  − − =      

          (48) 

The solution of equation (48) is Rg = 1.115rg. For the sphere with R < Rg, ρR < 
rg and the solution in Equation (48) becomes imaginary. 

4.5. Comparison with the Schwarzchild Solution 

As follows from the foregoing derivation, the obtained solution gives the critical 
radius similar to the horizon of events radius of the Black Hole in the Schwarz-
child solution. However first, this radius does not coincide with rg which actually 
follows from CGT. Second, for the sphere with the critical radius Rg, the solution 
is not singular. Indeed, Equations (40), (45) and (47) for r = Rg yield ge(R) = 
gi(R) = 1.243 and ρe(R) = ρi(R) = 0.8968R. Third, for sphere with radius R < Rg, 
the solution becomes imaginary which means (in accordance with A. Einstein 
prediction) that GRT equations are not valid in this case. The dependences ρ(r) 
and g(r) corresponding to the limiting case R = Rg = 1.115rg are shown in Figure 
1 with solid lines. Dashed lines correspond to the limiting case (R = rg) of the 
Schwarzchild solution. 

As can be seen, the obtained solution coincides with the Schwarzchild solution 
at r = 0 and r → ∞. The most pronounced difference is observed in the vicinity 
of the sphere surface. For R = rg, the Schwarzchild solution is singular at r = R, 
whereas the obtained solution is finite. 

To proceed, find the pressure p in the fluid. Taking σr = -p in Equation (12) 
and substituting gi from Equation (41), we arrive at the following equation for hi:  

2 3 2 2
1 1 1 1
2 1

i
i i

i g i i i

h p
h r R

ρ ρ χ
ρ ρ ρ

  ′
′= + −  −   

             (49) 

in which, as earlier, (…)′ = d(…)/dr. 
Changing r to a new variable ρi, we can transform Equation (49) to  

2 3 2 2
d1 1 1 1 1
d 2 1

i
i

i i g i i i

h p
h r R

ρ χ
ρ ρ ρ ρ

  
= + −  −   

            (50) 

Integration of Equation (50) allows us to satisfy the boundary condition he(R) 
= hi(R). The pressure p entering Equation (50) is specified by Equation (15). 
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Figure 1. Dependences of the space metric coefficients on the radial coordinate. 
 
Changing r to ρi in this equation, we get 

( )2dd 1 0
d d

i

i i i

hp p c
h

µ
ρ ρ

+ + =                        (51) 

Substituting Equation (50) in Equation (51), we obtain the following equation 
for the pressure: 

( ) ( )2
23 2

d 31 0
d 2

g i

i g i

rp pp c
cR r

ρ
µ

ρ µρ
 

+ + + = 
−  

               (52) 

As can be seen, Equation (52) is analogous to Equation (26) and its solution 
which satisfies the boundary condition p(ρR) = 0 is similar to Equation (28), i.e., 

2 3 2 3
2

2 3 2 3

1 1

1 3 1
g i g R

g i g R

r R r R
p c

r R r R

ρ ρ
µ

ρ ρ

− − −
= −

− − −
                  (53) 

The pressure at the sphere center (ρi = 0) is 
2 3

2
0 2 3

1 1

3 1 1
g R

g R

r R
p c

r R

ρ
µ

ρ

− −
=

− −
                    (54) 

The denominator of Equation (54) becomes zero if R = 1.013rg which is less 
than the critical radius Rg = 1.115rg. Thus, in contrast to the Schwarzcnild solu-
tion in Equation (31), the pressure is not singular. For the sphere with the criti-
cal radius R = Rg, we get p0 = 0.808µc2. The dependences of the normalized 
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pressure on the radial coordinate are presented in Figure 2. Solid line demon-
strates the obtained solution, Equation (53), for the sphere with the critical ra-
dius R = Rg. Dashed line corresponds to the Schwarzchild solution, Equation 
(28), for the sphere with the limiting radius R = Rs = 9/8rg. 

Thus, the critical radius is Rg = 1.115rg. Using Equation (2) for rg we get 

22.23g
mGR
c

=                        (55) 

As shown by Vasiliev and Fedorov [15], for the sphere with radius Rg (as for 
the Black Hole) the escape velocity is equal to velocity of light and, following P. 
Laplace, this sphere can be referred to as the Dark Star. Naturally, the parame-
ters of this object are different from those found by Laplace. 

Thus, we can conclude that GRT equations are valid for the problem under 
study if R ≥ Rg. The sphere with R < Rg is statically stable. Assume that due to 
high gravitation the Dark Star with radius R ≤ Rg attracts some additional fluid 
mass with the same density and the star mass becomes higher. Then, in accor-
dance with Equation (55) the critical radius increases in proportion to the mass. 
However, the sphere radius R is proportional to m1/3. So, the inequality R < Rg 
remains valid and the Dark Star remains invisible. 

The obtained result is of a qualitative nature because it corresponds to the 
fluid sphere with constant density, i.e., to the object which is not quite realistic.  
 

 
Figure 2. Dependences of the normalized pressure in the fluid on the radial 
coordinate. 
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5. Conclusion 

As follows from the foregoing discussion, the singular Schwarzchild solution of 
the spherically symmetric GRT problem satisfies the boundary condition for the 
space component of the metric tensor on the sphere surface only if the sphere 
mass is Euclidean which is not the case in GRT. 

The proposed solution of the problem based on the assumption according to 
which the gravitation does not affect the sphere mass, in contrast to the 
Schwarzchild solution, is not singular and specifies the critical radius of the 
sphere limiting the application of GRT equations to the spheres whose radii are 
equal or larger than the critical value. The obtained solution is valid for the 
sphere consisting of a perfect incompressible fluid. Thus, the objects that are 
similar to Dark Stars in the Classical Gravitation Theory can follow from the 
General Relativity Theory. 
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