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Abstract 
The efficient construction of contours of a radio propagation map is crucial in 
using radio propagation maps in a number of real-time communication and 
network applications. In this research work, we first propose an adaptive re-
gion construction (ARC) technique capable of constructing contours of dif-
ferent resolutions of a radio propagation map. Next, the process of imple-
menting the ARC technique for real-time execution on a GPU is presented. 
The drawbacks of the first implementation using only the global memory are 
discussed, and optimization techniques to improve the performance are dis-
cussed and implemented. Simulations are performed with varying sizes of ra-
dio propagation maps, and the suitability of the ARC technique for real-time 
operation is presented. A speedup of 25× is achieved with the shared version 
of the GPU compared to the sequential CPU implementation. Also, the con-
tour constructed using the ARC technique is compared to that constructed 
using the convex hull approach demonstrating the higher accuracy of the 
contour from the ARC technique. 
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1. Introduction 

A mobile ad-hoc network (MANET) of nodes (equipped with sensors) can be 
deployed rapidly in an environment to provide a communication infrastructure 
for a number of applications like environmental monitoring, rescue and defense 
operations to mention a few. However, the successful deployment of a MANET 
is dependent on the ability of neighboring nodes establishing a wireless commu-
nication link and provides connectivity across the network. Establishing a com-
munication link is dependent on the availability of radio spectrum, transmission 
power, interference from neighboring nodes, and the effect of terrain on radio 
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propagation. Depending on the deployment environment, the effect of terrain 
on radio propagation can be modeled with free space (Omni-directional) or 
“two-ray” propagation models if the terrain does not have any hills, buildings, 
and foliage affecting the propagation of radio signals minimally. However, in a 
realistic environment where MANETs are deployed, the terrain consists of hills, 
buildings, foliage, etc., causing reflections, diffraction, blocking and unreliable 
path loss estimates which render free space or two-ray propagation models inef-
fective in modeling the effect of terrain on radio propagation. Hence, more 
complex propagation modeling techniques like the Walfisch-Ikegami model 
(WIM), and 3D ray tracing have to be used to determine the effect of terrain on 
radio propagation. The effect of terrain on the radio propagation by WIM or 3D 
ray tracing is quantified as radio propagation map.  

Radio propagation maps specify the path loss (or received signal strength) at 
various distances and directions from the transmitter taking into account the ef-
fect of the terrain. The path loss [1] is computed using WIM, 3D ray tracing, and 
other models. Each modeling offers trade-offs in terms of accuracy and compu-
tational complexity. A radio propagation map consists of received signal streng- 
ths from a transmitter over a geographic region show neither as a heat map or 
radio contours. Heat maps represent varying signal strengths from a transmitter 
using distinct colors while in radio contours equal signal strength locations are 
connected by lines known as contour lines. A heat map can be stored as a pixel 
image, with pixels representing the signal strength of a location from the trans-
mitter. Radio propagation maps find many applications like the optimum 
placement of mobile phone base stations for maximum coverage, adjusting the 
antenna beam patterns for efficient communication based on the terrain, locali-
zation of mobile nodes in MANETs, etc.  

The application of radio propagation maps in localizing nodes, and antenna 
beam forming [2] [3] [4] [5] has been demonstrated by the authors of this paper. 
The first application addressing efficient localization of nodes of a MANET un-
der free space and terrain effects is discussed in references [2] [3] [4]. In refer-
ence [3], the optimal trajectory of a single moving beacon (beacon mounted on a 
drone or UAV) to localize nodes under free space was presented. Next, the use 
of high-resolution radio propagation maps [2] to localize nodes in a MANET 
using a single moving beacon like a drone or unmanned aerial vehicle has been 
presented.  

In the research work [2], the use of regular geometric shapes known as convex 
hulls to represent irregular radio propagation shapes constructed using the WIM 
model has been presented. The paramount reason for representing irregular ra-
dio propagation shapes with convex hulls is associated with the localizing algo-
rithm [3] developed for nodes of a MANET. The localization algorithm requires 
determination of the area of intersection (approximate node position) of two ra-
dio propagation maps received by the node. Determining the area of intersection 
of two radio propagation maps using a simple bit-wise AND operation [4] was 
demonstrated and found to be impractical due to computational complexity, 
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bandwidth, and storage requirements of each node to use the radio propagation 
maps. Therefore, to address the issues of bandwidth and storage requirements, 
the contour of radio propagation maps was constructed as convex hulls using 
Andrew’s Monotone Chain algorithm [6]. Next, the algorithm developed by 
O’Rourke [7] was used to determine the area of intersection of two radio propa-
gation maps using the constructed convex hulls. The second application consists 
of using low-resolution radio propagation map for computing antenna beam 
patterns [5] to reduce the interference by neighboring nodes.  

The success rate of the localization algorithm using convex hulls representing 
the contour of a radio propagation map of the small geographical area was 80% 
with an accuracy of 1 m. However, with an increase in the size of the geographi-
cal area, the performance of the algorithm deteriorated first due to the convex 
hulls not capturing the contour of the radio propagation map accurately. The 
second issue was with the nonlinear increase of the computational time for con-
structing a convex hull of a radio propagation map of the large geographical area 
(a suburb of a city) with high resolution rendering the localization algorithm not 
suitable for real-time application. 

Hence in this work, we propose an adaptive region construction technique to 
capture the contour of a radio propagation map of large geographical area accu-
rately and suitable for real-time implementation. We propose the use of a gener-
al purpose graphical processing unit (GPGPU) based adaptive region construc-
tion (ARC) for constructing multiple convex hulls of a radio propagation map of 
a large geographical area and combine multiple convex hulls to form regions 
representing the contour of radio propagation maps accurately. 

This paper is organized as follows: In Section 2, a brief discussion of the loca-
lization algorithm [2] developed previously is discussed. The error in the inter-
section area determined using two convex hulls in comparison to the direct use 
of radio propagation maps is shown. Also, the increase in computational time 
for constructing convex hulls of large radio propagation maps with high resolu-
tion is demonstrated. Section 3 presents a discussion on the related work of 
capturing contour of radio propagation maps. In Section 4, first, a brief discus-
sion of the sequential Andrew’s monotone chain algorithm and divide and con-
quer approach for constructing convex hulls is presented. Section 5 presents the 
adaptive region construction technique that merges intermediate convex hulls to 
form regions. The GPGPU implementation of the ARC using only the global 
memory of the GPU is presented in Section 6. Section 7, presents the optimiza-
tions using the shared memory of the GPU to improve the performance of the 
algorithms is presented. Results and analysis of the results are presented in Sec-
tion 8. In Section 9, conclusion and future work are presented. 

2. Localization in Mobile Ad Hoc Networks 

Miles et al. envisioned a single moving beacon mounted on a vehicle capable of 
moving and broadcasting its position periodically to nodes in its transmission 
range based on radio propagation models [2] representing a particular urban 
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environment. Using a-priori knowledge of local terrain including average build-
ing height and separation, average street width and orientation, etc., the WIM 
model is used to estimate path loss and transmission range in any direction. The 
single moving beacon will acquire its geographical position through GPS and 
broadcast its changing position. Having a single moving beacon broadcasting its 
changing position is equivalent to multiple stationary beacons broadcasting their 
different positions. An exchange of a few position messages and acknowledg-
ments between an un-localized node and the moving beacon will allow the 
moving beacon to compute an approximate area to confine the un-localized 
node location.  

Figure 1 shows an approximate propagation map generated using WIM tech-
niques. The white area in Figure 1 shows the estimated area in which an anten-
na is capable of receiving a transmission from a transmitter (beacon node) posi-
tioned at the centroid of the white area. The possible position of a sensor in a 
wireless network using WIM transmission maps can be approximated as the 
centroid of the set given by the intersection of several beacon transmissions as 
shown in Figure 2. A WIM localization technique [4] suggested by Muralidhara 
and Kubichek relies on bitwise AND operations between two radio propagation 
maps for beacon transmissions near an unknown sensor. Depending on the size 
of the coverage area spanned by the MANET, these maps can be quite large.  

 

 
Figure 1. WIM propagation approximation. 

 

 
Figure 2. Possible position of a node in MANET using WIM. 



V. B. Ramakrishnaiah et al. 
 

25 

 
Figure 3. (a) Range map and its corresponding (b) convex hull. 

 
Transmission and comparison of these maps require large bandwidth and com-
putational capability. Also, it is difficult to implement an intelligent localization 
algorithm based on the shapes of the range maps. The above drawbacks are ad-
dressed by using convex hulls to represent the irregular radio propagation 
shapes with regular geometric shapes [2]. By using the convex hull approach, 
each radio propagation map can be stored using only a small number of boun-
dary points as shown in Figure 3. Next, the intersection of two convex hulls 
representing the approximate location of an un-localized node as shown in Fig-
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ure 4 is determined using the algorithm proposed by O’Rourke [7]. 
Even though the use of convex hulls to represent radio propagation maps had 

reduced the storage requirement and transmission bandwidth, it introduced sig-
nificant errors in localization and increased the computational burden. In Fig-
ure 5, a number of examples of the artifacts introduced in representing radio 
propagation maps by convex hulls are shown. The first column (a - c) in Figure 
5 depicts the radio propagation maps constructed using the WIM model, the 
second column (d - f) shows the corresponding convex hull, and the third col-
umn (g - i) shows the artifacts introduced in representing radio propagation 
maps by convex hulls. The difference in the area of the convex hull and the area 
enclosed by the radio propagation contour is the artifact introduced by the con-
vex hull approximation. While using the technique of localization using the in-
tersection of the convex hulls, the artifacts introduce superfluous area, which in 
turn introduces error in the computed localized position compared to the loca-
lization using the intersection of radio propagation contours as shown in Figure 
6. In Figure 6, with the actual radio propagation maps, the position is close to 
the real position, whereas for the convex hulls it is the centroid of the intersec-
tion area of the two hulls, which is far away from the real position. As an exam-
ple, a convex hull was constructed to represent the radio propagation map of size  

 

 
Figure 4. Intersection of two convex hulls. 

 

 
Figure 5. The original boundary, convex hull, and the artifacts introduced by convex 
hulls. 
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Figure 6. Estimated node positions using the boundary of radio propagation map com-
pared to the estimated position using convex hulls. 

 

 
Figure 7. Time taken to compute convex hulls using Andrew’s monotone chain algo-
rithm. 

 
2.5 km by 2.5 km. The difference in area due to the artifact introduced between 
the contour of the radio propagation map and the corresponding convex hull 
was approximately 0.4 km2, which is about 1/15th of the original area. This dif-
ference in the area can be even more significant when considering radio propa-
gation maps of large urban areas. Along with the introduction of artifacts, the 
computation of convex hulls of very large geographic areas is a computationally 
intensive problem. Even though efficient algorithms [7] are available to compute 
convex hulls with the computational complexity of (O(nlog(n))), the computa-
tional complexity is an issue when computing convex hulls of large cities se-
quentially. The time taken to compute a convex hull sequentially on an Intel 
Xeon Sandy Bridge processor using the best sequential algorithm for different 
resolutions is shown in Figure 7. From Figure 7 we can see that the execution 
time required to compute convex hulls using sequential algorithms is not suita-
ble for real time applications, especially when high resolution radio propagation 
maps are used. 

In this research work, we propose a new method to assist computation of 
contours of a radio propagation map known as the Adaptive Region Construc-
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tion (ARC) technique. The ARC technique first reduces the superfluous area in-
troduced by the use of convex hulls representing radio propagation maps and 
thereby reduces the localization error. Second, the ARC technique is imple-
mented using the general-purpose computing on graphic processing units 
(GPGPU) to reduce the computational time and make use of radio propagation 
maps in real-time applications feasible. 

3. Previous Work 

Curve simplification algorithms like the Ramer-Douglas-Peucker algorithm [8] 
[9] are used to approximate radio contours by representing the sequence of 
points as line segments. The simplified curve consists of a subset of the original 
set of points, and the algorithm tries to minimize the distance between the orig-
inal curve and the simplified curve. This algorithm does a crude simplification of 
joining the first and the last vertices of a polyline with a single edge, which can 
result in over-simplification of the details. Furthermore, using these algorithms 
directly on large data sets is not suitable for real time applications due to in-
crease in computational complexity. 

Many computer vision applications make use of convex hulls to approximate 
blobs and shapes in images. The authors of [10] use convex hulls to categorize 
shapes of leaves. Convex hulls are constructed to represent the contours of leaves 
and are categorized by finding the variations between the interior angles at each 
control point. However, if two distinct leaves have the same contour constructed 
as convex hulls, the method fails to categorize distinct leaves. This idea has been 
extended to represent radio contours using convex hulls in [2]. 

The authors of [11] propose using convex hulls for a simplified representation 
of “building footprints” on radio propagation which is a crucial step in wireless 
communication. Footprint reduction is crucial for reducing prediction time and 
controlling prediction accuracy in radio communication. They identify that such 
reductions often affect the accuracy of results as simplification error constrains 
the efficiency that can be achieved. In other words, the prediction accuracy can 
be improved by better footprint reduction techniques. This analysis helps in bet-
ter understanding of the trade-off between the precision of the building database 
and the accuracy of predictions generated by ray-tracing based radio propaga-
tion prediction systems. 

The authors of [12] construct convex ray paths to simplify radio propagation 
ray path calculations. Multiple reflections are modeled by their equivalent con-
vex hull. This is a good approximation for calculating signal strengths at a given 
location from the transmitter but can result in errors if the propagation path of 
radio waves through the topography is complex, which cannot be modelled us-
ing simple convex hulls. They also propose using the ordinary graphics card and 
specialized algorithms to achieve extremely fast radio wave propagation predic-
tions. They show that their implementation of the COST-Walfisch-Ikegami 
model can efficiently calculate 200 predictions per second, whereas a CPU im-
plementation of the same COST-Walfisch-Ikegami models needs slightly less 
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than a minute for a single prediction. 
Cheng et al. [13] proposes a method to improve wireless connectivity in ad 

hoc networks using a partitioning technique based on the conductance of a net-
work. They use convex optimization to maximize the number of connections 
between the communicating nodes on different sides of the partition. The opti-
mization is used to find the precise location of the relay node, which is within 
the convex hull defined by the radio transmission ranges of all the nodes that 
can connect the relay node. This process can be improved by accurately defining 
the radio propagation maps for each transmitter positions. 

Liu et al. [14] focus on identification of non-line-of-sight (NLOS) signal 
propagation, which is the dominant source of localization error in wireless net-
work nodes. They present a theoretical analysis of mobile user localization in-
volving one or more NLOS beacons and show that if the mobile user is within 
the convex hull region formed by the underlying beacons, localization involving 
NLOS is likely to be largely inconsistent. However, if the mobile user is outside 
the convex hull region, localization involving NLOS could be performed consis-
tently. They argue that relying on existing methods to identify NLOS would lead 
to a great chance of underestimating the potentially serious errors in localization 
involving NLOS. 

Most of the research work discussed above requires contour and points inter-
nal to the contour to represent the radio propagation maps. However, for locali-
zation and other applications, accurate representations of the radio propagation 
map to reduce the storages and bandwidth requirements, which are suitable for 
real time applications that are required. Hence in our work, we present the 
adaptive region construction (ARC) technique capable of aiding the construc-
tion of an accurate contour representing the shape of the radio propagation map. 
The ARC technique described in this paper can define the given radio propaga-
tion map contour more accurately compared to a convex hull. Even though our 
algorithm is developed for approximating radio propagation maps, it can im-
prove the accuracy of many applications that make use of sample approxima-
tions and demand real-time/near real-time performance. Our algorithm is 
computationally less complexity and is parallelizable, which makes it suited for 
real-time applications.  

4. Review of Convex Hulls 

To review, by definition, a set, C, is convex [15] if and only if for any x1, x2 ∈  C 
and any θ  where 0 1θ≤ ≤  the following condition holds: ( )1 21x x Cθ θ+ − ∈ .  

In simple terms, this means that a set is convex if the direct path between any 
two points in the set is entirely included in the set. Figure 8 shows a convex set. 
Note that the line between two elements within the set is, itself, completely en-
compassed in the set. If a set bounded by the edges of the white area in Figure 1 
is used, it is easy to see that there are direct paths between elements of the set 
that do not lie completely within the set as in Figure 9(a). A convex hull of a set, 
C, is the minimum convex set that contains the set C. Figure 9(b) represents the  
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Figure 8. A convex set of points. 

 

 
Figure 9. Convex hull of a non-convex set of points. 

 
convex hull of the set shown in Figure 9(a). As the figure indicates, all paths 
between points within the convex hull are now completely encompassed in the 
set.  

By constructing a convex hull of a range map, the storage and transmission 
bandwidth requirements can be greatly reduced. This results from the fact that 
only a small number of boundary points are required to represent the convex 
hull, which approximates the actual radio propagation map. This will serve as a 
lossy compression technique for the localization method. 

Another benefit of the convex hull is that it can be used to make intelligent 
movement decisions more easily as the computation of the intersecting area only 
requires the use of the boundary points of the intersecting convex hulls instead 
of the entire radio propagation maps. 

4.1. Overview of Andrew’s Monotone Chain Convex Hull Algorithm 

The Andrew’s monotone chain convex hull algorithm [6] can find the convex 
hull of a set of points in O(n logn) time. One particular advantage of this algo-
rithm is that it can find the convex hull in O(n) time if the points are already 
sorted in ascending order from left to right and top to bottom, which is the case 
for the data in the radio propagation maps used in this work. This algorithm 
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computes the upper and lower convex hulls of a monotone chain of points. The 
flowchart in Figure 10 illustrates the mechanism by which this algorithm com-
putes the convex hull. 

The upper hull is computed in a similar fashion, and the two hull sets are 
joined to find the final convex hull. Essentially, the algorithm works by compar-
ing points to lines formed between previous points starting from left to right to 
make the upper hull, and then from right to left to make the lower hull. The al-
gorithm makes its decision on which point belongs in the hull by computing the 
curl between the vector composed of the previously selected point and the 
second to last point in the hull and vector between the current point and the 
second to last point in the hull. Figure 11 shows a set of points in the early stage 
of hull construction. The curl, Crl, between the vectors Pminmax,1 and Pminmax,2, 
computed from Equation (1) will result in a positive number, indicating that the 
point P2 lies to the relative interior if the line between Pminmax and P2. 

 

 
Figure 10. Flow chart of the sequential Andrew’s monotone chain convex hull algorithm. 
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Figure 11. Set of points in the early stage of hull computation. 

 

 
Figure 12. Resulting convex hull. 

 

min max,1 min max,2Crl P P= ×                      (1) 

In order to satisfy Equation (1), the points included in the hull must be lo-
cated to the relative exterior of all points included in the hull, and in line with all 
points included in the hull. In the case illustrated in Figure 11, the point, P1 will 
be discarded from the hull and replaced, by P2. Then the algorithm proceeds by 
checking points to the right until it reaches the right-most point. Then it begins 
moving back to the left computing the lower hull in a similar fashion. Figure 12 
shows the result of the algorithm for a set of points. 

4.2. The Divide and Conquer Approach for Constructing Convex  
Hulls 

The divide and conquer approach was developed by [16] as an efficient algo-
rithm for computing convex hulls in three dimensions if the points are sorted in 
lexicographical order. The points are divided into two sets A and B, containing 
the left half and the right half of the points respectively as shown in Figure 13. 
Convex hulls are computed recursively on these two sets, and the sets are 
merged by computing the union of the convex hulls. The division of points into 
left and right sets is continued recursively until the number of points, n, in each 
set is less than or equal to three. This algorithm assumes non-collinear points, 
which makes the smallest convex hull either a triangle (if n = 3) or a straight line 
(if n = 2). Therefore, majority of the computational effort involved in this algo-
rithm is with the merge step. 
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Figure 13. Constructing the lower tangent to merge two consecutive hulls. 

 
To merge the convex hulls, common tangents are constructed between two 

consecutive convex hulls and the convex hulls are merged hierarchically. In Fig-
ure 13, the numbers represent the steps of the tangent determination process. In 
order to construct the tangents, a line is drawn between the rightmost point of 
the left hull and the leftmost point of the right hull. The left end of the line is 
fixed, and the right end is moved on the convex hull until it becomes a tangent 
to the right hull (Step 1 in Figure 13). Now the right end of the line is fixed, and 
the left end is moved until it becomes a tangent to the left hull (Step 2 in Figure 
13). This process is repeated until a common tangent is attained as shown in 
Figure 13. 

5. Adaptive Region Construction 

This section describes the process of adaptive region construction (ARC). This 
approach is developed to represent the radio propagation characteristics like 
signal strength at a spatial location in an efficient way. The procedure described 
here combines the ideas from the Andrews’s monotone chain convex hull algo-
rithm [6] and the divide and conquer approach [17] to implement ARC. ARC 
provides more details about a contour of a radio propagation map when com-
pared to a convex hull approximation. ARC constructs the contour of a radio 
propagation map by constructing intermediate convex hulls to fit the given radio 
propagation map contour and combining them consecutively. This process also 
requires points to be sorted in lexicographical order. A number of parallel sort-
ing algorithms like the CUDA Dynamic Parallelism (CDP) quicksort, CUDA 
quicksort [18], etc., can be used. Furthermore, if the radio propagation map is 
constructed using WIM, the data points are sorted in the Cartesian coordinate 
system, thereby eliminating the need to sort the data set. The given data is di-
vided into smaller segments and operated in parallel on individual segments of 
data to exploit data level parallelism. Andrew’s monotone chain convex hull al-
gorithm is used on each segment of data to construct intermediate convex hulls. 
Later, the individual convex hulls are combined by constructing common tan-
gents to the consecutive convex hulls in parallel. The resulting set of points tries 
to preserve the shape of the radio propagation map in general. The boundary of 
ARC compared with the convex hull of the corresponding radio propagation  
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Figure 14. Radio propagation map represented using convex hull and adaptive region construction. 

 

 
Figure 15. Illustration of adaptive region construction. Adaptive region construction 
includes the octagon which is not a part of the final convex hull. 

 
map is exemplified in Figure 14. This set obtained using the process described 
above includes points that are not in the final convex hull for the given set of 
points. The result at the end of this step is the adaptively constructed region as 
illustrated in Figure 15. The ARC process is a combination of Andrew’s mono-
tone chain algorithm and the divide and conquer approach of computing convex 
hulls, and both have a worst case computational complexity of O(nlog(n)). 
Therefore, the inherently parallel process of constructing adaptive regions has a 
computational complexity of the order 

Andrew s monotone chain Divide & Conquer

log log 2 log ,n n n n n nO O
m m m m m m

′

 
        + =       

        
 
 

 
where n is the total number of points in the dataset, m is the number of 
processes or threads that can execute simultaneously, and 3n m ≥  as at least 
three points are required to compute a convex hull. This shows that having 
many processes running in parallel reduces the computational complexity of the 
algorithm. 

6. General Purpose GPU Implementation 

Heterogeneous computing is the approach of using accelerators/co-processors in 
conjunction with Central Processing Units (CPUs) to solve computationally in-
tensive problems. Accelerators can be vector processors; many core processors 
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like Graphics processing units (GPUs) and Intel Xeon Ph is that improve the 
performance of applications by utilizing parallelism. GPUs are specialized hard-
ware designed to handle the intensive operation of the rendering of image 
frames for output to a display device. With the emergence of programmable 
shaders, researchers started using GPUs to solve problems involving matrices 
and vectors to achieve performance improvement by making use of parallelism. 
When GPUs are used for computations in non-graphics related problems, it is 
known as general purpose GPU (GPGPU) computing. Initial efforts of pro-
gramming GPUs involved refactoring the problems to use graphics primitives 
provided by the graphics application programming interfaces. NVIDIA’s Com-
pute Unified Device Architecture (CUDA) [19] is an attempt to ameliorate the 
cumbersome process of programming GPUs. CUDA provides simple language 
extensions to programming languages like C/C++, FORTRAN, and Python to 
expose fine and coarse grained parallelism in applications. NVIDIA has intro-
duced several hardware architectures with CUDA support to improve the per-
formance of parallelized programs.  

The generalized hardware hierarchy in NVIDIA GPUs consists of multiple 
arithmetic and logic units (ALUs), and they are called CUDA cores as shown in 
the right-half of Figure 16. A fixed number of these cores are grouped along 
with control hardware and memory to form units known as Streaming Mul-
ti-processors (SMs). The entire device constitutes of several SMs, providing a 
large number of processing cores. This hierarchy in hardware is matched in the 
software hierarchy shown in the left-half of Figure 16 by the CUDA program-
ming model. It provides a software hierarchy of threads, thread blocks, and gr-
ids, which have an affinity to CUDA cores, SMs, and the device correspondingly  

 

 
Figure 16. The software (left-half) and hardware (right-half) hierarchy correspondence in 
NVIDIA GPUs (Image source [21]). 
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as shown in the left half of Figure 16. The threads in a thread block can be ar-
ranged in 1D, 2D, or 3D fashion and in a similar fashion, the thread blocks can 
be arranged in a grid. The total number of threads spawned in a thread block is 
fixed, hence is the load handled by each SM. 

GPU memory can be classified into 3 categories namely the registers, shared 
memory, and global memory as shown in Figure 17. Some GPU architectures, 
in addition to the shared, global, and register memory also have texture and 
constant memory that are read-only memories for GPUs with optimized cache 
access. Each CUDA thread has limited private registers which are the fastest 
form of memory available on a GPU. Threads within a block have access to the 
shared memory through which they can exchange data, while all the threads in 
the device have access to the global memory. The memory access latency in-
creases exponentially from registers to global memory as we move away from the 
processing core and so does the size of memory. In other words, GPUs have a 
memory hierarchy similar to any modern-day vector processor. Like any other 
modern computer, GPUs are also benefited by the efficient use of memory 
bandwidth. 

NVIDIA GPUs follow the single program, multiple threads (SPMT) execution 
model of parallel computing. This means a group of threads execute the same set 
of instructions in lock-step, though conditional branches in the algorithm can 
violate the lock-step execution of instructions contributing to an increase in 
computational time. The SMs in NVIDIA GPUs always execute instructions  

 

 
Figure 17. NVIDIA’s representation of CUDA execution model and the memory hierarchy in GPUs. 
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with a granularity of 32 threads known as a warp. A SM has multiple warp 
schedulers allocating hardware resources to each thread/warp and scheduling 
the concurrent execution of multiple warps based on the requested shared re-
sources per thread. 

The CUDA programming model can be exploited to implement both data lev-
el and task level parallelism in the implementation of ARC. The given data is di-
vided into smaller segments and Andrew’s monotone chain convex hull algo-
rithm is used on individual segments to construct intermediate convex hulls. 
Each CUDA thread operates on a segment of data and computes one convex 
hull. CUDA has the capability to spawn a large number of threads to compute 
several convex hulls in parallel. Once the intermediate convex hulls are con-
structed by individual threads, each thread next considers two consecutive con-
vex hulls at a time and constructs common tangents to merge the two hulls. This 
process is shown in Figure 18. If the number of intermediate convex hulls is N, 
then N-1 threads are required for to merging these hulls in parallel. The result-
ing set of points may not form a convex hull as we do not combine the interme-
diate convex hulls hierarchically but consecutively as explained in Section 5. One 
of the important observations is that the computations on the upper half are in-
dependent of the lower half computations, thereby allowing concurrent compu- 

 

 
Figure 18. Scaled down illustration of data level parallelism in our implementation. 
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tations on the upper and lower half. The CUDA streams approach is used to 
compute the upper and lower hull in parallel and exploit task level parallelism. 

An initial version of the algorithm utilizing both data level and task level par-
allelism was implemented on a NVIDIA Tesla K40c accelerator and hence forth 
known as the naïve version. For the naïve version, the number of points 
processed by each thread was fixed at a value of 4 and the kernel execution time 
of the naive version is shown in Figure 19. Comparing the execution time of the 
naïve and the sequential versions of Andrew’s monotone chain convex hull algo-
rithm (Figure 7) shows a 60% improvement in performance. Even though 60% 
improvement in performance is significant for many applications, the naïve ver-
sion is still not suitable for real time applications, especially when handling large 
data points (64 million points take 650 ms for computation of ARC). To im-
prove the performance of the naive version, refactoring the program to the GPU 
hardware and software architectures is necessary. Therefore, as a first step, the 
naïve version code is profiled using the NVIDIA visual profiler [19]. 

6.1. Profiling Analysis of Naive Version 

The NVIDIA Visual Profiler [20] is a cross-platform performance analysis tool 
that provides guidance for optimizing CUDA applications. It helps in the identi-
fication of performance bottlenecks and delivers a graphical visualization of the 
bottlenecks. The profiling results of the naive version are shown in Figure 20. 
The naïve version consists of 4 kernel functions: 2 kernels to construct upper/ 
lower intermediate convex hulls and 2 kernels to merge the intermediate convex 
hulls consecutively. As we can see in Figure 20 timeline, the memory transfer 
time from the host (CPU) to the device (GPU) and vice versa is significantly 
greater than the computational time, and also the memory transfers are not con-
tiguous. This indicates that the program performance is bottlenecked by the 
bandwidth of the Peripheral Component Interconnect Express (PCIe) bus. Also, 
the computations of the kernel functions that operate on the upper/lower halves  

 

 
Figure 19. Execution time of the naive version of ARC. 
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Figure 20. Execution timeline generated by the NVIDIA visual profiler. 
 

of data are not perfectly overlapped. This is mainly due to the GPU being stalled 
as it waits for all the data required by the kernel to be transferred before starting 
the computations. 

Furthermore, the profiler also identifies additional performance bottlenecks 
which are summarized below: 
• Low warp execution efficiency due to divergent branches 

The profiler indicates low warp execution efficiency for the kernel functions 
signifying the inefficient use of GPUs for computation. The compute resources 
are best utilized when all the threads in a warp are active. The algorithm is im-
plemented with different control statements that result in branching, and the 
profiler recognizes 33.2% and 93% divergence in the kernel function that com-
putes intermediate convex hulls and the kernel function that merges the hulls 
respectively. The number of active threads in an SPMD execution model can be 
improved by having less divergent branches executing different instructions 
within the same warp. 
• Global memory alignment and access pattern 

The profiler identifies inefficient use of memory bandwidth due to misaligned 
global memory access patterns. As the instructions are issued per warp in an 
SPMD execution model, 32 threads in a warp cooperatively request a single 
memory access, which is serviced by one or more memory transactions. Un- 
aligned and non-coalesced memory access due to warp divergence or the pattern 
of memory addresses requested by each thread can result in inefficient memory 
accesses. For uncached global memory accesses, the data always flows through 
the L2 cache, and it performs four 32-byte transactions in a single memory cycle. 
In ARC, redundant loads of data occur if the threads in a warp access data points 
such that N mod (128) ≠ 0, where N is the total number of data points accessed 
by the threads in a warp as shown in Figure 21. Redundant loads could be 
avoided by making N an integer multiple of 32, however, for efficient utilization 
of memory bandwidth N must be an integer multiple of 128. 
• L2 cache access latency 

The profiler records 2.7 million global memory loads performed at a rate of 
155.852 GB/s and 5.3 million reads from the L2 cache. The L2 cache reads are  
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Figure 21. Inefficient use of memory bandwidth due to redundant loads. 

 
Table 1. CGMA for different kernel functions. 

Kernel functions CGMA 

lower Hull On GPU 1/2 

upper Hull On GPU 1/2 

merge Lower Hull 8/15 

merge Upper Hull 8/15 

 
higher because the algorithm reuses spatially adjacent data in computations, be-
nefitting by both temporal and spatial locality of data. As an example, we have 
the arrays that store the size of intermediate convex hulls and the convex hulls 
themselves accessed repeatedly within the same kernel function and therefore 
are cached. However, the L2 cache located outside the SMs has significant mem-
ory access latency of 100 clock cycles, and this latency can be reduced by moving 
data that is reused to a cache closer to the SMs. The cache closer to the SMs 
which can be programmatically controlled in the GPUs is known as the shared 
memory which has a latency of 12 to 32 clock cycles. 

GPUs use DDR5 memory, which is a high bandwidth memory but has latency 
[21] of 400 - 800 cycles resulting in large memory access latency compared to 10 
- 20 cycle latency for arithmetic operations. The memory access latency is hid-
den due to the multiple threads executing the job at the same time, but it is still 
necessary to access the memory efficiently. To analyze the memory access effi-
ciency, the compute-to-global memory access ratio (CGMA) for the naive ver-
sion is determined. CGMA is defined as: 

Number off loating point operationsCGMA .
Number of global memory accesses

=            (2) 

If CGMA is significantly greater than 1, the GPU spends more time perform-
ing computations rather than fetching data from memory. These types of prob-
lems are called compute bound problems. On the other hand, if the CGMA is 
less or close to 1, the problem is memory bound indicating that the GPU spends 
most of the time fetching data from the memory rather than computing. Table 1 
shows the CGMA of different kernel functions of the naïve version. The CGMA 
of all the four kernels is significantly less than 1, making the naïve version mem-
ory bound. The performance of memory bound problems is limited by the 
memory bus bandwidth and memory clock speed, which makes it difficult to 
improve the performance.  

In order to improve the performance, we have to increase the CGMA for our 
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implementation. Considering Equation (2), we can either increase the numera-
tor to improve CGMA or decrease the denominator. Increasing the numerator is 
not a feasible option because increasing the number of floating point operations 
translates to artificially introducing the computational complexity of the existing 
algorithm. Therefore, we consider the second option, which is to decrease the 
value of the denominator. This can be done by reducing the number of global 
memory accesses and specifically multiple accesses to the same data either on the 
global memory or L2 cache. We use shared memory, which is a user controlled 
cache to store chunks of data from global memory. Later, we use the data in the 
shared memory to perform the computations. This reduces the memory access 
latency due to multiple accesses of the data on global memory and L2 cache. 

7. Optimizations 

The profiler analysis of the naïve version along with the CGMA computations 
provides insights about the possible approaches that can improve performance. 
This section discusses the various optimization approaches used to improve the 
performance of the naïve version. 

7.1. Shared Memory to Reduce Global Memory Access 

To improve L2 cache access latency by reusing on-chip data, and reduce the 
global memory bandwidth required by the kernels we make use of shared mem-
ory. Assuming each thread performs only one iteration of the algorithm, the 
kernel function that computes convex hulls of one half of the given set of points 
have to access the global memory 16 times, and the kernel function that com-
bines two consecutive convex hulls has to access the global memory 30 times in 
the naïve version. The shared memory latency being 12 to 32 cycles is about 50 
times lower than the uncached global memory latency [22] and three times low-
er than the L2 cache. Therefore, a program accessing shared memory instead of 
global memory or L2 cache performs better. To reduce the number of global 
memory accesses, we load the data from global memory to shared memory and 
perform the computations. Later, the result is written back into global memory. 

In the kernel function that computes either the upper half or lower half of in-
termediate convex hulls, the data seen by each thread block is loaded into the 
shared memory. Each thread computes convex hulls by considering a small 
number of elements. The number of elements processed by each thread is calcu-
lated as the ratio of the total number of points to the total number of threads. 
Copying the data from the global memory to the shared memory and perform-
ing computations using the copied data on the shared memory is shown in Step 
1(a) and 1(b) of Figure 22. Once all the threads in a block have finished compu-
ting the convex hulls, the resulting points are written back into the global mem-
ory. This is illustrated in Step 2 of Figure 22. As discussed previously, two con-
secutive convex hulls are combined together by constructing common tangents 
between them. To reduce the number of global memory accesses while con-
structing tangents, the convex hulls seen by each thread block along with one  
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Figure 22. Shared memory implementation of constructing one half (upper/lower) of the convex hulls. 
 

 
Figure 23. Shared memory implementation of combining two convex hulls by constructing common tangents. 
 

convex hull from the next thread block is loaded into the shared memory 
(Figure 23: Step 1). For a given pair of consecutive convex hulls, only the indices 
to increment the right hull and the indices to decrement the left hull are stored 
in registers local to each thread (Figure 23: Step 2). These indices point to the 
data points that form a common tangent to the two consecutive convex hulls. 
The indices are written into the global memory after each thread completes its 
operation (Figure 23: Step 3).  

We also use shared memory as a scratchpad memory to store the size of in-
termediate convex hulls and also enabled L1 caching (16 KB) along with the 
shared memory (48 KB) to cache global memory transactions. 

7.2. Avoiding Warp Divergence 

While loading the data into shared memory for combining two consecutive 
convex hulls, each thread loads one convex hull into the shared memory. But the 
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threads at the end of each thread block (except for the last block) must load two 
convex hulls, one at the end of thread block and the other from the beginning of 
the next thread block. This can be easily achieved by using simple control state-
ments on a traditional CPU based computing system. CPUs have complex 
hardware with advanced branch prediction mechanisms to implement control 
statements. On a CPU, there are pipelines for each program flow of the control 
statement. If the predicted branch is false, a CPU can quickly switch to the other 
pipeline and continue with the execution flow, eluding any significant perfor-
mance penalty. 

On the other hand, GPUs are simple devices with no branch prediction me-
chanisms requiring all the 32 threads in a warp execute in a synchronous fa-
shion. If different threads in a warp execute different instructions, the GPU 
flushes the execution pipeline each time to load new instructions resulting in the 
sequential execution of each branch of the control statement. Also, since all 
threads in a warp execute in parallel, some of the threads in a warp will be idle 
and will become active during the upcoming sequence that will make the pre-
viously executing threads in that warp idle as shown in Figure 24. 

To avoid warp divergence, we loaded both the flow paths of the control state-
ments into the same branch by making use of multiple if statements instead of 
if-else chains as exemplified in Figure 25. In this way, both the conditional in-
structions are loaded into the execution pipeline, and only the statements with 
conditions resulting to true will be executed by the threads. 

7.3. Optimized Memory Access 

While accessing global memory, the data has to pass through L2 cache by de-
fault, and four 32-byte transactions are performed to fetch 128 bytes of single  

 

 
Figure 24. Warp divergence due to if-else statements. 
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Figure 25. Warp divergence due to if-else statements. 

 

 
Figure 26. Optimized memory access with L1 caching disabled. 

 
precision data for the threads in a warp. On enabling the L1 cache, a 128-byte 
transaction request is used to load single precision data for a warp. In other 
words, NVIDIA GPUs has a L1 cache line granularity of 128 bytes and an L2 
cache line granularity of 32 bytes. The memory fetches from the global memory 
is a major performance bottleneck, and it is necessary to keep the number of 
load transactions to a minimum. One way to keep the load transactions to a 
minimum is to load only the required data by a warp and avoid redundant data 
loads. Figure 26 shows an example where a warp requests 128 bytes of data and 
the GPU performs four 32-byte transactions to load 128 bytes, and the data is 
accessed within the same 128-bytesegment (aligned to the 128-byte boundary). 
This is very efficient when compared to the unaligned redundant load shown in 
Figure 21, where the data requested by a warp requires six 32-byte transactions 
in three 128-byte segments, and all the data that is loaded is not used by the 
warp. 

We adjust the number of points seen by each thread to construct intermediate 
convex hulls such that the data requested by a warp is a multiple of cache line 
granularity depending on the problem size, thereby minimizing redundant loads 
of data. NVIDIA also reports [23] that the effective bandwidth is poor for strided 
memory access with strides greater than 8 as the hardware cannot combine the 
accesses that are far apart in the physical memory. Therefore, adjacent threads in 
our program access contiguous data points to construct adjacent intermediate 
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convex hulls and do not perform strided access. 

7.4. Reducing Host to Device Data Transfer Latency 

The transfer of data from the host to the device takes place over the PCIe bus. 
Even though it is not possible to increase the speed of data transfer due to hard-
ware limitations, it is possible to reduce the time that the GPU spends waiting 
for data. Data is allocated on the CPU memory as pageable memory. Pageable 
memory can be swapped into the secondary storage by the operating system to 
give an illusion of additional main memory than available. Since the GPU does 
not have control over the paging operation, it takes more time for the data to be 
transferred from pageable memory to GPU memory. To decrease the data trans-
fer time from CPU memory to GPU memory, we used pinned memory on the 
CPU. Pinned memory or page-locked memory is a non-swappable memory al-
location on the CPU random access memory (RAM) preventing the operating 
system from swapping the allocated memory to secondary storage. This allows 
the data transfer between CPU and GPU through the PCIe bus at a higher 
bandwidth. 

8. Results and Analysis 

We implemented the ARC technique on a NVIDIA GPU using the CUDA C 
programming model. The hardware platform consists of an Intel Xeon 
E5-2620-0 (Sandy Bridge) processor for implementing the sequential Andrew’s 
monotone chain convex hull algorithm and NVIDIA Tesla K40c for imple-
menting the ARC technique. 

Sets of random points with a normal distribution to test and compare the op-
timized implementation of ARC technique with the sequential Andrew’s mono-
tone chain convex hull algorithm were generated. Figure 27 shows the execution 
times of the sequential Andrew’s monotone chain convex hull algorithm and the 
parallel ARC technique kernels of the naïve and advanced versions using the 
shared memory with the number of elements processed by each thread held 
constant. The results shown in Figure 27 correspond to the load being equally 
distributed among CUDA threads with each thread operating on 4 data points to 
construct the intermediate convex hulls and excludes the memory transfer time 
over the PCIe bus for the parallel implementations. We can see from Figure 27 
that the computation of adaptive regions for 16 million data points takes place in 
about 14 ms in contrast to 306 ms for the sequential implementation, indicating 
near real time performance. Figure 28 shows the overall execution time for the 
same three cases indicated previously and the result includes the data transfer 
time over the PCIe bus. The naïve parallel version had a larger execution time in 
comparison to the sequential version due to significant time spent on memory 
transfers from host to device and vice versa. The considerable time for memory 
transfers is due to a redundant data transfers required in the naïve version. The 
memory transfer time was improved by eliminating redundant data transfers 
and making use of pinned memory in the advanced version, which shows  
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Figure 27. Execution times of sequential, naive parallel kernel, and advanced parallel kernel im-
plementations for computing contours. 

 

 
Figure 28. Overall execution times of sequential, naive parallel and advanced parallel implementa-
tions for computing contours. 

 
significant improvement in performance. In Figure 29, the speedup between the 
naïve kernel and sequential version and the advanced kernel and sequential ver-
sion is presented. The advanced version kernel on an average has a speedup of 
21.6× while the naïve version kernel had only a speedup of 2×. The higher spee-
dup of the advanced version clearly demonstrates the effectiveness of the opti-
mizations applied to the naïve version. Taking into account the memory transfer 
time for the advanced versions, the average speedup achieved is 9.3× as shown in 
Figure 30. The overall improved speedup of the advanced version can be attri-
buted to the use of pinned memory instead of the paged memory in the naïve  
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Figure 29. Computational speedup of naive and advanced parallel versions. 

 

 
Figure 30. Overall speedup of the advanced parallel version. 

 
version in addition to the use of shared memory. Even though an overall 9.3× 
speedup has been achieved, the speedup remains constant with increasing num-
ber of points as depicted in Figure 30 indicating weak scaling of the problem. As 
the number of points in increased, correspondingly, the number of threads is 
also increased as the number of points per thread is held constant. However, the 
number of cores or processors in a GPU is constant. According to Gustafson’s 
law [24], the workload is scaled up to maintain a fixed execution time as the 
number of processor increases; the speedup increases linearly. Since the number 
of GPU cores is not increasing with increasing workload, the speedup has to re-
main constant or decrease with increasing workload. 
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The second goal for using the ARC technique was to eliminate the artifacts 
present in the contour of a radio propagation map determined using the convex 
hull approach. Given a set of points, the ARC technique can either construct a 
convex hull or a set of points, which is not a convex hull representing the con-
tour of a radio propagation map accurately. If the ARC technique is forced to 
use a single thread, i.e., a sequential construct, the set of points obtained using 
ARC will match the convex hull. However, by varying the number of threads, the 
result can be a non-convex hull with varying levels of granularity. The resulting 
set of points obtained using ARC is selected by computing a number of interme-
diate convex hulls to fit the given set of points. These intermediate convex hulls 
are merged consecutively in order to obtain the resulting set. In other words, the 
number of intermediate convex hulls constructed represents the “resolution” or 
detail with which the radio propagation map is approximated. In our imple-
mentation, since each thread constructs one intermediate convex hull, the reso-
lution of approximation will depend on the number of threads. Decreasing the 
number of threads decreases the number of intermediate convex hulls, and de-
grades the application performance as the load handled by each thread increases. 
ARC does not result in the contour of a radio propagation map directly but also 
includes points inside the contour that are eliminated using simple techniques 
[25] if a contour is desired. In Figure 31, the original radio propagation map, 
convex hull based, and ARC based contours are shown for increasing number of 
points. We can see that the contours generated based on the ARC technique has 
eliminated the artifacts present in the convex hull based contour and also accu-
rately represent the contour of the original radio propagation map. 

9. Conclusions 

The technique of adaptive region construction is a low complexity approach that 
can represent the given contour with varying degrees of details. Adaptive region 
construction technique provides the capability to construct the contour of a ra-
dio propagation map efficiently. The implementation of the adaptive region 
construction technique on a GPU using the CUDA programming model has 
been demonstrated. The GPU implementation provides good application per-
formance (speedup) for high resolution representation of contours but is not 
suitable for low resolution representations. By applying optimization techniques 
to the naïve version, a 21× improvement in computational performance for large 
data sets was achieved. As most of the applications that use radio propagation 
maps are benefited by the detailed representation of radio propagation maps, the 
ARC technique fulfills the necessity for a fast algorithm. The ARC technique is 
not only suitable for real-time operation but also avoids artifacts in contrast to 
the contours determined using the convex hull approach. 

In addition to using the ARC technique for determining the contour of a radio 
propagation map, it is also possible to approximate other spatial data. Using the 
ARC, multi-resolution representation of the spatial data is possible. The mul-
ti-resolution representation of large spatial data sets allows improved processing  
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Figure 31. Contours of radio propagation map using ARC. 

 
time and lower storage requirements.  

The ARC technique as mentioned previously is inefficiently operating on low 
resolution radio propagation maps. Also, with large resolution, special attention 
has to be paid to the memory transfers between the CPU and the GPU. Howev-
er, with the newer versions of the NVIDIA GPU equipped with the NVlink 
technology, the latency due to memory transfers is significantly reduced.  
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