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Abstract 
This paper proposes an extension of the algorithm in [1], as well as utilization 
of the wavelet transform in event detection, including High Impedance Fault 
(HIF). Techniques to analyze the abundant data of PMUs quickly and effec-
tively are paramount to increasing response time to events and unstable pa-
rameters. With the amount of data PMUs output, unstable parameters, tie line 
oscillations, and HIFs are often overlooked in the bulk of the data. This paper 
explores model-free techniques to attain stability information and determine 
events in real-time. When full system connectivity is unknown, many tradi-
tional methods requiring other bus measurements can be impossible or com-
putationally extensive to apply. The traditional method of interest is analyzing 
the power flow Jacobian for singularities and system weak points, attained by 
applying singular value decomposition. This paper further develops upon the 
approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approxi-
mation (DDJEA), giving values to significant off-diagonal terms while estab-
lishing a generalized connectivity between correlated buses. Statistical linear 
models are applied over large data sets to prove significance to each term. 
Then the off diagonal terms are given time-varying weights to account for 
changes in topology or sensitivity to events using a reduced system model.  
The results of this novel method are compared to the present errors of the 
previous publication in order to quantify the degree of improvement that this 
novel method imposes. The effective bus eigenvalues are briefly compared to 
Prony analysis to check similarities. An additional application for biorthogon-
al wavelets is also introduced to detect event types, including the HIF, for 
PMU data. 
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1. Introduction 

Without system topology, many traditional methods to compute power flow and 
state estimation cannot be used. One of the more famous industry applications 
similar to the proposed method is generating the power flow Jacobian used in 
the Newton-Raphson method. Analyzing the power flow Jacobian as it ap-
proaches singularity has been used in [2] [3] [4] to assess system weak points 
and indicate unstable parameters in the system. The decoupled Jacobian is used 
in [5] [6] to decrease the necessary number of Newton-Raphson iterations while 
providing very similar accuracy. These applications are focused on monitoring 
the eigenvalues of the power flow Jacobian at each bus in order to determine 
both the unstable condition and system weak points. Due to its computational 
simplicity, the use in [5] [6] of the decoupled power flow Jacobian showed that 
only utilizing the partial derivative of real power with respect to bus voltage an-
gle and the partial derivative of reactive power with respect bus voltage magni-
tude were sufficient for accurate state estimation. Singular Value Decomposition 
and eigenvalue analyses are powerful tools for monitoring as the Jacobian ap-
proaches singularity. Changes in the decoupled power flow Jacobian can occur 
over time, so it is crucial to distinguish between a slow divergence to a new equi-
librium from a slow trend toward instability. Prony Analysis and Frequency 
Domain Decomposition have been implemented to determine undamped tie line 
oscillations [7] [8] and inter-area oscillations [9]. It has also been applied to 
ringdown data [10]. Other methods for identifying power flow modes and ei-
genvalues are compared with Prony Analysis, including Matrix Pencil Method 
and Hankel Total Least Squares [11]. These are some of the primary contenders 
when checking poorly damped power oscillations. Although Prony analysis can 
be more computationally intensive, [11] shows that it is less effected by noisy 
measurements. PMU data for large utility systems yields noise due to the varia-
bility which simulations often fail to adequately model. This is inherent to the 
unpredictability of power system operation in real-time. These modes and 
damping ratios can be used to cross check changes in the Jacobian. When the 
Jacobian suddenly changes, it can be due to a fault, load switch, capacitor bank, 
high impedance fault, breaker, or other system operation. Capacitors and large 
loads can affect a Jacobian temporarily, but those operations are necessary and 
unless the system parameters are strained, will not result in a major system 
event. When the Jacobian changes drastically, the most tragic culprits are typi-
cally fault or the removal of a necessary line to supply load. The Jacobian can be 
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used to check the weak buses of the system in real-time and determine the unst-
able parameter, but a list of recent detected events could easily aid the process in 
forming a solution. Previously, a discreet time Jacobian eigenvalue approxima-
tion was introduced to make use of PMU data without needing system connec-
tivity, and Prony analysis was used to monitor system modes [1]. 

Detection and identification of event type yields crucial information when de-
termining the current system state. Certain events, primarily the HIF, can be dif-
ficult to detect and flag from other system events. Any of the other system events 
produce more notable transients, but the HIF can stay in a system for a period 
before suddenly becoming a low impedance fault. This poses a risk to personal 
safety and grid stability. Ground ratio relays and analysis of harmonic distortion 
has been used [12] [13]. Time domain solutions like ground ratio relays can be 
ineffective, particularly in the case of phase imbalance which is more of a prob-
lem in distribution. The Kalman filtering approach is used in [13], but there are 
assumptions that need to be made in order to relate back to the time domain. 
Frequency domain solutions can often be difficult to relate in real time to the 
original measurement. Wavelet transforms are applied in [12] [14] [15] [16] [17] 
to detect HIF cases and distinguish the multilevel characteristics in order to 
identify events. However, these applications used transient phase current data. 
This gives point to point resolution that can be a thousand fold faster than PMU 
data. Wavelets are particularly powerful since the transform can be used to relate 
frequency data to the time domain. Since HIF data produces time varying fre-
quency distortion, it is difficult to discern the characteristics of the HIF using a 
time domain or frequency domain approach exclusively [12] [16] [17]. 

In a system with (N) total buses and (n) buses containing PMUs, utilizing on-
ly the subset of the system with PMUs is ideal as a stand-alone process, especial-
ly when (n) is much smaller than (N). Industry data from open PDC does not 
contain connectivity data or Ybus parameters. This renders traditional power flow 
method utilizing the power flow Jacobian or other methods like Gauss-Seidelu- 
nusable. Even with the full system connectivity, if there are 70 buses with PMUs 
and 3200 buses total in the system, several state estimation iterations are neces-
sary to generate the bus voltages and angles for the remaining buses. The great-
est advantage of PMU data is that it can be returned every 60 Hz cycle. Even if 
the connectivity is available in a system with (N) buses, where the number of 
PMUs (n) is much smaller, traditional power flow methods are computational 
expensive and time consuming to apply. In the time it takes to calculate the 
whole Jacobian for a large system, the speed of the PMU data is likely wasted 
since only the PMU readings at the beginning of the process would be taken into 
account. The algorithm needs to converge before the next iteration is read for 
most effective use of PMU measurements. In a previous publication, PMU data 
was used from simulation and industry in order to generate an approximation of 
the eigenvalues for the decoupled power flow Jacobian eigenvalues (DDJEA) at 
each bus (n). Prony analysis was employed to test the speed and accuracy of the 
algorithm, as well as help identify system modes. It would be more advantageous 
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for industry to monitor the subset of the system with PMU data as a standalone 
process to aid system operators in real time. Certain events like the HIF can be 
seen in data immediately following an event, most commonly through transient 
data, but the event has a time varying and non-linear nature and is easily missed 
in low resolution data or when looking over a large window. It is best to not wait 
as the HIF becomes a low impedance fault and affects the Jacobian elements sig-
nificantly. Therefore, industry would benefit by detecting the early signs of a 
major event rather than waiting for a major event to occur. 

This paper proposes a novel method to generate the off-diagonal terms that 
are most important to each individual bus. This approximate Jacobian only con-
siders buses with PMUs since the overall system model is presumed to be un-
known, encompassing all connectivity and load data. In a sense, this creates a 
reduced connectivity matrix for the system. Linear models are built employed 
over large data sets in order to determine the significance of each off-diagonal 
term in the matrix. All insignificant terms are set to zero, implying no reduced 
connectivity between those particular buses with a PMU installed. This paper 
will prove that the proposed method functions as a more accurate decoupled Ja-
cobian approximation, and the corresponding eigenvalues of the expanded ma-
trix are more effective in relaying urgency when unstable system parameters de-
velop. The output of Prony analysis is compared in relative speed and accuracy 
when identifying unstable parameters. The 1-D biorthogonal wavelet transform 
is utilized on six system values derived from PMU outputs for event detection 
and identification: real power, reactive power, phase voltage magnitude, phase 
current magnitude, discreet derivative of current phase angle, and discreet de-
rivative of voltage phase angle. From these characteristics, event location and 
identification is achieved, including HIF detection. Identifying the cause of 
power oscillations and changes in the approximated Jacobian can flag undesira-
ble scenarios long before those parameters become unstable. 

2. Decoupled Discreet-Time Eigenvalue Approximation  
Expansion 

2.1. Expanding DDJEA to EDDJA for ΔPi 

The next two sections present the derivation of the Expanded Jacobian Ap-
proximation Method (EDDJA). In this section, matrices are shown to make the 
derivation more tangible. In the following section 2.2, several of these matrices 
will be presented in a more succinct format.  

Before proceeding to the derivation, there are several assumptions and justifi-
cations presented in [1], a few of which will briefly be addressed. The term “Δt” 
denotes the time between two PMU measurements. This is synonymous with the 
sampling frequency, 30 Hz. The smaller the step size, Δt, the more accurately it 
represents the Jacobian approximation. In [1] it is shown that the Jacobian val-
ues should not vary drastically between two measurements unless under a se-
rious system event, in which case the changes in the previous Jacobian approxi-
mation and current Jacobian approximation can be compared term by term to 
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aid in the identification of the event. In context of this paper, (t + Δt) should ac-
tually denote the most current measurement. Between time steps, the algorithm 
is validated by applying the changes in bus angle and voltage and then compar-
ing the predicted values to the actual values measured. 

The Newton-Raphson approach starts with initial guesses for certain buses, 
computes an initial guess at the Jacobian, and then iterates updating the real 
power, reactive power, bus voltage, and bus voltage angle. These values continue 
to update the Jacobian until the error converges to zero for the power and angle. 
The advantage of PMU data is that PMUs return the phasor data, which does 
not need to be updated or changed. If all buses contain a PMU, then the Jaco-
bian can be instantaneously calculated at every time step without any need for 
further computations. The proposed method accounts for only the buses with a 
PMU attached. It is important to note that the proposed method provides a sim-
ilar function but it is not fundamentally the same as the Jacobian since it cannot 
account for all terms in the full system model. Certain terms in the EDDJA me-
thod are affected by buses that are not necessarily known or measured; they are 
part of the entire system model but not the subset of buses with PMUs installed. 
By showing that the reduced approximate Jacobian generates an error of ap-
proximately zero in the next iteration, the function is shown to be adequate 
without full system connectivity being necessary. 

The formal definition of the decoupled real power portion of the power flow 
Jacobian is presented in Equation (1). The variable (N) represents the total 
number of system buses, including those with a PMU connected and those 
without. The variable (n) is used to notate the total number of buses with in-
stalled PMUs. 

1 .N i
i jj

j

P
P δ

δ=

∂
∆ = ∗∆

∂∑                       (1) 

At a particular bus (i), ΔPi is the change in power at bus (i). This change is 
calculated by multiplying and summing the difference in all bus angles Δδj from 
the previous measurement by the partial derivative of bus power with respect to 
each bus angle δj. The formal definition of the partial derivative of power at bus 
(i) with respect to bus (j) angle, δj, is presented in Equation (2). 

( )sin .i
ij i j ij j k

j

P
Y VV θ δ δ

δ
∂

= − + −
∂

                 (2) 

Yij represents the p.u. value of the Ybus equivalent admittance between buses (i) 
and (j), or in the case of (i) and (j) being equivalent, the corresponding diagonal 
matrix term. When buses are not directly connected, a zero is placed in the ma-
trix for that term. The phase angle relative to Yij, θij, is in radians. Vi and Vj are 
the relative p.u. voltages of the buses (i) and (j) respectively. 

The decoupled power flow Jacobian matrix referring to real power is pre-
sented in Equation (3) for the application of this paper, where Δt constitutes the 
time since the last calculation was performed until the newest reading. 
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In [1], it was shown that a discreet derivative approach was sufficient to as-
certain the majority of information available through the buses with PMUs and 
generate the diagonal terms. This led to an eigenvalue matrix to approximate the 
Jacobian’s eigenvalues presented in Equation (4) for the decoupled real power 
portion. 
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The error associated with the DDJEA method was calculated using Equation 
(5) and presented in Table 1. 

100.actual predicted
err

actual

P P
P

P
−

= ∗                     (5) 

( ) ( ) ( ).i iacutal ipredictedP t t P t P t t+ ∆ = + ∆ + ∆               (6) 

( ) ( )1 1 1 13 cos .i i itotal V i I iactualP t t V I δ δ+ ∆ = ∗ ∗ ∗ −             (7) 

1iV  is the corresponding average positive sequence voltage magnitude at a bus 
(i). 1itotalI  is the average net positive sequence current flowing through bus (i). 
The corresponding phase angle for 1iV  is 1V iδ , and 1I iδ  is the phase angle for 

1itotalI . 
The predicted change calculated via the DDJEA matrix of the previous itera-

tion was compared to the actual value measured during the next iteration. As-
suming that the Jacobian should not change dramatically, unless under a serious 
system event, the assumption was made that the 0.0333 second interval would be 
sufficiently small enough to apply the Jacobian of the last cycle and compare the  

 
Table 1. DDJEA accuracy for real power estimation. 

Calculation source 
Percent error of real power (Perr) for measurements 

Mean percent error (Perr) Median percent error (Perr) 

IEEE 14 bus 
simulation 

0.054% 9.51 × 10−6% 

Open PDC 
measurements 

0.1977% 0.1003% 
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changes in the eigenvalue. This theory was shown to hold in [1]. The proposed 
expansion should ultimately take the form of Equation (8). The expansion of the 
DDJEA matrix, abbreviated EDDJA for further reference, increases the number 
of critical terms in the matrix through statistical analysis and least squares analy-
sis. This portion of the expansion is better suited to an offline analysis. Although 
the process is quick, it would not be applicable for a real-time calculation since a 
large running window of data is needed first. Once the model is built, it is appli-
cable for constant use in future matrices. 
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    (8) 

In order to determine significant terms, a linear model was built over 4000 
real power samples per bus from actual industry PMU data. This results in a 
[4000 × n] matrix that applies least squares analysis to determine significant 
terms. The Gaussian distribution of each term is used to evaluate the usefulness 
of the overall model and significance of each individual term. All non-significant 
terms become 0 while the significant terms will hold a value. The significant 
terms will not ultimately hold the value assigned by the linear model, since the 
linear model produces constant terms without a time-varying property. Due to 
the chaos of this sample, the linear model is ineffective in managing the residual 
errors, causing a poor value over a long sampling period for the coefficient of 
determination, R2. However, this will be resolved in the following derivations 
since the linear model assumes a constant value per term instead of the time va-
rying weights desired in Equation (8). For a single bus at time t + Δt, the equa-
tion for power would be:  

( ) ( ) ( )
( ) ( )

1

n
i

i ij j
j j

P t
P t t t t t

t
α δ

δ=

∆
∆ + ∆ = ∗ ∗∆ + ∆

∆∑             (9) 

The term ( )ij tα  represents the time varying weights. Any terms deemed in-
significant will have an ( )ij tα  term that is permanently set to zero. 

From a statistics standpoint, it is initially assumed that each term is important, 
and may be entirely responsible for the change in power. These terms can be 
written for each individual bus (i) across all buses (j). Equation (10) shows the 
individual variables relevant to generating the linear model for bus (i). Equation 
(10) shows a sample calculation for one term at bus (i). Equation (12) generaliz-
es Equation (11) for the first term of bus 1. Bus 1 is used for the example in Equ-
ation (13) and Equation (14).   
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Each independent variable takes the form of a column vector. 1actualP∆  is a 
column vector storing the actual change in power at each time interval. The 
column vector X11 is used to show the predicted value of the change in power at 
bus (1) by assuming all change is due to the angle of bus (1). It is important to 
note that for (n) PMU buses, there will be (n) X column vectors for every 

iactualP∆  column vector. There are a total of (n) iactualP∆  column vectors that are 
used to individually define the outcome for the linear model at each bus (i). 
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Each bus has (n) X column vectors to be statistically evaluated. The linear 
model uses least squares to fit a weight to each variable for the overall sample 
period. If an X value is substituted, the weights will return the overall change in 
bus power. The final linear model for bus 1 is shown in Equation (15) and ex-
panded generically in Equation (16). R code was used to carry out this analysis. 

( ) ( )1 1 1
1

n

j j
j

P T X Tβ
=

∆ ∗= ∑                     (15) 

This equation assumes that the time T is at the exact instance desired. 1β j  is 
the weight given to the term correlating the change in real power at bus (1) with 
respect to bus (j). Unlike equation (6), the weight of each term is not time vary-
ing; it is set to a constant by the least squares optimization.   

( ) ( ) ( ) ( ) ( )1 11 11 12 12 13 13 1 1n nP T X T X T X T X Tβ β β β∆ = +∗ ∗ ∗ ∗ ∗+ ∗   (16) 

The pvalue of the overall model is then determined to evaluate the significance 
of the model. All values for T t=  to 4000T t t= + ∆  are considered. A pvalue 
less than 0.05 generally will suffice to show that the model is significant, but this 
term can be set to a different value. This would equivalently mean that the model 
has a 95% chance of being significant. For this particular application, the level of 
significance was much lower. The overall linear model for the industry system 
yielded a pvalue less than 10−12, meaning that the null hypothesis would be re-
jected: the overall model was significant. In perspective, this means that there is 
a 10−10% chance that the model is not significant. Then the importance of each 
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term was tested, setting 0.0001 as the level of significance (a 99.99% threshold 
that each term considered is significant), in order to determine a single term’s 
effectiveness at predicting the real power change. Only those with lower pvalue 
calculations would remain, meaning that individually those terms were adequate 
to predict the change in real power. This reduction for non-significant terms is 
shown in Equation (17). 

1 1For 0.0001, 0
i ipβ β> =                   (17) 

All nonzero terms are then placed back in the matrix, and all insignificant 
terms become zero, showing that there is no connectivity in the reduced model.  
All off-diagonal terms that are non-zero imply a strong correlation between the 
buses, and in the context of the power flow Jacobian, some generalization of 
connectivity. However, the weights used for the overall model are not adequate 
when looking at longer time periods. In order to get a running window, an 
overdetermined equation is formed in order to solve for the weights of all 
non-zero terms in real-time. The mathematical concept is demonstrated with a 4 
bus model for simplicity. In this model, there is connectivity between buses 1 
and 2, as well as 3 and 4. 
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(18) 

In order to calculate the variable terms in a single row, the equation can be set 
up ignoring all zero terms. If the number of non-zero terms is M, in this case M 
= 2 for each row, then a running window of M + 1 equations is necessary to ap-
ply least squares. The back calculation for 11α  and 12α  are as follows in Equa-
tions (19 - 22). 
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In an extensive system, it is worthwhile to run a sufficiently large sample size 
offline to attain a generalized system topology between the PMU buses. Then 
that topology can be used for online application. Before the running window has 
been met, M + 1 full readings, the original DDJEA method is implemented, us-
ing the eigenvalue approximation approach to estimate critical system informa-
tion. Once the necessary window has been met, the EDDJA method is applied to 
calculate weights for each component. Unlike the linear model constants, these 
weights change with time. Each weight is calculated over a very small time pe-
riod, since the Jacobian should not change significantly. These weights allow the 
impact and importance of each term to change over time, especially as system 
conditions change or during an event such as a fault. The R2 value of the indi-
vidual models tend to be above 0.9995 with almost all error reduced from each 
windowed model, effectively solving the main concern of using a universal vari-
able to calculate the weight of each term. The general connectivity is solved over 
one long running window, but the individual terms can take different magni-
tudes and sign over days. 

Equation (5) is applied to the outcome of using the DDJEA method from Eq-
uation (4) in order to estimate the power at the t t+ ∆  time step for Table 1. 
Equation (5) is also used to calculate the percent error when using the expanded 
discreet Jacobian approximation, EDDJA, in Equation (8) to ascertain the effec-
tiveness of the EDDJA method. The percent error of the predicted real power 
and actual real power is improved by the EDDJA method for both simulated and 
real industry case, with the DDJEA and EDDJA methods displayed in Table 1 
and Table 2. The industry system had the outputs recorded for 147.5 seconds, 
4225 individual time steps, same as in [1] for comparison of the methods. The 
IEEE 14 bus system was simulated with a three phase fault which cleared via line 
removal after 0.1 seconds. Table 3 shows the magnitude of error that was re-
duced by using EDDJA over DDJEA to approximate the next real power state. 

By increasing the number of important terms and giving those terms weights 
based on a running least square windowing method, EDDJA reduces the percent 
error by orders of magnitude shown in Table 3. 

The reduction of error in both the simulated and real industry systems was 
similar, with the method being even more effective in reducing error for the real 
system. Due to the complexity and unpredictability of the actual system, it is 
reasonable to notice that there is inherently more error in the predicted power 
values. However, the mean percent error of both systems is noticeably similar. 
The median percent error of both cases in drastically reduced as well. The simu-
lation shows a median percent error that is effectively zero, but this is due to the  
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Table 2. EDDJA accuracy for real power estimation. 

calculation 
source 

Percent Error of real power (Perr) for measurements 

Mean percent error (Perr) Median percent error (Perr) 

IEEE 14 bus 
Simulation 

0.0012% 1.25 × 10−7% 

Open PDC 
measurements 

0.0034% 0.0013% 

 
Table 3. EDDJA error reduction compared to DDJEA. 

Calculation 
source 

Percent error reduction of real power (Perr) measurements 

Mean percent error magnitude 
reduction 

Median percent error magnitude 
reduction 

IEEE 14 bus 
simulation 

45x 76x 

Open PDC 
measurements 

58x 77x 

 
linearity and reduced complexity of a simulated system. EDDJA produced an 
approximate Jacobian than adequately fulfilled the function of the actual de-
coupled power flow Jacobian. It also out-performed the DDJEA method pre-
viously introduced. 

2.2. Expanding DDJEA to EDDJA for ΔQi  

The derivation for the decoupled reactive power portion of the Jacobian follows 
the same pattern as the real power portion of the decoupled Jacobian. The fol-
lowing equations present the derivations for ΔQi, the change in reactive power at 
bus (i). All mathematical notation follows the same notation as the equations in 
section 2.1.  

1
.N ji

i ij
jj

VQ
Q V

VV=

∂
∗
∆

∂
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The same IEEE 14 bus system data and industry PMU data were used to test 
the reactive power case. Table 4 displays the accuracy of the DDJEA method, 
while Table 5 shows the accuracy in predicting the next reactive power state 
when using the EDDJA algorithm. Table 6 demonstrates the magnitude of the 
error reduction by using EDDJA compared to DDJEA. 

In the IEEE 14 bus simulation, the error when predicting the reactive power 
state was reduced almost entirely. For the industry measurements, the errors 
were reduced significantly, but not by the same margin. Generators are set to 
supply consistent real power output. The reactive power fluctuates to maintain 
the real power output. In the simulated system, there was far less variation, even 
with simulated system events. In the real system, the reactive power fluctuated 
wildly, something to expect with significantly more loads and 3000 more buses 

 
Table 4. DDJEA accuracy for reactive power estimation. 

Calculation 
source 

Percent error of predicted and actual reactive power state (Qerr) 

Mean percent error Median percent error 

IEEE 14 bus 
simulation 

0.1884% 9.104 × 10−7% 

Open PDC 
measurements 

0.8916% 0.3342% 
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Table 5. EDDJA accuracy for reactive power estimation. 

Calculation 
source 

Percent error of predicted and actual reactive power state (Qerr) 

Mean percent error Median percent error 

IEEE 14 bus 
simulation 

3.91 × 10−5% 1.137 × 10−11% 

Open PDC 
measurements 

0.1435% 0.1027% 

 
Table 6. EDDJA error reduction compared to DDJEA for reacrive power. 

Calculation 
source 

Percent error reduction of real power (Perr) measurements 

Mean percent error magnitude 
reduction 

Median percent error magnitude 
reduction 

IEEE 14 bus 
simulation 

4818x 80,070x 

Open PDC 
measurements 

6.21x 3.25x 

 
in the overall system. The EDDJA method was able to reduce a significant 
amount of error from the system while adding a negligible amount to the overall 
computation time, as much as 40%., converging before the next iteration is read. 
The EDDJA method generates a reduced matrix that accurately functions as a 
Jacobian approximation. The novel method also proves itself an improvement in 
comparison to the DDJEA method for approximating the reactive portion of the 
decoupled power flow Jacobian. 

3. Implementing EDDJA for Situational Awareness and  
Stability Analysis 

When analyzing the decoupled power flow Jacobian, eigenvalue analysis or SVD 
can be applied to assess system weak points and group buses in terms of sensi-
tivity to an event. For the DDJEA algorithm, the diagonal terms were already the 
eigenvalues of each particular bus with respect to real and reactive power. When 
a value near singularity occurs, generally in the case of a fault or line removal, 
the affected buses can be flagged. Once singularity occurs, the system is already 
unstable, so developing tools to predict when the eigenvalues are approaching 
singularity before it occurs are necessary. Also, the eigenvalue bounds of normal 
system operation need to be determined in order to avoid flagging regular sys-
tem activity as deviation from the equilibrium points. In a real system and simu-
lated system, the value will rarely converge to a single value. Instead the eigen-
values of each term fluctuate within different acceptable system bounds. Ma-
thematical representations to determine when the DDJEA matrix is accelerat-
ing/decelerating and increasing/decreasing are useful when determining whether 
the eigenvalues are converging or diverging from an equilibrium point. Equa-
tions (34 - 36) are applied to the DDJEA method for determining acceleration 
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and magnitude variation. 
EDDJA requires eigenvalue calculation and Singular Value Decomposition is 

used to quantify bus eigenvalues into different zones during an event or unstable 
oscillation. Knowing which buses and parameters are most effected during the 
onset of unstable conditions can aid system operators in isolating and fixing the 
issue. The eigenvalue for EDDJA is similarly utilized in Equations (37 - 39). “AI” 
denotes the acceleration indicator. These equations below are derived for the 
real power portion of DDJEA and EDDJA. The reactive power decoupled por-
tions are derived similarly. 

( )
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( )
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( )
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( )
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2
.
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i i i i i
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( ) ( ) yields0 bus DDJEA is accelerating.DDJEA DDJEAAI t AI t t− − ∆ > →     (35) 
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( )

( )
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i i

P t P t t
t t tδ δ

 ∆ ∆ − ∆
− > →  ∆ ∆ − ∆ 

       (36) 

( )( )( ) ( )( )( )( ) ( )( )( ) ( )( )( )( )2 .eig Bus i t eig Bus i t t eig Bus i t t eig Bus i t t− − ∆ − − ∆ − − ∆       (37) 

( ) ( ) yields0 bus EDDJA is accelerating.EDDJA EDDJAAI t AI t t− − ∆ > →     (38) 

( )( )( ) ( )( )( )( ) yields0 bus EDDJA is increasing.eig Bus i t eig Bus i t t− − ∆ > →

(39) 

Since singularities are the mathematical indication of instability in terms of 
DDJEA and EDDJA elements, acceleration toward zero and infinity should al-
ways be flagged. By analyzing EDDJA, both static and dynamic stability margins 
can be assessed. Furthermore, a continually increasing eigenvalue outside of 
equilibrium can be flagged so that slow inter-area oscillations are not missed. 
Immediately after system events, acceleration back toward the equilibrium point 
is noted and system parameters are updated should a solution not be necessary. 
In [1], the DDJEA algorithm was applied for situational awareness and flagging 
critically unstable parameters. Singular Value Decomposition is applied in this 
model to achieve an index for eigenvalues, similar to [2] [3] [4] [5] [6]. Figure 1 
shows the general algorithm that EDDJA implements to enhance situational 
awareness. Table 7 decodes the output of the graphs for both DDJEA and 
EDDJA in Figure 2 and Figure 3 respectively. These methods are compared to 
the output of Prony Analysis in Figure 4 to showcase EDDJA’s immediate de-
tection of an unstable system mode in comparison with a well-known method. 

The method returns the location of an event or critically unstable eigenvalue, 
the properties of that eigenvalue in relation to static or dynamic instability de-
pendent upon which portions of the EDDJA matrix are affected, all other buses 
and parameters are contributing to the unstable conditions, and a rating of sys-
tem weak points to the event. Figure 2 and Figure 3 show the output for stabil-
ity margins in reference to the PMU 4, the system’s weak point for this event. 
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Table 7. DDJEA and EDDJA analysis code value interpretation. 

code value 
Figure 2/Figure 3 decode table 

Interpretation of Value 

0 System is at equilibrium range/No action necessary 

5 Bus eigenvalue is converging to a new equilibrium point/No action necessary 

10 
Slightly divergent trends detected in eigenvalue/No action unless this  

pattern continues 

15 
Eigenvalue is converging from unstable parameters/No action unless  

divergence occurs or after event 

20 Bus eigenvalue is marginally converging from unstable parameters/FLAG 

25 Eigenvalue at bus is increasing toward dynamic instability/FLAG CRITICAL 

30 Eigenvalue is accelerating toward dynamic instability/FLAG CRITICAL 

35 Dynamic and voltage instability parameters detected/FLAG CRITICAL 

40 
Approaching singularity/System will go unstable soon without  

solution/FLAG CRITICAL 

50 
Major system event or eigenvalue in range of singularity/FLAG HIGHEST 

PRIORITY 

 

 
Figure 1. EDDJA analysis for applied situational awareness. 
 

The fault occurs at measurement 1500, and both DDJEA and EDDJA recog-
nize the major system event within 1 cycle. DDJEA is limited to generating only 
the diagonal approximations, so the eigenvalue calculated appears to converge 
for short periods of time, but then the system immediately shows divergent, ac-
celerating trends and the indications for both dynamic and static instability: seen  
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Figure 2. DDJEA analysis outputfor unstable case. 

 
in Figure 3. Figure 4 demonstrates that the weighted off-diagonal terms are 
consistently unstable when their time-varying weights are applied. The initial 
event detection of DDJEA and EDDJA are comparable, but the eigenvalues of 
the EDDJA matrix show more consistency when identifying both dynamic and 
static instability due to the additional weighted terms in both the real and reac-
tive power decoupled Jacobian matrix approximations. This implementation of 
SVD and eigenvalue analysis correlates with [2] [3] [4] [5] [6]. Since the weak 
point and parameters could have been relayed, this unstable condition could 
have been prevented by having system operators manually remove the affected 
line without voltage collapse. 

The output of these methods can be compared with event detection using 
Prony analysis for comparison of effectiveness and response time. It is viable to 
note that Prony Analysis does not converge in real-time for all buses and there-
fore is better used to monitor inter-area oscillations, and modes approaching 
marginally stable conditions [7] [8]. Equations (40) and (41) show the general 
output of Prony Analysis. 
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1

e cos 2π .j
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j j j

j
F t f tσα φ

=

= ∗ × +∑               (40) 

( )
1

e e .i i
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j t
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i
F t φ λβ ±

=

= ∑                     (41) 

The signal is decomposed into a series of weighted, damped sinusoids. The 
eigenvalues are put into state-space form, terms with weights near zero are re-
moved, and the fundamental mode and corresponding eigenvalues are returned. 
The signal under analysis is the real power at each PMU bus. The power through 
the bus is analyzed for poorly damped or unstable dominant modes. Prony 
Analysis was applied to the same unstable data set as DDJEA and EDDJA. The 
interpreted output is shown in Figure 4 with Table 8 detailing the individual 
output levels. 
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Figure 3. EDDJA analysis outputfor unstable case. 

 

 
Figure 4. Prony analysis output for unstable case. 

 
Table 8. Prony analysis code value interpretation. 

Code value 
Figure 4 decode table 

Interpretation of value 

0 Damping ratio is above 5% and frequency is not shifting significantly 

1 System mode and eigenvalue are shifting significantly 

2 Damping ratio under 5%/Flag oscillation 

3 
Damping ratio is under 1% and eigenvalue’s real part is reaching 0/Flag criti-

cal 

4 
A dominant system mode has a positive real part [Unstable  

condition]/FLAG HIGHEST PRIORITY 

 
Prony analysis detects a significant shift in the dominant mode, but the first 

unstable eigenvalue is not read for 10 cycles. Prony analysis registers a consis-
tently unstable dominant eigenvalue at the same PMU however after several 
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cycles have passed, verifying that the EDDJA method more accurately reflects 
the nature of the bus eigenvalues than the DDJEA method. In terms of situa-
tional awareness, Prony analysis is well suited to be run alongside the EDDJA 
method to help identify and verify unstable power oscillations early on for buses 
that have marginally divergent EDDJA indications.   

4. 1-D Biorthogonal Wavelet Event Detection and  
Identification 

The 1-D discreet biorthogonal wavelet was selected for processing the individual 
signals. The signals were analyzed with a variety of wavelets including Haar, 
Meyer, and Symlet wavelets. The Matlab “bior3.5” wavelet function was ulti-
mately used to generate the wavelet coefficients. These coefficients were ana-
lyzed across several different cases containing a fault, capacitor switch, HIF, load 
switch, and line removal. Peak wavelet coefficients for the real power, reactive 
power, phase voltage magnitude, phase current magnitude, discreet derivative of 
the voltage phase angle, and discreet derivative of the current phase angle. Equa-
tion (42) shows the general format from which the wavelet coefficients are ulti-
mately derived. 

( ) ( ) ( ),, da dW a d x t t tψ ψ
∞

−∞
= ∫                  (42) 

( )tψ  is the mother wavelet function, with ,a dψ  being made up of or tho-
normal basis vectors to decompose x(t), the target signal or function. The scope 
of this paper’s particular application focuses solely on the high frequency wavelet 
coefficients and a 1-level decomposition for mathematical simplicity and speed 
during events for convergence. The wavelet transform finds favor in [12] [14] 
[15] [16] [17] due to the ability to relate changes in the frequency domain back 
to the time domain. Since HIF frequency distortion is nonlinear and time vary-
ing, it is often lost in Fourier transforms and other frequency approaches. Since 
an HIF insignificantly changes the magnitude of current and voltage, less than 
the average load, a method that combines time domain and frequency domain 
approaches was ideal. During an event, the peak amplitude of the wavelet coeffi-
cients is recorded for each variable along a running window. Since magnitudes 
can change based on p.u. ratings and window length, most of the variables will 
be defined symbolically, although statistical analysis to determine rates of false 
positives are definitely something to consider when analyzing the system for cu-
toff variables. Below are some terms that are necessary to explain this method’s 
approach in Figure 5. Depending on window size and system ratings, these 
coefficients would need to be run for several test cases. Other variables can be 
manipulated to fit within a range. Gaussian distributions analyze the odds of a 
false-positive. Particular ratios are extraordinarily effective when identifying 
events. All of these wavelets were calculated with the biorthogonal “bior3.5” dis-
crete wavelet transform. As long as the peak wavelet coefficient for real power 
stays below a threshold, no further analysis is required. A moving window takes 
into account the newest measurement and analyzes the event until a new peak 
value is reached.   
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Figure 5. Biorthogonal wavelet event identification.  

 
 → The peak wavelet coefficient associated with the real power signal;  
 → The peak wavelet coefficient associated with the reactive power signal; 
 → The peak wavelet coefficient associated with the voltage magnitude 

signal; 
 → The peak wavelet coefficient associated with the current magnitude 

signal; 
 → The peak wavelet coefficient associated with the discreet derivative of 

current phase angle; 
 → The peak wavelet coefficient associated with the discreet derivative of 

voltage phase angle; 
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eventminα  → The real power wavelet coefficient used as a cut off many orders 
above system noise; 

capcutoffα  → Lower wavelet bound for typical system capacitors in regards to 
;Pα  

/
P

P Q
Q

α
α

α
=                        (43) 

/P Qα  → Gives a margin to easily detect line removals; All other events fall 
near 1 or under; 

FCLα →Calculated by creating a gaussian distribution over a range of data: 
→ Then the value is calculated for having a 1% level of significance, meaning 

that; 
→ 1 out of every 100 rejections will be false. When the number is doubled, the 

odds converge; 
→ Toward zero.  

0.001
V

V N
α

α ∆Θ
∆Θ =  → This is just an applied weight for certain calculations (44). 

0.001
I

I N
α

α ∆Θ
∆Θ =                          (45) 

The low impedance fault stands out statistically in wavelet transforms.  The 
HIF can be hard to determine, but it affects the discreet derivative of the voltage 
angle significantly more in most cases than a load switch. A load switch dwarfs 
the impact that an HIF appears to have on the system from time domain sam-
ples, but by highlighting the one area that HIF has a greater magnitude, a term 
can be generated that drives a load switch toward a higher value and an HIF to-
ward zero. This guarantees that even a small load switch cannot drive toward 
zero due to its effect on the circuit. This term is called HIFα . 

V
HIF

I

α
α

α
∆Θ

∆Θ

=                          (46) 

Figure 5 shows the general algorithm for applying wavelet transforms for 
event detection and identification. 

In the case of all tested events, this model was able to adequately identify the 
event type. Statistical analysis is a powerful addition to this model when selected 
the cutoff values. Analyzing the mean and standard deviation of different event  
types can help distinguish event characteristics. The detection of HIF characte-
ristics through PMU data was a fantastic breakthrough, since a lot of publica-
tions use transient data for detection. PMU data can cover a much larger time 
segment in fewer points, but there is also less resolution than samples with 
1,000,000 Hz sampling rates. This is an advantage since smaller window lengths 
are required to enclose the event and its residual effects to the system.  

5. Conclusion 

The proposed novel method excelled in both event detection and reducing error 
from the predicted state value. The accuracy of EDDJA shows clearly that it can 
uphold a similar function to the full Jacobian model, especially in a situation 
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where system connectivity is unavailable, making it an excellent model-free 
analysis method. The conditions and options to include both Prony analysis and 
wavelet decomposition were expressed. EDDJA yields incredibly accurate eigen-
value information, leading to more accurate identification of unstable parame-
ters and increased system visibility with respect to which buses are influencing 
an unstable parameter. Prony analysis verified the estimate of unstable eigenva-
lues by EDDJA. Prony analysis and wavelet decomposition are both ideal tools 
to use along with this method to give system operators verification and time to 
solve oscillatory power flow and event types. In the case of events, wavelet analy-
sis can be used to double check the cause of changes in the Jacobian. The wavelet 
transform was able to detect and identify all system events including the HIF 
from PMU data, which is significant since the majority of publications apply 
wavelet transforms to transient data sets. Future research will most likely incor-
porate Machine Learning to wavelet outputs to train a more flexible algorithm 
that can immediately analyze data without further offline analysis. 
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