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Abstract 
In this manuscript, the existence of periodic orbits of collision of the first kind 
has been discussed on the model of Autonomous Four-body Problem by the 
method of analytic continuation given by Giacaglia [1] and Bhatnagar [2] [3]. 
For the existence of periodic orbits, Duboshin’s criterion [4] has been satisfied 
and it has been confirmed by analyzing the Poincare surfaces of section (PSS) 
[5]. Also it has been shown that the case of collision given by Levi-Civita [6] 
[7] is conserved by the method analytic continuation. In all sections of this 
manuscript, equilateral triangular configuration given by Ceccaroni and Biggs 
[8] has been considered. In this model, third primary of inferior mass (in 
comparison of the other primaries) is placed at the equilibrium point 4L  of 
the R3BP. 
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1. Introduction 

We know that the four most popular methods of proving the existence of peri-
odic orbits are: 
(i) the method of analytic continuation, 
(ii) the process of equating Fourier coefficients of equal frequencies, 
(iii) the application of fixed point theorem given by Poincare,  
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(iv) the method of power series.  
Giacaglia [1] used the method of analytic continuation to examine the exis-

tence of periodic orbits of collision in the Restricted Three-body Problem 
(R3BP). Bhatnagar [2] generalized the problem in elliptic case. The problem of 
Giacaglia [1] was further extended by Bhatnagar [3] in the R4BP by taking the 
primaries at the vertices of an equilateral triangle. With different perturbations 
like oblateness, triaxiality, photogravitation, Pointing-Robertson drag effects of 
the primaries, the existence of periodic orbits of collision in the R3BP and in the 
R4BP, have been studied by different authors in two and three-dimensional 
co-ordinate system during the period of last three decades of the 20th century but 
nobody established the proper mathematical model of the R4BP. Recently Cec-
caroni and Biggs [8] has studied the autonomous coplanar CR4BP by taking the 
third primary of comparatively inferior mass at the triangular equilibrium point 

4L  of R3BP and with an extension to low-thrust propulsion for application to 
the future science mission.  

In present paper, we have proposed to study the existence of periodic orbits of 
first kind in the Autonomous Four-body Problem by the method of analytic 
continuation. By using Poincare surfaces of section (PSS), the conditions for the 
existence of periodic orbits given by Duboshin [4] have been confirmed. For col-
lision case, we have applied the criterion given by Levi-Civitas [6] [7] and it is 
satisfied by our model. 

2. Equations of Motion 

Let 1 2 3, ,P P P  be the three massive bodies of masses ( )1, 2,3im i =  respectively, 
where 1 2 3m m m≥   and the fourth body of mass m  be at P . These bodies 
are moving in the same plane under some restrictions as follows:  

The fourth body at P  of mass m  is assumed to be of infinitesimal mass not 
influencing the motion of 1 2 3, ,P P P  but motions of ( )4P  is being influenced by 
the motions of 1 2 3, ,P P P . Further, we have assumed that the mass 3m  at 3P  is 
taken small enough, so that it can’t influence the motion of the dominating pri-
maries 1P  and 2P  and it is placed at any one of the triangular libration points 
(Lagrangian Points) of the classical restricted three body problem. Since the 
third primary can’t influence the motions of 1P  and 2P , so the centre of rota-
tion of the system remains at the barycentre of two main primaries 1P  and 2P . 
Also, it is supposed, all the primaries are moving in the same plane in circular 
orbits around the bary-centre of massive primaries 1P  and 2P  with the same 
angular velocity ω  and the fourth body 4P  is moving under the gravitational 
field and plane of motion of three primaries 1 2 3, ,P P P  then to check the nature 
of motion of infinitesimal mass 4m .  

Let the line joining 1P  and 2P  be taken as the x-axis and their mass centre 
(bary-centre) O, as the origin. Let the line through O and perpendicular to 1 2PP  
lying in the plane of motion of the primaries be taken as the y-axis. Let the posi-
tions of masses ( )1, 2,3im i =  be ( ) ( ) ( )1 1 2 2 3 3 3, 0 , , 0 , ,P x P x P x y   and ( ),P x y  
respectively. Let r  be the position vector of P  and 1 2 3, ,r r r  be the displace- 
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Figure 1. Configuration of four-body problem. 

 
ments of 1 2,P P  and 3P  relative to 4P  as shown in Figure 1, then 

( )
( )
( ) ( )

1 1

2 2

3 3 3

ˆ ˆ,
ˆ ˆ,
ˆ ˆ,
ˆ ˆ.

xi y j

x x i y j

x x i y j

x x i y y j

= +


= − + 


= − + 
= − + − 

r

r

r

r

                   (1) 

Let 1 2 3, ,F F F  be the gravitational forces exerted on ( )4 4P m  by the prima-
ries respectively, then  

( )3 1, 2,3 ,i
i i

i

m m i
r

γ=    =
rF                     (2) 

where γ  is the gravitational constant. 
The total gravitational force acting on ( )P m  by the three primaries is given 

by 
3 3

4 3
1 1

.i i
i

i i i

m
F m

r
γ

= =

= =∑ ∑
r

F                      (3) 

Let n  be the magnitude of angular velocity ω  and k̂  be the unit vector 
normal to the plane of motion of the primaries, then ˆnk=ω .  

The Equation of motion of the infinitesimal mass 4m  in synodic frame is 

( )
2

4
2

2 .m
t t t

 ∂ ∂ ∂
+ × + × + × × = ∂ ∂ ∂ 

r r r r Fωω ω ω             (4) 

Since the synodic frame are revolving with constant angular velocity ω  

about the bary-centre, hence 0
t

∂
=

∂
ω  and thus Equation (4) reduces to 
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( )
2 3

2 3
1

2 .i i

i i

m
tt r

γ
=

 ∂ ∂
+ × + × × = ∂∂ 

∑ rr r rω ω ω               (5) 

In cartesian form, the equations of motion of the infinitesimal mass 4m  in 
the gravitational field of three primaries, are given by 

( ) ( ) ( )

( )

3 31 1 2 22
3 3 3

1 2 3

3 32 1 2
3 3 3

1 2 3

2 ,

2 .

m x xm x x m x x
x ny n x

r r r

m y ym y m yy nx n y
r r r

γ

γ

 −− −
− − = + +  

  


 − + − = + +  
  

 

 

       (6) 

Also the linear velocity of the infinitesimal mass m  on its orbit; is given by 

d dAs 
d dt t t t

∂ ∂ = = + × .         = + × ∂ ∂ 
r rv rω ω              (7) 

If 1 2,v v  are two components of v , then from Equation (7), 

1 2, .v x ny v y nx= −     = −                       (8) 

If mass of the infinitesimal body is supposed to be unity, then the kinetic 
energy of the infinitesimal mass is given by 

( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 2

1 1 2 ,
2 2

T v v x y n xy xy n x y = + = + + − + +           (9) 

Let 1 2,p p  be the momenta corresponding to the co-ordinates ,x y  respec-
tively, then 

( ) ( )1 1 2 2, .T Tp x ny v p y nx v
x y

∂ ∂
= = − =     = = + =

∂ ∂
 

 

         (10)

 Combination of Equations ((9) and (10)) yields 

( )2 2
1 2

1 .
2

T p p= +                        (11) 

The gravitational potential of the body of mass im  at any point of 4P  out-
side it, is given by  

( )1, 2,3 ,i
i

i

mV i
r

γ
= −    =  

then, total gravitational potential at 4P  due to three primaries is given by 
3

31 2

1 1 2 3

.i
i

mm mV V
r r r

γ
=

 
= = − + + 

 
∑                  (12) 

The Hamiltonian of the infinitesimal body of unit mass is given by 

( )1 2 ,H p x p y T V= + − −   

( ) ( )2 2 31 2
1 2 1 2

1 2 3

1 .
2

mm mH p p n p y p x C
r r r

γ
 

= + + − − + + = 
 

       (13) 

Let µ  be the reduced mass of the second primary and ε  be the reduced 
mass of the third primary, then from the definition of reduced mass, we have 

32
1 2

1 2 1 2

, and 1.mm m m
m m m m

µ ε=   =     + =
+ +
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then 1 2 31 , , .m m mµ µ ε= − = =   
The coordinates of 1 2 3, ,P P P  are given by 

( ) ( ) ( )3 3 3 4
1 3,0 , 1,0 and , , .
2 2

P x y Lµ µ µ
 

  −     ≡ −  
 

 

Clearly 1 2 2 3 3 1 1PP P P P P= = = , which implies that 1 2 3PP P  forms an equila-
teral triangle of sides of unit length. We know that ε  is very small in compari-
son of masses of the other two primaries, so we can choose ε  as the order of 
µ  i.e., ( ) ( )0 sayoε µ ε µ= =   . Now choosing unit of time in such a manner 
that 1γ =  and 1n =  and taking 1 2,x x y x= = , then the Hamilton canonical 
equations of motion of the infinitesimal body 4P  are given by 

( )d d, 1, 2 ,
d d

i i

i i

x pH H i
t p t x

∂ ∂
= = −   =

∂ ∂
                (14) 

where 

( ) ( )2 2 0
1 2 1 2 2 1

1 2 3

1 1
2

H p p p x p x C
r r r

ε µµ µ−
= + + − − − − =         (15) 

is the reduced Hamiltonian corresponding to canonically conjugate variables 
( )1 2,x x  and ( )1 2,p p . 

3. Regularization at the Singularity ( )r1 0=   

In our Hamiltonian H  given in Equation (15), there are three singularities 

1 2 3 0r r r= = = . To examine the existence of periodic orbits of collision with the 
first primary, we have to eliminate the singularity 1 0r = . For this, let us define 
an extended generating function S given by 

( ) ( )2 2
1 2 1 1 2 22S q q p q q pµ= + − + ,                (16) 

with 

( ), 1, 2i i
i i

S Sx Q i
p q

∂ ∂
=    = ,   =

∂ ∂
                  (17) 

where iQ  is the momenta associated with new co-ordinate ( )1, 2iq i = .  
Clearly, 

2 2
1 1 2 2 1 2

1 1

, 2 .S Sx q q x q q
p p

µ∂ ∂
= = + −   = =

∂ ∂
             (18) 

( ) ( )
( ) ( )

2 2
1 1 2

2 22 2 2 2 2
2 1 2 1 2

2 22 2 2 2 2
3 1 2 1 2 1 2

,

1 2 ,

1 2 3 .

r q q

r q q q q

r q q q q q q

= + 
= + − + + 

= + − − + + 

            (19) 

Also, 

( ) ( )

( ) ( )

1 1 1 2 2 2 1 2 2 1

1 1 1 2 2 2 1 2 2 1
1 1

2 , 2 ,
1 1, .

2 2

Q q p q p Q q p q p

p Q q Q q p Q q Q q
r r

= +         = − 

= −      = + 


          (20) 
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Thus the Hamiltonian H  given in Equation (15), can be written in terms of 
new variables ,i iQ q , as 

( ) ( ) ( )2 2 0
1 2 1 2 2 1 1 2 2 1

1 1 1 2 3

1 1 1 .
8 2 2

H Q Q Q q Q q Q q Q q C
r r r r r

ε µµ µ µ−
= + + − − + − − − =  (21) 

Let us introduce pseudo time τ  by the differential equation  

( )1d d 0 when 0 .t r tτ τ=   =     =                   (22) 

Thus the regularized Hamilton-canonical equations of motion of the infinite-
simal body corresponding to the Hamiltonian 0K = , are given by  

( )d d, 1, 2 ,
d d

i i

i i

q QK K i
Q qτ τ

∂ ∂
=     = −   =

∂ ∂
               (23) 

where the regularized Hamiltonian K  is given by 

( )1 0,K r H C= − =  

( ) ( )

( )

2 2
1 2 1 1 2 2 1 0

1 01
1 2 2 1 1 1

2 3

1 1 2 1
8 2

11 0.
2

K Q Q r Q q Q q C

rrQ q Q q rC
r r

εµ

= + + − − −

 
       + − + − − − = 

 

        

 

(24) 

Let us write 0 1K K Kµ= + , then 

( ) ( ) ( )2 2
0 1 2 1 1 2 2 1 0

1 1 2 1 , say
8 2

K Q Q r Q q Q q C λ= + + − − − = −          (25) 

( ) 1 01
1 1 2 2 1 1 1

2 3

11 .
2

rrK Q q Q q rC
r r

ε
= − + − − −              (26) 

4. Generating Solution (i.e., Solutions When 0µ = ) 

For generating solutions, we shall choose 0K  for our Hamiltonian function, so 
in order to solve the Hamilton-Jacobi equation associated with 0K , let us write 

, 1, 2 and 1 0,i
i

WQ i
q

λ α∂
=   =     − = >

∂
               (27) 

where α  is an arbitrary constant. 
Since t  is not involved explicitly in 0K : hence by using Equation (27) in 

Equation (25), the Hamilton-Jacobi equation may be written as 
2 2

1
2 1 0

1 2 1 2

1 2 ,
8 2

rW W W Wq q C
q q q q

α
      ∂ ∂ ∂ ∂ + + − − =     ∂ ∂ ∂ ∂       

       
 

(28) 

Putting 1 2cos , sinq qρ ϕ ρ ϕ=  = , then the Equation (27) becomes 
2 2

2
02

1 1 1 2 .
8 2

W W W Cρ α
ρ ϕ ϕρ

      ∂ ∂ ∂
+ + − − =      ∂ ∂ ∂       

         (29) 

It may be noted that this differential equation is exactly the same as in Giacag-
lia [1] and Bhatnagar [2] [3] and therefore the solution of Equation (29) can be 
written by the method of separation of variables, as 

( ) 2 ,W U Gρ ϕ= +                       (30) 
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where G  is an arbitrary constant.  
Let us introduce a new quantity z  by 2

1r zρ= =  then from Equation (30), 
we get 

d d2   and 2
d d

W U U U W G
z

ρ
ρ ρ ρ ρ

∂ ∂ ∂
= = =    =

∂ ∂ ∂
            (31) 

Combination of Equations (29) and (30) yields 

[ ]

( )

22 2

0

2 2

0

1 d 22 2 2 ,
8 d

di.e., 2 2 ,
d

U G G C
z z

U Gz z G C
z z

ρρ α
ρ

α

    + + − − =    
     

    + − + = 
 

 

( ) ( )1
2

0
d 2 ,
d

f zU G C
z z

 = − +                   (32) 

where 

( ) ( )
2

2

0 0

,
2

z Gf z z
G C G C

α
= − − +

+ +
               (33) 

( ) ( ) ( )
1

1
2

0, , 2 d ,
z

z

f z
U z G G C z

z
α  = − +  ∫              (34) 

where 1z  is the smaller root of the roots of the equation ( ) 0f z = .  
From Equation (33), we conclude that for general solution; we need only two 

arbitrary constants as α  and G . Therefore the solution of Equation (30) may 
be regarded as a general solution.  

Let us introduce the parameters , ,a e l  by the relations  

( ) ( )

( )

( )

1 2

2 2
1 2

1 , 1 ,

cos sin , 0 1
2 2

1 cos ,

z a e z a e

l lz z z e

a e l

= −     = + 

   = +       ≤ ≤    

    
   = − 

            (35) 

where a  is the semi-major axis, e  is the eccentricity and l  is the latus-rec- 
tum of the elliptic orbit of the infinitesimal body. 

It may be noted that for 1, 0z z l= =  and 2z  is the other root of the equa-
tion ( ) 0f z = .  

We introduce a parameter L  by the relation 

( )

( )

1
2

0

1 2
1
2

0

11
2221 2

2 2

2 0, so that;

0,
2

2

1 1 1.

L G C

z z La
G C

z z Ge
a L

α


 = − + >         
+ = = >    
 − +   


     = − = − ≤       

              (36) 

From Equations (33), (35) and (36), we get 
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( )
( )

( )

( )
( ) ( ) ( )

1
22

02

0 0

2 2 2
2 2

2
0

22 2 2 2

2
2

2 2
2

1 cos 2 1 cos 1 ,

zL G C Gf z z
G C G C

G a Gz az z az
G C L

a e l a e l a e

 − + = − − +
+ +

= − + + = − + −
+

= − − + − + −

 

( ) 2 2 2i.e., sin .f z a e l  =                     (37) 

Again from Equation (25) 

( ) ( )
2

2 2
0 1 2 1 2 2 1 0

2 20 0
1 2 2 1

1 2

1 2 1,
8 2

1 1 1 1, .
4 2 4 2

K Q Q Q q Q q C

K KQ q Q q
Q Q

ρ

ρ ρ

= + + − − −

∂ ∂
= +    = −

∂ ∂

 

Thus the equations of motion associated with 0K  are given as 

2 20 01 2
1 2 2 1

1 2

d d1 1 1 1, ,
d 4 2 d 4 2

K Kq qQ q Q q
Q Q

ρ ρ
τ τ

∂ ∂
= = +    = = −

∂ ∂
 

2 2
1 1 2 2 2 1

1 1 1 1i.e., , ,
4 2 4 2

q Q q q Q qρ ρ′ ′   = +    = +             (38) 

where ( )'  denotes the differentiation with respect to τ . 

Now from 2z ρ=  we get d d2 2
d d

z ρρ ρρ
τ τ

′= = .  

Also 2 2 2
1 2q qρ = +  implies 

2

1 1 2 2
1

i i
i

q q q q q qρρ
=

′ ′ ′ ′= + = ∑   

and 
2

1 1 2 2
1

4 .i i i i
i

q Q q Q q Q q q
=

′= + =∑ ∑  [Using Equation (38)] 

Thus from the above relations, we have 
2 2

1 1

1 d 1 d .
2 d 4 2 di i i i

i i

z z Uq q q Q
z

ρρ
τ = =

′ ′ ′= = = =∑ ∑              (39) 

From Equation (32), we get 

( ) ( )

( ) ( ) [ ]

( )
( )

( )
( )

1

1
2

0

1
2

0

1
2

0

1
2

0
0

d 2 ,
d

d 2 , Using Equation (39)
d

d 2 d ,

di.e., 2 d ,
z

z

Uz G C f z
z

z G C f z

z G C
f z

z G C
f z

τ

τ

τ

τ

 = − + 

 = − +              

 = − + 

  = − + ∫ ∫

 

( ) ( )
1
2

0 0i.e., 2 .l G C τ τ   = − + −                             (40) 

From Equation (30), 

( ) 2 ,

2 ,

W U G
W U
G G

ρ ϕ

ϕ

= +

∂ ∂
= +

∂ ∂
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where ( ), , ,U U z G
G G

α∂ ∂
=

∂ ∂
  

( ) ( )
1

1
2

02 d ,
z

z

f zU G C z
G G z

∂ ∂
 = − + ∂ ∂ ∫  [Using Equation (34)] 

( )
2 2

0

sin ,
2

U L G l h
G G C

∂ −
= −

∂ +
 

where 2

0

d1 .
1 cos

l lh e
e l

= −
−∫   

If we take L  and G  as arbitrary constants, the solutions may be written as 

( ) ( )
2 2

0

,

2 sin say .
2

W U l
L L
W L G l h g
G G C

ϕ

∂ ∂ = = ∂ ∂ 
∂ − = + − =   
∂ + 

            (41) 

From the second equation of system (41), we get the argument as 

( ) ( ) ( )

( ) ( ) ( )

2 2

0

0

1 sin 1
2 4

1 1and sin for 1 , 0 , 0
2 4

L Gg h l e
G C

g l e G h
C

ϕ

ϕ

−
= + −   ≠ 

+ 

   = −   = = = 

        (42) 

Since 

( )
1
2

0 01 2 1,K L G Cα  = − = − + −                  (43) 

hence for the problem generated by Hamiltonian 0K  (regularized two-body 
problem in rotating co-ordinate system), we have 

( )

( )

0
0

0
0

1
0 2

0

0

0

0

0

d 0, const.
d
d 0, const.
d
d 2 const. ,
d
where ,
d const. ,
d 2

where .

l

l

g

g

KL L L
l
KG G G
g

Kl G C
L
l l

Kg L
G G C

g g

τ

τ

η
τ

η τ

η
τ

η τ

∂ = − = = = ∂ 
∂ = − = = = ∂


∂  = = − + = =     ∂ 
   = + 

∂ −
= = = =

∂  − +  


  = + 

            (44)

 

The variables ( ), 1, 2i iq Q i  =  can now be expressed in terms of the canonical 
elements for ( )1, 0e G≠ ≠ , as 

( ) ( )

( ) ( )

1 1
2 2

1 2

1 21 1
2 2

1 cos cos , 1 cos sin ,

2 sin cos 2 cos 2 sin sin 2 cos, ,
1 cos 1 cos

q a e l q a e l

eL l G eL l GQ Q
a e l a e l

ϕ ϕ

ϕ ϕ ϕ ϕ


= ± −            = ± −       


− + = ±     = ± 

− −       

   (45) 

where ϕ  is given by the first equation of system (42). 
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When 1e =  and 0G = , then 

1 2

1 2

2 sin cos , 2 sin sin ,
2 2

4 4cos cos , cos sin ,
2 22 2

l lq a q a

L l L lQ Q
a a

ϕ ϕ

ϕ ϕ

   ± =      ± =        


    ± =    ± =        
        (46) 

where ϕ  is given by the second equation of system (42). 
The original synodic cartesian co-ordinates in a non-uniformly rotating sys-

tem are obtained from Equations (18) and (20), when 0µ = , as 
2 2

1 1 2 2 1 2

1 1 2 2 1 2 2 2
1 2

, 2

, .
2 2

x q q x q q
q Q q Q q Q q Qp p

z Z

= −             =

− +

=    = 

              (47) 

The sidereal cartesian co-ordinates are obtained by considering the transfor-
mations  

1 1 2 2 1 2

1 1 2 2 1 2

cos sin , sin cos ,

cos sin , sin cos ,

X x t x t X x t x t
X p t p t X p t p t

= −       = + 


= −      = +  

          (48) 

where t  is given by 

( ) ( )0

d
2

z zt
G C F z

=
− +

∫ , 

( )
{ }0

0

i.e., sin ,
2

at t l e l
G C

  − = −
− +

 

where 0t  is a constant. 
In terms of canonical variables introduced, the complete Hamiltonian may be 

written as ( )
1
2

02 1K L G C Rµ = − + − +  , where R  can be obtained from Eq-

uation (26) after changing into canonical variables. 
The equations of motion for the complete Hamiltonian are 

( )

( )

1
2

0

1
2

0

d 2 ,
d
d ,
d 2

d d, .
d d

l K RG C
L L

g K L R
G GG C

L K R G K R
l l g g

µ
τ

µ
τ

µ µ
τ τ


∂ ∂

 = = − + +  ∂ ∂ 
∂ ∂ = = − + ∂ ∂  − +  

∂ ∂ ∂ ∂
= − = −    = − = − ∂ ∂ ∂ ∂ 

            (49) 

Equation (49) forms the basis of a general perturbation theory for the present 
problem. The solution described by Equations ((44) and (45)) and is periodic if 
l  and g have commensurable frequencies, i.e., if 

( )02
,l

g

G C p
L q

η
η

+
= =  

where p  and q  are integers. 

The periods of ,i iq Q  are 4π

ln
 and 4π

gn
 respectively, so that in case of 
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commensurability, the period of the solution is 4π

l

p
n

 or 4π

g

q
n

. 

5. Existence of Periodic Orbits When 0µ ≠   

Here we shall follow the method given by Chaudhary [9] to prove the existence 
of periodic orbits. Let 1 2 1 2, , ,x L x G y l y g=  =  =  =  then from Equation (44), 
when 0µ = , we have  

( )

( ) ( )

( ) ( ) ( )
( )

1
12

2 0 2 1
2

2 0

d 0, 1, 2
d
d 0 , say 1, 2
d

where  0 2 ; 0 .
2

i

i
i

i

x i

y i

xx C
x C

τ

η
τ

η η

=    =

=      =

 = − +   = − 
 − + 

 

Integrating these equations with respect to τ , we get 

( ) ( ) ( )0 , 0 0 .i i i i ix a y η τ ω=    = +                 (50) 

These are the generating solutions of two-body problems. The generating so-
lution will be periodic with the period 0τ , if 

( ) ( ) ( ) ( ) ( ) ( )0 00 0 2π 0 0, 1, 2i i i i i iy y x x iτ η τ κ τ− = = ,   − =     =      (51) 

when iκ  are integers, so that ( )0iη  are commensurable. 
Following Poincare [5], the general solution in the neighbourhood of the ge-

nerating solution, may be given as 

( ) ( ) ( ) ( )0 1, 2i i i i i i i i ix a q y iβ ς η ς ω γ η ς= + + ,    = + + + ,   =      (52) 

where ς  is the new independent variable given by  

.
1

τς
α

=
+

 

The necessary and sufficient conditions for the existence of periodic solution 
are 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 00 0, 0 2π 0.i i i i i i ix x q y yτ τ τ κ η τ− = =     − = = =     (53) 

Restricting our solution only up to the first order infinitesimals, the equations 
of motion may be written as 

( )d 1 ,
d

i

i

q Kα
ς ω

∂
= − +

∂                       
(54) 

( ) ( )d 1 0 ,
d

i
i

i

K
a

η α η
ς

∂
= + +

∂
                  

 
(55) 

where 

( ) ( ), , 0 ,i i i i i i iK K a qς β η ς ω γ η ς= + + + + +    

( )
2

1
0 .i i i i

i i i

K KK q q
a

η η
ω=

 ∂ ∂
= + + ∂ ∂ 

∑  

Expanding ( )( ), , 0i i i i iK aς β η ς ω γ+ + +  in ascending powers of , ,i iβ γ µ , 

101 



M. R. Hassan et al. 
 

Equation (54) may be written as 

( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

0 1

2

1
1

d
1 , , 0

d

1 , , , 0

1 , , 0 .

k
i i i i i

k

i i i i i i i
K

i i
i i i i i

iK i i

q
K a

K a K a

K K
K a

a

α ς β η ς ω γ
ς ω

α ς β µ ς β η ς ω γ
ω

α µ ς η ς ω β γ
ω ω=

∂  = − + + + + ∂
∂  = − + + + + + + ∂

  ∂ ∂∂
= − + + + +  ∂ ∂ ∂   

∑

 

Rejecting the second order term αµ , integrating and putting the value of 1q  
in Equation (51), we get 

( ) [ ] [ ] [ ]2 22
0 1 1 1

10

, ,
where 1, 2k i i

i i
iK K i K i

q K K K
k

a
τ β γ

β γ
µτ ω ω ω ω=

 ∂ ∂ ∂
= + + ,      = − ∂ ∂ ∂ ∂ ∂  

∑
   

(56) 

and [ ] ( ){ }
0

1 1 1
0 0

1 , , 0 d .i i iK K a
τ

ξ η ς ω ς
τ

= +∫  

The Equation (55) gives 

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( )( )

1
1 0 0

1

1 0 1
1

2
0

1 0
11

2
1 1

1
1 1

d
0 1 , , 0

d

0 1 , , , 0

0 1 ,

, , 0

i i i i i

i i i i i i i

i i
i i

i i i i
i i

K a
a

K a K a
a

K
K a

a a

K KK a
a

η
η α ς β η ς ω γ

ς

η α ς β µ ς β η ς ω γ

η α ς β

µ ς η ς ω β γ
ω

=

=

∂  = + + + + + ∂
∂        = + + + + + + + ∂

 ∂∂
       = + + +∂ ∂

  ∂ ∂           + + + +  ∂ ∂  

∑

∑

( ) ( ) ( )
22

0 0
1

11 1

0 1 ,i
i i

K K
O

a a
η α β µ

ω=





∂ ∂

       = + + + +
∂ ∂ ∂∑

 

( ) ( )
2 2

0 0 0 01
1 2 12

1 1 2 11

d 0
d

K K K KO
a a a aa

η α β β µ η
ς

 ∂ ∂ ∂ ∂
= + + + .      = − ∂ ∂ ∂ ∂∂  

  

Equation (45) gives 

( ) ( )

( ) ( )

2 2
0 0 0

1 0 0 1 0 2 02
1 1 21

2 2
0 0 0

2 0 0 1 0 2 0 2
2 1 2 2

, , , ,

, , , .

i i

i i

K K K O
a a aa

K K K O
a a a a

η τ β γ µ ατ β τ β τ µ

η τ β γ µ ατ β τ β τ µ

∂ ∂ ∂
= + + + ∂ ∂ ∂∂ 


∂ ∂ ∂ = + + + ∂ ∂ ∂ 

    (57) 

By solving the Equations (54)-(57), we can find the values of 1 2 2, ,β β γ , as 
analytic function of µ , reducing to zero with µ , if the conditions for periodic 
orbits given by Duboshin [4] are satisfied i.e., 

(i) [ ]1 0, 1, 2
i

K
i

ω
∂

=   =
∂

, and                                        (58) 

(ii) [ ]1 0, 1, 2
i

K
i

a
∂

=   =
∂

, together                                    (59) 

(iii) ( )
( )

2 1 2

2 1 2

, ,
0 for 0

, , i i
q η η

µ β γ
γ β β

∂
≠     = = =

∂
,                            (60) 
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where [ ]1K  is the zero degree terms of 1K  given in Equation (26). 
Now,  

( )
( )

[ ]

[ ]

[ ]

2
12 2 2

2
22 2 2

2 2 2
12 1 2 0 02 1 2

0 02
2 1 2 1 1 1 2 1 1 21

2 2 2
2 1 2 1 0 0

0 0 2
2 2 2 2 2 1 2 2

0 0

, ,
,

, ,

Kq

Kq K Kq
a a aa

q K K K
a a a a

η η
ωγ γ γ

η η η η τ τ
γ β β β β β ω

η η
τ τβ β β ω

∂∂ ∂ ∂
∂∂ ∂ ∂

∂∂ ∂ ∂∂ ∂ ∂
=  =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

From Equation (43), 

( ) ( )

( )

1 1
2 2

0 0 1 2 0
1
2

1 2 0

2 1 2 1

2 1,

K L G C x x C

a a C

   = − + − = − + −   

 = − + − 

 

then  

( )

( )

1
0 2

2 0
1

2 2
0 02

1 2
1 2 12

2 0

2 ,

 and  0.
2

K a C
a

K Ka
a a aa C

∂
      = − +  ∂ 

∂ ∂−
⇒ = =

∂ ∂ ∂  − +  

           (61) 

From the Equation (26) 

( )
2 2

2
1 1 1 2 2 1 0

2 3

11 ,
2

K C Q q Q q
r r
ρ ρρ ε= − − + − −  

where 

( )
( ) ( )

2
1

22 2
2

1 cos ,

1 2 1 cos cos 2 1 cos ,

z a e l r

r a e l a e l

ρ

ϕ

= = − =

= + − + −
 

( ) ( )22 2
3

π1 2 1 cos cos 2 1 cos ,
3

r a e l a e lϕ = + − + + − 
 

 

( )1 2 2 1 2 sin sin 2 cos 2Q q Q q eL l ϕ ς ϕ+ = + , 

Thus 

( ) ( ) 0
1 1

2 3

11 1 cos sin sin 2 cos 2 1 cos .K C a e l eL l G a e l
r r

εϕ ϕ
 

= − − − − − − + 
 

 (62) 

Taking only zero order terms i.e., for 10,e h l y= = =  

[ ]

2
1
2 2

2

2 2
3

0
1 1

2 3

,
1 2 cos 2 ,

1 2 cos 2 ,
3

11 cos 2 ,

r z a
r a a

r a a

K C a G a
r r

ρ
ϕ

πϕ

ε
ϕ

= = =
= + + 
  = + + +  

  
 

= − − − +  
  

             (63) 

where 
( )

2 2
1 2

1 2 1
2 0

2 sin
2

x x
y y y

x C
ϕ

−
= + −

+
. 
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Now from equations of system (52) 

( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 2 2 2 2

1 1 1 1 1 2 2 2 2 2

, ,

0 , 0 .

x a q x a q

y y

β ς β ς

η ς ω γ η ς η ς ω γ η ς

= + +                      = + + 


= + + +      = + + + 
   (64) 

and from Equation (63) 

[ ]
( )

[ ] ( )
( )

[ ] [ ]

1 1 1
2 2

1 2 0 1 2

2
1 2 0 11

2
2 2 0

1 1

1 2

sin ,
2

sin
,

2

,

K Na y
a a C a a

N a a C yK
a a C

K K
MN

ω ω

∂
=

∂ + −

+∂
=

∂ +

∂ ∂
= =

∂ ∂

 

where 

( )
2 2
1 2 1

2 0

cos
1

2
a a y

M
a C
−

= −
+

 and 
2 22

0 0
3 3 3

2 3 3

3sin 2 cos 2 .
2 2
a aaN G

r r r
ε εϕ ϕ

 
= + − + 

 
 

Here [ ]1 0
i

K
a

∂
=

∂
 if either 1sin 0y =  or 0N =  and [ ]1 0

i

K
ω

∂
=

∂
 if either 

0M =  or 0M = . 

But 1sin 0y =  and 
( )

2 2
1 2

1
2 0

cos 1 0
2

a a
M y

a C
−

= − =
+

 don’t imply each other, so 

0N =  is only the case for which [ ]1

i

K
a

∂
∂

 and [ ]1

i

K
ω

∂
∂

 will be simultaneously 

zero.  

Now choosing suitably 5π2
6

ϕ = , then 2 3r r ξ= =  (say) 

and 

2 22
0 0

3 3 3
35π 5πsin cos ,

6 62 2
a aaN Gε ε

ξ ξ ξ
 

= + − + 
 

 

( )

2 22
0 0

3 3 3

2 22
0 0

3 3 3

2

03

31 3 ,
2 22 2

31 ,
2 2 2

1i.e., 1 .
2 2

a aaN G

a aaN G

aN G

ε ε
ξ ξ ξ

ε ε
ξ ξ ξ

ε
ξ

  
 = + − + −       

 
= + − − 

 
 

  = − − 
 

 

Thus, 

[ ] [ ] ( )
2

1 1
03

5π0, if 2 and 1 .
6i i

K K aG
a

ϕ ε
ω ξ

∂ ∂
= =       =    = −

∂ ∂
        (65) 

Now, 

[ ]
( )

2 2 2 22
1 1 2 0 0

1 3 3 3
2 2 0 2 3 3

3cos 1 sin 2 cos 2 ,
2 2 2

K a a a aay G
a C r r r

ε εϕ ϕ
ω

   ∂ −   = − + − +   ∂ +    
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[ ]

( )

2 22
1 02

2 4 3
2 22 2 2

2 22
0 3 0

4 3 3
2 23 2 3

33 sin 2 sin 2 2
2

3
sin 2 3 cos 2 cos 2 2 .

2 2

K araM
r r

a r aa G
r r r

εϕ ϕϕ
ω ωω

ε ε ϕϕ ϕ ϕ
ω ω

∂  ∂ ∂
⇒ = − − ∂ ∂∂ 

 ∂ ∂
                   − + + −  

∂ ∂   

 

As 
2

2 1ϕ
ω

∂
=

∂
 so from Equation (63), we have 

2

2 2

3

2 3

sin 2 ,

πsin 2
3 ,

r a
r

a
r

r

ϕ
ω

ϕ

ω

∂
= −

∂
 + ∂  = −

∂

 

Thus,  

[ ]2 2 2 22
1 0 0 0

2 3 3 3 3
2 2 3 2 3

33
2 0

5 5
2 2

3 3
cos 2 sin 2 sin 2

2 2 2

33 πsin 2 sin 2 .
3

K a a aaM G
r r r r

aa
r r

ε ε ε
ϕ ϕ ϕ

ω

ε
ϕ ϕ

∂  
= + − − − 

∂  
                 + + +  

 

 

Using Equation (65), we get 

[ ] ( ) ( )
2 2

01
0 02 3 2

2

3 13 as 1
4

aK M a ε
ε ε

ω ξ ξ

 −∂
= − ,     

∂   
  

[ ]

( )
( )

2
1

2
2

2 1 2

1 1 2

0,

, ,
0.

, ,

K

q
ω

η η
γ β β

∂
⇒ ≠

∂

∂
∴ ≠

∂

 

Thus the conditions for the existence of periodic orbits given by Duboshin [4] are 
satisfied i.e., in the region of motion of the infinitesimal body, periodic orbits exist. 

6. Poincare Surfaces of Section (PSS) 

In this previous section, we have shown that Duboshin’s condition [4] for the 
existence of periodic orbits when 0µ ≠ , are satisfied. So to justify the mathe-
matical model given in Equations (58)-(60), we have applied the method of 
Poincare surfaces of section (PSS) to the reduced equations of motion  

( )( ) ( )

( )

0

3 3 3
1 2 3

0

3 3 3
1 2 3

1
1 1 22 ,

3
21

2 ,

xx x
x y x

r r r

y
y yy x y

r r r

µε µµ µ µ µ

µε
µ µ

 − +  − − − +   + = + + +

  −   −  + = + + + 


 

 

     (66) 

together with the Jacobi Integral 

( )2 2 2 2

1 2 3

12 .x y x y C
r r r

µ µ ε −
+ − + + + + = 

 
              (67) 

To study the motion of the infinitesimal body by PSS, it is necessary to know 
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its position ( ),x y  and velocity ( ),x y   which correspond to a point in four- 
dimensional phase space. By defining a plane 0y = , in the resulting three- di-
mensional space, the values of x  and x  can be plotted. Every time the par-
ticle has 0y = , whenever the trajectory intersects the plane in a particular di-
rection say 0y > .  

The techniques of PSS suggest to determine the regular or chaotic nature of 
the trajectories. If there are smooth, well-defined island then the trajectory is 
likely to be regular and the islands correspond to oscillation around a periodic 
orbit. As the curves shrink down to a point, the points represent a periodic orbit 
as per Kolmogorov-Arnold-Moser (KAM) theory. Any fuzzy distribution of 
points in surfaces of section, implies that trajectory is chaotic. In Figure 2, for 

3.15, 0.0125C µ=  =  and 0.000001ε =  Poincare surfaces of section have been 
plotted in which atleast seven points are visible towards which the regular tra-
jectories shrink, hence by KAM theory, periodic orbits exists. Again Figure 3 
represents a Poincare surfaces of section for 3.17, 0.0125C µ=  =  and 

0.000001ε =  in which atleast nine points are visible towards which the regular 
trajectories shrink, so we can say that the periodic orbits exist in the region of 
motion of infinitesimal mass. Other than the neighbourhood of these points, the 
quasi-periodic and chaotic regions are seen in the PSS. In Figure 4, in PSS for 

3.17, 0.0125C µ=  =  and 0.000001ε = , atleast ten shrinking regions of regular 
curves to a point are visible, i.e., that the degree of existence of periodic orbits 
increases in the region of motion of the infinitesimal mass. Thus by increasing 
the values of the Jacobi’s constant, the chances of existence of periodic orbits in-
crease. Thus the Duboshin conditions and PSS both confirms the existence of 
periodic orbits when 0µ ≠ . In Figure 5, regions plot of ZVC (Zero Velocity 
Curves) for 3.172C =  is shown, in which central white circle represents re-
gions of no motion and coloured annulus represents the regions of periodic or-
bits. Figure 6 depicts the contour plot of ZVC for 3.172C = . 

7. Periodic Orbits of Collision When 0µ ≠  

Levi-Civita [6] [7] proved that the invariant relation for collision orbits can be 
analytically continued from the one that corresponds to the problem of two bo- 

 

 
Figure 2. Poincare Surface of Section for 3.15, 0.0125 and 0.000001C µ ε=  =    = . 
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Figure 3. Poincare Surface of Section for 3.17, 0.0125 and 0.000001C µ ε=  =    = . 

 

 
Figure 4. Poincare Surface of Section for 3.19, 0.0125 and 0.000001C µ ε=  =    = . 

 

  
Figure 5. Region Plot of ZVCs for 3.172C = . 
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Figure 6. Contour Plot of ZVCs for 3.172C = . 

 
dies. Bhatnagar [2] [3] has developed this as 0G = . For the present paper when 

0µ ≠ , the condition must be  
( )0, , , , , 0G F l L g Gµ µ ε+ =                      (68) 

for sufficiently small µ  and 0ε .  
Further, he has proved that, in particular, such relation is uniform integral of 

the differential equation of motion along any collision orbit. He has also proved 
this integral is a power series in terms of the distance from the origin and the se-
ries is convergent through the radius of convergence is generally small. In sec-
tion (5), we have shown that periodicity is conserved by analytic continuation. 
Let us show that the condition of collision is also conserved by analytic continu-
ation. 

Figure 7 shows the geometrical configuration of collision orbits. In order to 
show the validity of that continuation, we shall consider orbits corresponding to 
the case when ( )1 i.e., 0e G=  = . When 1e = , the orbits starts as an ejection  

from the origin and return to it after 
4
T . Bhatnagar [2] [3] and Levi-Civita [6] 

[7] finds the condition for collision as 

( )1 , ,fθ ξ ξ θ+ =                       (69) 

where  

2
1

1

1 2
2 2 2 2 2 2
1 2

tan , ,

2 2 cos sin tan 2 ,
cos sin

x r
x

q q
q q

θ ξ
µ

ρ ϕ ρ ϕ ϕ
ρ ϕ ρ ϕ

=    =
−

⋅
         = = =

− −

 

2 .θ ϕ⇒ =  
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Figure 7. Geometrical configuration of collision orbits. 

 
Therefore, the condition of Equation (69) became, 

( )
( )

1 1

1 1

2 1 , 2 ,

d2 1 , 2 ,
d

r f r

r f r
t

ϕ ϕ

ϕ ϕ

+ =

+ =



 

( )
3
2

1 1
d2 , 2 .
d

r r f r
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ϕ ϕ+ =                    (70) 

But, 

12 2

1 1

tan so tan ,q q
q q

ϕ ϕ −  
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 
 

1 2 2 1
2 2
2 1
2
1

1 2 2 1
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q q q q
q q
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q q q q
q q

ϕ
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ϕ
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∴ = ×

+

′ ′−
   =

+

 

( )1 2 2 1 2 1
2

1

d 1 .
d 2 2 24

q Q q Q rG
r

ϕ ρ
τ ρ

−
= − = −                (71) 

Thus from Equations ((70) and (71))  

( )
3

1 2
1 1 1

1

2 , 2 ,
2 2

rG r r f r
r

ϕ
 

− + = 
 

 

( )
5
2

1 1 , 2 0,G r f r ϕ− =  

( )5 , 2 0.G fξ ξ ϕ− =                      (72) 

Here the Equation (71) corresponds to the Equation (68), so it is easy to say 
that the collision orbits exist. 
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8. Discussions and Conclusion 

In section 1 of this paper, historical background has been sketched with original 
and previous contributions. In section 2, the equations of motion of the infinite-
simal mass moving under the gravitational field of the three primaries situated at 
the vertices of an equilateral triangle taken by Ceccaroni and Biggs [8]. In this 
the reduced Hamiltonian H C=  has been derived for regularization in the 
next section 3. In this section, the regularized Hamiltonian 0K =  has been es-
tablished. In section 4, generating solutions have been found by taking 0K  as 
the corresponding Hamiltonian. In this section generating solution forms a basis 
for general solution by the process of analytic continuation. In section 5, using 
Duboshin’s criterion [4] for the existence of periodic orbits has been satisfied 
following the method of Choudhary [9]. For confirmation of the existence of pe-
riodic orbits in section 4, we have analyzed PSS in section 6 and justified that the 
region of motion regular trajectory shrinking towards a point represents the pe-
riodic orbits and other region of the PSS represents quasi-periodic and chaotic 
belt in the region of motion. In section 7, the periodic orbits of collision for 

0µ ≠  have been shown. In our discussion, we have shown that our condition 
of collision orbit ( )0, , , , , 0G F l L g Gµ µ ε+ =  has a resemblance with the con-
dition given by Bhatnagar [2] [3].  

References 
[1] Giacaglia, E.O. (1967) Periodic Orbits of Collision in the Restricted Problem of 

Three Bodies. Astronomical Journal, 72, 386-391. https://doi.org/10.1086/110237 

[2] Bhatnagar, K.B. (1969) Periodic Orbits of Collision in the Plane Elliptic Restricted 
Problem of Three Bodies. National Institute of Science India, 35A, 829-844. 

[3] Bhatnagar, K.B. (1971) Periodic Orbits of Collision in the Plane Circular Problem of 
Four Bodies. Indian Journal of Pure and Applied Mathematics, 2, 583-596. 

[4] Duboshin, G.N. (1964) Analytical and Qualitative Methods (Russian). Celestial 
Mechanics, 178-184. 

[5] Poincare, H. (1905) Lecons de Mécanique Céleste. Gauthier-Villars, Paris, 1. 

[6] Levi-Civita, T. (1903) Traiettorie singolari ed urti nel problema ristreto deri teri 
corpi. Annali di Mathematica Pura ed Applicata, 9, 1-32. 

[7] Levi-Civita, T. (1906) Sur la résolution qualitative du probleme restrient des trios 
corps. Acta Mathematica, 30, 305-327. https://doi.org/10.1007/BF02418577 

[8] Ceccaroni, M. and Biggs, J. (2012) Low-Thrust Propulsion in a Coplanar Circular 
Restricted Four body Problem. Celestial Mechanics and Dynamical Astronomy, 
112, 191-219. https://doi.org/10.1007/s10569-011-9391-x 

[9] Choudhry, R.K. (1966) Existence of Periodic Orbits of the Third Kind in the Elliptic 
Restricted Problem of the Three Bodies and the Stability of the Generating Solution. 
Proceedings of the National Academy of Sciences India Section A, 36, 249-264. 

 
 
 
  

110 

https://doi.org/10.1086/110237
https://doi.org/10.1007/BF02418577
https://doi.org/10.1007/s10569-011-9391-x


M. R. Hassan et al. 
 

Definitions 

Bary-Centre: It is the center of mass of two or more bodies that are orbiting 
each other, or the point around which they both orbit. 
Synodic Co-ordinate System: The co-ordinate system, in which the xy-plane 
rotates in the positive direction with an angular velocity equal to that of the 
common velocity of one primary with respect to the other keeping the origin 
fixed, is called synodic co-ordinate system.  
Reduced Mass: Mass ratio of the smaller primary to the total mass of the prima-
ries or the non-dimensional mass of the smaller primary is known as reduced 
mass of the smaller primary.  
Regularization: The process of elimination of the singularity from the force 
function is known as regularization. 
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