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Abstract 
This paper deals with the some oscillation criteria for the two-dimensional 
neutral delay difference system of the form 
( ) ( ) ( )1 0, 1, , ,, 2 3n n n k n n n n n lx p x b y y a x n n− − +∆ + = ∆ = − ∈ = 

 Examples illu-
strating the results are inserted. 
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1. Introduction 

Consider a nonlinear neutral type two-dimensional delay difference system of 
the form 

( )
( ) ( )1 0,    1, 2,3,

n n n k n n

n n n l

x p x b y

y a x n n
−

− +

∆ + =

∆ = − ∈ = 

         (1.1) 

Subject to the following conditions: 

( )1c , { }na  and { }nb  are nonnegative real sequences such that 

01 nn b∞

=
= ∞∑ . 

( )2c , { }np  is a positive real sequence. 

( )3c , f,g : →   are continous non-decreasing with ( ) 0uf u > , 

( ) 0ug u > , for 0u ≠  and ( )f u k u≥ , where k is a constant. 

( )4c , k and l are nonnegative integers. 
Let { }max ,1kθ = . By a solution of the system (1.1), we mean a real sequence 

{ },n nx y  which is defined for all 0n n θ≥ −  and satisfies (1.1) for all 

( )0n n∈ . 
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Let W be the set of all solutions { },n nX x y=  of the system (1.1) which exists 
for ( )0n n∈  and satisfies 

{ } 0sup ; 0   for any integer .n nx y n N N N+ ≥ > ≥  

A real sequence defined on ( )0n

 is said to be oscillatory if it is neither 
eventually positive nor eventually negative and nonoscillatory otherwise. 

A solution X W∈  is said to be oscillatory if both components are oscillatory 
and it will be called nonoscillatory otherwise. 

Some oscillation results for difference system (1.1) when 0np =  for 

( )0n N N∈  and 1n l n− + =  have been presented in [1], In particular when 
0nb >  for all ( )0n N n∈ . The difference system (1.1) reduces to the second 

order nonlinear neutral difference equation 

( ) 1.
1

n n n k n n l
n

x p x a x
b − − +

 
∆ ∆ + = − 
 

           (1.2) 

If 1nb = , in Equation (1.2), we have a second order linear equation 

( )2
1.n n n k n n lx p x a x− − +∆ + = −            (1.3) 

For oscillation criteria regarding Equations (1.1)-(1.3), we refer to [2]-[12] 
and the references cited therein. In Section 2, we present some basic lemmas. In 
Section 3, we establish oscillation criteria for oscillation of all solutions of the 
system (1.1). Examples are given in Section 4 to illustrate our theorems. 

2. Some Basic Lemmas 

Denote ( )
0

1
0, ,n

n ss nA a n n−

=
= ∈∑   For any ,nx  we define nz  by 

n n n n kz x p x −= +                          (2.1) 

We begin with the following lemma. 
2.1. Let ( ) ( )1 4c c−  hold and let ( ){ },n nx y W∈  be a solution of system (1.1) 

with { }nx  either eventually positive or eventually negative for ( )0n n∈ . 
Then ( ){ },n nx y  is nonoscillatory and { }nz  and { }ny  are monotone for 

( ) ( )0 for n N N n∈ ∈ 

. 
Proof. Let ( ){ },n nx y W∈  and let { }nx  be nonoscillatory on ( )0n

. Then 
from the second equation of system (1.1), we have 0ny∆ ≤  for all 

( )1 0n N n≥ ∈  and ny∆ , and ny  are not identically zero for infinitely many 
values of n. Thus { }ny  is monotone for n N≥ . Hence { }ny  is either even-
tually positive or eventually negative for 1n N≥ . Then, ( ){ },n nx y  is nonoscil-
latory. Further from the first equation of the system (1.1). We have 

0 or 0n nz z∆ > ∆ <  eventually. Hence { }nz  is monotone and nonoscillatory 
for all 1n N N≥ ≥ . The proof is similar when { }nx  is eventually negative. 

Lemma 2.2. In addition to conditions ( ) ( )1 2c c−  assume that 0 1np< ≤  for 
all ( )0n n∈ . Let { }nx  be a nonoscillatory solution of the inequality 

( ) 0n n n n kx x p x −+ ≥                      (2.2) 

for sufficiently large n. If for n k−  for all ( )0n n∈ . Then, { }nx  is bounded. 
Proof. Without loss of generality we may assume that { }nx  be an eventually 
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positive solution of the inequality (2.1), the proof for the case { }nx  eventually 
negative is similar. From (2.1) we have 

( ) ( )00,    for   .n n n kx p x n n−+ ≥ ≥   

and 0 1np< ≤ , we have from (2.2), n k n n k nx p x x− −≤ ≤  for all n N≥ . Hence 

{ }nx  is bounded. 
Next, we state a lemma whose proof can be found in [1]. 
Lemma 2.3. Assume that { }na  is a non negative real sequence and not iden-

tically zero for infinitely many values of n and l is a positive integer. If 
11

1
lim inf

1

ln

sn s n l

la
l

+−

→∞ = − +

 >  + 
∑  

Then the difference inequality 

( )1 00  n n n ly a x n n− +∆ + ≤ ∈  

cannot have an eventually positive solution and 

( )1 00  n n n ly a x n n− + ≥∆ + ∈  

cannot have an eventually negative solution. 

3. Oscillation Theorems for the System (1.1) 

Theorem 3.1. Assume that { }np  is bounded and there exists an integer j such 
that 2l j k> + + . If 

1lim sup 1
n n ss n lA a

kβ
∞

→∞ = − +
>∑                 (3.1) 

and 

( )

21

1

lim inf
2

l j ks jn
t

sn s n l j k t s t l k

a l j kk b
p l j k

β
− − ++−

→∞ = − − − = − + +

   − −
>   − − +  

∑ ∑     (3.2) 

Then every solution }( ){ ,n nx y W∈  is a nonoscillatory solution of system 
(1.1), with { }nx  bounded. Without loss of generality we may assume that 

{ }nx  is eventually positive and bounded for all ( )1 0n n N n≥ ∈ . From the 
second equation of (1.1), we obtain 0ny∆ ≤  for sufficiently large 

( )2 1n n N n≥ ∈ . In view of Lemma 2.1, we have two cases for sufficiently large 

( )3 2 :n N n∈  
1) 0ny <  for 3n n≥ ; 
2) 0ny >  for 3n n≥ . 

Case (1). Because { }ny  is negative and nonincreasing there is constant L > 0. 
Such that 

3  for all nny L n≤ − ≥                      (3.3) 

Since { }nx  and { }np  are bounded. { }nz  defined by (2.1) is bounded. 
Summing the first equation of (1.1) from 3n  to 1n −  and then using (3.3), we 
obtain 

0 3

1
3,    .n

n n ss n nz z L a n−

=
− ≤ − ≥∑                     (3.4) 

From (3.3), we see that limn nz→∞ = −∞  which contradicts the fact that { }nz  
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is bounded. Case (1) cannot occur. 
Case (2). Let 0nz >  for 4n n≥  where ( )4 3n N n∈  is sufficiently large. 

Because { }nz  is nondecreasing there is a positive constant M, such that 

4,   for all  .nz M n n≥ ≥                     (3.5) 

From (2.1), we have n nz x> , and by hypothesis, we obtain 

( )1
1 5 4,    n l

n n l n
xa z a n n N n

k
− +

− + ≥ ≥ ∈                   (3.6) 

summing the second equation of (1.1) from n to i, using (3.5) and then letting 
i →∞ , we obtain 

1 5,    .n s s l
s n

y k a z n n
∞

− +
=

≥ ≥∑                      (3.7) 

From condition (3.1), we have 

1 lim sup s sn
A a

kβ →∞
<                        (3.8) 

we claim that the condition (3.1) implies 

( )0,    .n n
n N

A a N N n
∞

=

= ∞ ∈∑                      (3.9) 

Otherwise, if n nn N A a∞

=
< ∞∑ , we can choose an integer 1N N≥ . So large that 

1

1
n nn N A a

kβ
∞

=
<∑  which contradicts (3.6). 

Using a summation by parts formula, we have 

( )
1

1 .
n

s s n n N N n N
s N

A g y A y A y z z
−

+
=

∆ = − − −∑           (3.10) 

From (3.3), (3.4) and (3.6) and the second equation of (1.1), we have 

( )
1 1

1 1

1
1

1

n n

s s s s
s N s N

n
s ss N

n
s ss N

A g y A y

Mk A y

Mk A y

β

β

β

− −

+ +
= =

−
+=

−

=

∆ ≤ ∆

≤ −

≤ −

∑

∑ ∑

∑

 

1 , .n
s s n n N N n Ns NMk A y A y A y z z n Nβ −

=
+ + −= ≥−∑  

combining (3.6) with (3.8), we obtain 

( )lim .n n nn
z A y

→∞
− = ∞  

and 

( ) ( )6 5,   .n n n n nz A g y A y n n nβ≥ ≥ ≥ ∈  

The last inequality together with (3.4) and the monotonocity of { }nz  implies 

1 1
1

1

n n s s l n s s l
s n s n l

n n s
s n l

z k A a z k A a z

k A z a

β β

β

∞ ∞

− + − +
= = − +

∞

= + −

≥ ≥

≥

∑ ∑

∑
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and 11 n n ss n lk A z aβ ∞

= + −
≥ ∑ , ( )6n n∈  which contradicts (1.1). This case cannot 

occur. The proof is complete. 
Theorem 3.2. Assume that 0 1np< ≤ , then there exists an integer j such that 

l j k> +  and the conditions (3.1) and (3.2) are satisfied. Then all solutions of 
(1.1) are oscillatory. 

Proof . Let ( ){ },n nx y W∈  be a nonoscillatory solution of (1.1). Without loss 
of generality we may assume that { }nx  is positive for n ( )1n n∈ . As in the 
proof of above theorem we have two cases. 

Case (1). Analogus to the proof of case (1) of above theorem, we can show 
that limn nz→∞ = −∞ . By Lemma 2.2, { }nx  is bounded and hence { }nz  is 
bounded which is a contradiction. Hence case (1) cannot occur. 

Case (2). The proof of case (2) is similar to that of the above theorem and 
hence the details are omitted. The proof is now complete. 
Theorem 3.3. Assume that 0 1np< ≤  and 

( )1 1
1

1

lim sup 1n n s
n ss n k l

s l k

k A A
a

p
β− +

→∞ = − − +
− − +

−
>∑ .               (3.14) 

( )0,    n s
n N s n

b a N N n
∞ ∞

= =

 
= ∞ ∈ 

 
∑ ∑                   (3.15) 

lim sup 1.n sn s n
k A aβ

∞

→∞ =

 
> 

 
∑                      (3.16) 

Then all solutions of (1.1) are oscillatory. 
Proof. Let ( ){ },n nx y W∈  be a nonoscillatory solution of (1.1). Without loss 

of generality we may assume that { }nx  is positive for ( )1n n∈ . As in the 
proof of above theorem we have two cases. 

Case 1. From (2.1), we have 

( )3 0,   n n n kz p x n n N n− ≥> ∈  

and 

( ) 1
1 1 4

1

,    n l k
n l n l

n l k

zf x kx k n n
p

− − +
− + − +

− − +

≥ > ≥                (3.17) 

where ( )4 3n N n∈  is sufficiently large. Then the following equality 

( ) ( )1
1

n
n i n i i n s ss iz z A A y A A y−

+=
+ −= − + ∆∑  

( )
1

1 5,    .
n

n n s s
s i

z A A y n i n
−

+
=

< − ∆ > ≥∑  

Combining the last inequality with the second equations of (1.1) and (3.17), 
we have 

( ) ( )( )

( )

1

1

1
1 1

5
1

, .

n

n n s s s l
s i

n
n s s s l ks i

s l k

z A A a f x

A A a z
k n i n

p

β

β

−

+ −
=

−
+ − − +=

− − +

< − −

−
< > ≥

∑

∑
 

Let 1i n l k= − + +  and using the monotonocity of { }nz , from the last in-
equality, we obtain 
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( )1 1
1

1

n n s s
n n s n l k

s l k

A A a
z z k

p
β− +

= − − +
+ + −

−
< ∑  

and 

( )1
1

1 1

1
n

n s s
n

s n l k s l k

A A a
z k

p
β

−
+

= − − + + + −

−
> ∑  

which contradicts the condition (3.14). 
Case 2. The proof for this case is similar to that of Theorem (3.1). Here we use 

condition (3.16) instead of condition (2.1). The proof is complete. 

4. Examples 

Example 4.1. Consider the difference system 

3

2

1 1
2

,  1.

n n n

n n

x x y
n

y nx n

−

−

 ∆ + = 
 

∆ = − ≥

                         (4.1) 

The conditions (3.1) and (3.2) are 

2
lim sup 1 .

n s n
s

n

∞

→∞ = +

= ∞∑  

3

4 1

1liminf 2 4.
n s

n s n t s
t

s

−

→∞ = − = −

 
= 

 
∑ ∑  

All conditions of Theorem 3.2 are satisfied and so all solutions of the system 
(4.1) are oscillatory. 

Example 4.2. Consider the difference systems 

( )2

1

1 1
4

, 1,
1

n n n

n n

x x n y

cy x n
n

−

−

 ∆ + = + 
 

−
∆ = ≥

+

                     (4.2) 

where c is a positive constant. The conditions (3.1) and (3.2) are 

( )
1

lim sup 1
1n s n

cn
s

∞

→∞ = +

+ = ∞
+∑  

and 

( )
2 1

3

4lim inf 1 12 .
1

n s

n s n t s

cs c
t

− +

→∞ = − =

− 
+ = + 

∑ ∑  

For 
1

12
c > , all conditions of Theorem 3.2 are satisfied and so all solutions of  

the system (4.2) are oscillatory. 
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