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Abstract 
In accordance with the definition of diffusivity, the origin of coordinate sys-
tem of the original diffusion equation is set at a point in the solvent material. 
Kirkendall revealed that Cu atoms, Zn atoms and vacancies move simulta-
neously in the interdiffusion region. This indicates that the original diffusion 
equation is a moving coordinate system for the experimentation system out-
side the diffusion region. The diffusion region space which means vacancies 
and interstices among atoms plays an important role in the diffusion pheno-
mena. The theoretical equation of the Kirkendall effect is reasonably obtained 
as a shift between coordinate systems of the diffusion equation. The situation 
is similar to the well-known Doppler effect in the wave equation. Boltzmann 
transformed the original diffusion equation of a binary system into the nonli-
near ordinary differential equation in accordance with the parabolic law. In 
the previous works, the solutions of the diffusion equation transformed by 
Boltzmann were analytically obtained and we found that the well-known 
Darken equation is mathematically wrong. In the present study, we found that 
the so-called intrinsic diffusivity corresponds in appearance to the physical 
solution obtained previously. However, the intrinsic diffusivity itself con-
ceived in the diffusion research history is essentially nonexistent. 
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1. Introduction 

The heat conduction equation proposed by Fourier in 1822 has been applied to 
investigating the temperature distribution in materials [1]. In 1855, Fick directly 
applied the heat conduction equation to diffusion phenomena [2]. As far as the 
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shape of heat conduction material is unchangeable during a thermal treatment, 
the coordinate system of heat conduction equation set in a material is a fixed 
one, since the coordinate system is not influenced by the variation of internal 
structure in the material. Here, we should notice that the concentration of diffu-
sion particles is a real quantity in physics, although the temperature is a ther-
modynamic state quantity. It is thus considered that the coordinate system of 
diffusion equation set in the diffusion field (solvent) is generally a moving one, 
since the origin of coordinate system is influenced by a variation of the diffusion 
field. It is thus indispensable for understanding the diffusion problems to discuss 
their coordinate systems, since the diffusion particles, solvent particles and also 
the diffusion region space which means vacancies and interstices among atoms 
move simultaneously against a fixed point outside the diffusion system. 

When the Fick’s laws were proposed, the Gauss’s divergence theorem had 
been already reported in 1840 [3]. Nevertheless, the problem of coordinate sys-
tem of diffusion equation was not mathematically investigated in accordance 
with the divergence theorem in those days. The problems of the coordinate 
transformation relevant to the diffusion equation had not been thus discussed in 
the diffusion history for a long time before the previous work [4]. The new find-
ings, which are extremely dominant in the diffusion study, were reasonably ob-
tained through the coordinate transformation theory then. 

It seems that the new fundamental findings different from the existing diffu-
sion theories may exert a great influence on the actual diffusion problems, just 
because of the fundamental findings themselves. For example, one of them re-
veals that the well-known intrinsic diffusion concept is unnecessary for under-
standing the interdiffusion phenomena [5]. However, those findings have not yet 
been universally known in the concerned research field [6] [7] [8]. That is the 
very reason to perform the present work in accordance with an entirely different 
viewpoint from the previous work. 

The solutions of a typical interdiffusion problem were already obtained as 
analytical expressions in accordance with results of the well-known Boltzmann 
Matano method [9] [10] [11]. Using the analytical solutions for the interdiffusion 
problems, the fundamental problems of diffusivities and diffusion fluxes are 
discussed in accordance with the mathematical theory. In the present work, the 
original meaning of the so-called interdiffusion coefficient and that of the intrin-
sic diffusion coefficient misunderstood for a long time will be thus clarified in 
the following. 

2. Raft Model of Interdiffusion Problems 

In accordance with the definition of diffusivity, the origin of coordinate system 
of the original diffusion equation is set at a point in the solvent material. In 1947, 
Kirkendall revealed that Cu atoms, Zn atoms and vacancies move simultaneously 
in the interdiffusion region [12]. This indicates that the original diffusion equa-
tion is a moving coordinate system for the experimentation system outside the 
diffusion region. A discussion on the relation between the coordinate systems of 
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diffusion equation is indispensable for understanding diffusion phenomena [4]. 
Analyzing interdiffusion problems is thus considerably complicated. In the fol-
lowing, as an example of problems between coordinate systems, we discuss mo-
tions of persons on a raft floating on a pond before the discussion about inter-
diffusion problems. 

The water in a pond is at rest and a rectangle raft of mass M , length l  and 
width w  floats also at rest in the pond. As shown in Figure 1, the diagonal 
lines intersect each other at the point Q  then. The origin of x  axis along the 
length direction is set at the point Q  on the raft. Persons A and B with mass 

Am  and mass Bm  who are at rest on the line 0x =  at the initial time 0t =   
 

 
Figure 1. Raft model of interdiffusion phenomena. The persons A and B on the raft cor-
respond to the mass center of diffusion particles and that of solvent ones. The raft and 
water in a pond correspond to the diffusion region space and the free space near the spe-
cimen surface of diffusion region. (i) The time 0t =  corresponds to the initial state of 
diffusion system. (ii) The time interval E0 t t< <  corresponds to a diffusing state at a 
high temperature. (iii) The time interval E Ft t t≤ <  corresponds to a state of the diffu-
sion system during temperature fall and it reaches a thermal equilibrium state at Ft t=  
in the given room temperature. (iv) The time regions Ft t≥  correspond to the final state 
after diffusion treatment. 
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start walking with an arbitrary velocity for 0t >  in the opposite direction from 
each other. Under the condition of t t=  , the origin of x  axis parallel to the x  
axis is set at the point P  of the mass center of the persons. Under the condi-
tion of tτ =  , the origin of ξ  axis parallel to the x  axis is set at a point R  
on the bank beside pond on the line 0x =  in the initial state. 

In the following, we discuss the motion of person A in the isolated system 
composed of the raft and persons using each of the coordinate systems, ( ),t x  , 
( ),t x  and ( ),τ ζ , under the initial condition 0x x ξ= = =  at 0t t τ= = = . 

In an arbitrary time between D0 t t≤ ≤  , we conceive that the persons A and B 
move in the opposite direction from each other with arbitrary velocities RAv  
and RBv  against the point R and that they stop walking on the raft at the same 
time Dt t=  . In that case, the law of momentum conservation yields  

( )A B R A RA B RB 0M m m V m v m v+ + + + =                (1) 

in the isolated system of the raft and persons, where RV  is a velocity of the raft 
against the point R. The mass center in the isolated system is immobile against 
the point R in accordance with the physical theory then, even if the raft moves 
against the point R. In other words, the raft moves in accordance with the mo-
tion of the persons like the concerned mass center is continually immobile 
against the point R. 

The velocities of persons A and B, QAv  and QBv , against the point Q are ob-
tained as 

RA A RA B RA B RB
QA RA R

A B

RB B RB A RB A RA
QB RB R

A B

2 ,

2 .

Mv m v m v m vv v V
M m m

Mv m v m v m vv v V
M m m

+ + + = − = + +
 + + + = − =
 + +

         (2) 

The relative velocity BAv  between persons A and B are then expressed as  

BA QA QB RA RBv v v v v= − = − , 

and it does not depend on the coordinate systems ( ),t x   and ( ),τ ξ . 
The migration length of raft between D0 τ τ≤ ≤  from the point R is ex-

pressed as  

D D A RA B RB
r R0 0

A B

d dm v m vV t
M m m

τ τ
ξ τ+

∆ = = −
+ +∫ ∫ . 

When the persons on the raft stop walking at the same time Dt t=  , the rela-
tion of QA QB 0v v= =  leads to that of RA RB R 0v v V= = =  then. If the velocity 
of water flow ( )v τ  satisfies the relation given by  

( ) ( )F

D
r Fd , 0 for ,v v

τ

τ
τ τ ξ τ τ τ= −∆ = ≥∫  

the raft returns to the initial position and it has been at rest ever since. The mass 
center of the isolated system is shifted from the initial state 0ξ =  to rξ ξ= −∆  
then. 

In the present model, it is thus indispensable for understanding the motion of 
person A against the point R to investigate the behavior of the raft and water in 
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the pond. In other words, it is apparent that we cannot understand the motion of 
person A against the point R only from the relative motion between the persons 
A and B on the raft. 

3. Binary System Interdiffusion 

As is known from the unified theory of diffusion problems, the basic concept of 
diffusion phenomena is in the interdiffusion problems [4]. In the following dis-
cussion, the above raft model is reasonably applied to a typical binary system in-
terdiffusion problem in accordance with the mathematical physics. In that case, 
the person A, the person B, the raft and water in the pond correspond to the 
mass center of diffusion particles, the mass center of solvent particles (diffusion 
field), the diffusion region space, and space of the diffusion region outside, re-
spectively. Here, note that the diffusion region space and the space of diffusion 
region outside have no mass, whereas the raft and water in the pond have the 
mass M  and a mass. 

Metal plates A and B with a uniform cross section S  are composed of ele-
ments I and II for each other. The concentrations of I and II in the metal plate A 
are I

AC  and II
AC  and their diffusivities are I

AD  and II
AD  in the initial state, 

respectively. The concentrations and diffusivities in the metal plate B are simi-
larly I

BC , II
BC , I

BD  and II
BD . In general, those values of concentration and 

diffusivity are different from each other. In the following, we discuss the inter-
diffusion problem in the diffusion couple composed of the metal plates A and B. 

As shown in Figure 2, the diffusion couple is smoothly jointed at the interface 
between A and B. The coordinate axis x  perpendicular to the cross section S  
is defined as A B→  direction. The origin of x  axis is set at the point P  of a 
mass center of diffusion field ( )A B 2j jC C+  for I, IIj =  on the initial interface 
then. In the same manner, the origin of coordinate axis x  parallel to the x  
axis is set at a point Q  of space on the initial interface. Further, the origin of 
coordinate axis ξ  parallel to the x  axis is set at a point R  on the line 0x =  
outside the diffusion system in the initial state. 

Since the diffusivity depends on an interaction between a diffusion particle 
and the diffusion field near the diffusion particle itself, the basic diffusion equa-
tion with the diffusivity is expressed by the time and space coordinate ( ),t x . In 
relation to the raft model, however, the diffusion equations expressed by the 
coordinates ( ),t x   and ( ),τ ξ  are necessary for understanding the diffusion 
phenomena, since the basic diffusion equation is relevant to the relative motion 
between collective particles of elements I and II. In the present case, the prob-
lems of the coordinate transformation of diffusion equation are thus discussed 
under the initial condition 0x x ξ= = =  at 0t t τ= = = . 

We denote the concentrations and diffusivities of I and II by IC , IIC , ID  
and IID  in the diffusion region A Bx x x≤ ≤  during a thermal diffusion. In 
that case, their boundary values are physically accepted as constant values, I

AC , 
II
AC , I

AD  and II
AD  at Ax x=  and I

BC , II
BC , I

BD  and II
BD  at Bx x= , during 

a thermal diffusion. Those values are thus used as boundary values for the partial  
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Figure 2. Typical interdiffusion problem of a diffusion couple. The metal plates A and B 
composed of elements I and II were used for a diffusion couple. Their diffusivities and 
concentrations are I II I II

A A A A, , ,D D C C  and I II I II
B B B B, , ,D D C C  in the initial state. Those values 

during thermal diffusion are I II I II, , ,D D C C  in the diffusion region. The inert marker 
denoted in the figure moves during the diffusion process because of its inert characteris-
tic. The time intervals of (i) - (iv) correspond to those of Figure 1, respectively. 
 
differential equations of diffusion. 

The basic diffusion equations of I and II are expressed as  

for I, II.
j j

jC CD j
t x x

 ∂ ∂ ∂
= = ∂ ∂ ∂ 

                (3) 

Since the shape variation of diffusion couple is negligible in the usual experi-
mentation, the total particle numbers of I and II on an arbitrary cross section in 
the diffusion region are considered to be constant with a good approximation. In 
the typical interdiffusion problems, the relation of  

I II 1C C+ =                         (4) 

is thus generally accepted regardless of the coordinate systems, where the nor-
malized concentrations are used. 

Substituting (4) into (3) yields  

Material A Material B

Matano Interface
Kirkendoll Interface

(i) t = 0

(ii) 0 < t < tE

(iii)  tE≦ t < tF

(iv) t ≧ tF

Inert Marker



T. Okino et al. 
 

909 

( )
I II

I II I II 0,C CC C D D
t x x x

 ∂ ∂ ∂ ∂
+ = + = ∂ ∂ ∂ ∂ 

 

and it is rewritten as  

( )
I

I II 0.CD D
x x
 ∂ ∂

− = ∂ ∂ 
                     (5) 

In accordance with the theory of partial differential equation, (5) means that 
the relation of 

( ) ( )
I

I II CD D J t
x

∂
− =

∂
 

must be valid using an arbitrary function ( )J t  of t because of ( ) 0J t x∂ ∂ = . 
In the present case, the differential equation is only for ( ) 0J t =  in accordance 
with the mathematical theory. In other words, the relation of I IID D=  is thus 
valid because of I 0C x∂ ∂ ≠  in the diffusion region. 

Their diffusivities are thus commonly expressed as  
I IID D D= =                          (6) 

only in the partial differential equation (3). However, note that it is not generally 
valid in the actual diffusion phenomena when we substitute the initial and/or 
boundary values, I

AD , II
AD , I

BD  and II
BD , into their general solutions ID  

and IID  of (3). Substituting (6) into (3) yields 

,C CD
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
                        (7) 

where the suffix j  is removed because the general solutions are mathematically 
in common. Here, A A,C D  at Ax x=  and B B,C D  at Bx x=  are formally 
used in common for the elements I and II as initial and boundary values of the 
general solutions of (7). 

The Gauss’s divergence theory shows that the diffusion flux of basic diffusion 
equation (7) is obtained as  

P F eq Fd forCJ x J J J D C x
t

∂
= − = + = − ∂ ∂

∂∫
                (8) 

by integrating it with respect to x  because of eq 0J x∂ ∂ = . Here, FJ  is the 
well-known Fickian first law and eqJ  independent of the time and space is the 
intrinsic diffusion flux defined by the previous work [13]. The intrinsic diffusion 
flux eqJ  plays an important role in the self-diffusion theory of F 0J =  and it 
has a relation with a self-diffusion coefficient selfD  yielding  

eq self 0J D C l= − , 

where 0C  and l  are a concentration and a lattice constant in a pure material 
[4]. 

Substituting (4) into the Fickian first law FJ , the relation of  

( ) ( ) ( )
I II

I II I II
F F, , 0C CJ t x J t x D D C C

x x x
 ∂ ∂ ∂

+ = − + = − + = ∂ ∂ ∂ 
          (9) 
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is valid only in the partial differential equation (3). Further, it is clarified that the 
relation of 

I II
eq eq 0J J+ =                         (10) 

is valid in the self-diffusion theory in [4]. Equations (8), (9) and (10) yield 

( ) ( )I II
P P, , 0J t x J t x+ =                      (11) 

which is valid only in the partial differential equation (3). 
When the origin P  of x  axis moves with the velocity ( )RPv τ  against the 

origin R  of ξ  axis, (7) is transformed into the equation of  

RP
C CD v C
τ ξ ξ

 ∂ ∂ ∂
= − ∂ ∂ ∂ 

                    (12) 

in the fixed coordinate system outside the diffusion system. Here, the relations 
of differential operators yielding  

RP ,v
t t t x x x

τ ξ τ ξ
τ ξ τ ξ τ ξ ξ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + = + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

are used for (7), where the relations of  

tτ =  and ( )RP0
d

t
x vξ τ τ= + ∫  

are valid between the coordinate systems ( ),t x  and ( ),τ ξ . 

4. Solutions of Nonlinear Diffusion Equation 

It is generally considered that the diffusivity D  of the element I or II between 

A Bx x x≤ ≤  depends on the coordinate system ( ),t x  because of the concentra-
tion dependence. In that case, we cannot analytically solve the nonlinear partial 
differential equation (7) as it is. 

In 1894, Boltzmann transformed (7) into the nonlinear ordinary differential 
equation of  

d d d ,
2 d d d

C CDζ
ζ ζ ζ

 
− =  

 
                    (13) 

using the relation x tζ =  of the parabolic law [9]. Further, (13) can be re-
written as  

( ) ( ) ( )d
,

d
C

J D
ζ

ζ ζ
ζ

= −                    (14) 

where the relation of  

( ) ( ) ( ) ( )
0 00

0

d
exp d for

d2
C

J J J D
D

ζ

ζ

ζηζ η ζ
ζη

=

 
= − − = 

 
∫ 



 

is used [11] [14]. Equation (14) is considered to be a diffusion flux in the para-
bolic space. In mathematics, that the diffusivity depends on the coordinate sys-
tem yields the relation of  

d .
d
C C C D

Dζ ζ ζ
∂ ∂ ∂

= +
∂ ∂∂





                    (15) 
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The general solutions of (13) were obtained as analytical expressions yielding 

( ) 1IF m IF
m

int int

erf erf ,
2 2

D DD D D
DD D

ζζζ −

+

  −
= − − +     





      (16) 

( ) 1IN m IN
m

int int

erf erf ,
2 2

C CC C C
CD D

ζζζ −

−

  −
= − − +     





     (17) 

where (14) and (15) were simultaneously calculated using the integral constants 

AD , BD , AC  and BC  in common for the elements I and II [11]. The nota-
tion of intD  is used as int intD D +=  for 0ζ ≥  and int intD D −=  for 0ζ ≤ . 
The other notations used here for the general solutions are as follows:  

( ) ( ) ( ) ( )

( ) ( )
A B A B A B A B

A B
IF IN A B A B A B IF

A B

m IF A B
IN m int int A B

2 , 2 , 2 , 2 ,

0, 2 , ,
ln ln

, , .
2

m mD D D D D D C C C C C C

D DD D D D D D D
D D

D D D DC C C D D D D
D

ζ ζ

∆ ∆

∆ + −
∆


 = + = − = + = −

 − = = − + = −
 − + = − = =


   

 

     

 

 

 

 

When we substitute the boundary values, A A
jD D= , B B

jD D= , A A
jC C=  

and B B
jC C= , for I, IIj =  in the concerned diffusion system into the general 

solution of (16) and (17), the physical solutions of (3), i.e., ( ),jD t x  and 
( ),jC t x  are obtained as  

( ) A B A B

int

, erf
2 2 2

j j j j
j j

j

D D D D xD t x
D t

α
 + −  = − +
 
 

          (18) 

( ) A B A B

int

, erf
2 2 2

j j j j
j j

j

C C C C xC t x
D t

β
 + −  = − +
 
 

          (19)

 
between A Bx x x≤ ≤ , because of x tζ = . The notations used here are as fol-
lows: 

 1 A B

A B A B

2erf ,
ln ln

j j
j

j j j j
D D
D D D D

α −  +
= − − − 

 

1IN A B A B

A B A Bint

2erf ,
2 ln ln2

j j j j j
j

j j j jj

C C D D
D D D DD

ζβ −

−

  − + = − + −  − −   
 

( ) ( )IN A B A B A B2 ,j j j j j j jD D D D D Dζ = − +  

A B
int int A B, .

2

j j
j j j jD DD D D D+ −

+
= =  

Substituting the initial and/or boundary values into the general solutions of 
the diffusion equation (13) i.e., (16) and (17), the physical solutions of the diffu-
sion equation (3) were reasonably obtained as (18) and (19). As can be seen from 
figure 3 and figure 4 in [11], the present solutions agree with the results of the 
Boltzmann Matano method. Further, it is clarified that the physical solutions of 
(18) and (19) are equivalent to those of (12) because of RP 0v =  in the actual 



T. Okino et al. 
 

912 

interdiffusion problems as discussed later. In order to understand the interdiffu-
sion phenomena, however, we must further investigate the behavior of the diffu-
sion region space corresponding to the movement of the raft as mentioned 
above, since the diffusion flux of (3) is different from that of (12) as discussed in 
detail later even if RP 0v =  is valid. 

The diffusivities ( )I ,D t x  and ( )II ,D t x  in the diffusion region shown in 
Figure 2 are generally different from each other because of the concentration 
dependence of diffusivity caused by a difference between I

AC  and I
BC . The 

physical solution of (18) obtained here shows that the relation of  

( ) ( )I II, ,D t x D t x≠                      (20) 

is valid between A Bx x x≤ ≤ . At the same time, the relation of  

( ) ( )I II
F F, , 0J t x J t x+ ≠                     (21) 

is generally valid between the diffusion fluxes obtained by using (18) and (19). 
Here, note that the difference between (6) and (20) or (9) and (21) has been 

ignored in the diffusion history. We believe that the Kirkendall effect (K effect) 
is caused by the relation of (21) [12]. At the same time, as discussed later, we 
cannot accept the concept of intrinsic diffusion developed in the diffusion history. 

In a word, the usual diffusivities ID  and IID  shown in Figure 2 have been 
thus named as an interdiffusion coefficient D , where (6) is valid only in a par-
tial differential equation of diffusion, and the concept is acceptable then. On the 
other hand, diffusivities ID  and IID  obtained as physical solutions of (18) 
correspond in appearance to ones named as intrinsic diffusion coefficients from 
a different viewpoint in those days. Based on the above theory, however, the 
concept of intrinsic diffusion coefficients is not acceptable, since it is apparent 
that there is no such especial diffusivity in the concerned diffusion region. 

The so-called Darken equation relevant to the interdiffusion coefficient and 
the intrinsic diffusion coefficients has been used for analyzing interdiffusion 
problems for a long time [15]. However, we cannot mathematically accept the 
relation among the interdiffusion coefficient D  and the intrinsic diffusion 
coefficients ID  and IID  in accordance with the above discussion. Here, we 
should notice that the Darken equation is also mathematically wrong in the de-
rivation process [5]. 

5. Flux of Diffusion Region Space 

The concept of diffusion flux is useful for understanding of diffusion phenome-
na. The diffusion flux of the diffusion region space plays an important role to 
understand interdiffusion phenomena like the motion of persons in the raft 
model depends on the motion of raft. 

The Gauss’s divergence theory shows that the diffusion flux is obtained as  

( )R F RP eq FforJ J v C J J J D Cτ ξ= + + + = − ∂ ∂              (22) 

by integrating the diffusion equation (12) with respect to ξ . Here, ( ) eqJ Jτ +  
is an integral constant because of ( )( )eq 0J Jτ ξ∂ + ∂ = . ( )J τ  is a diffusion 
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flux of the diffusion region space caused by the migration of diffusion particles 
and/or solvent ones and it can be observed only from using the coordinate sys-
tem ( ),τ ξ  outside the diffusion system. 

Using the velocity QPv  of the origin P  of x  axis against the origin Q  of 
x  axis, the diffusion equation is obtained as  

QP ,C CD v C
t x x

∂ ∂ ∂ = − ∂ ∂ ∂ 




 

                   (23) 

and the diffusion flux is  

Q F QP eq Ffor .J J v C J J D C x= + + = − ∂ ∂   

              (24) 

Here, note that the diffusion fluxes of (8), (22) and (24) are valid only in the 
partial differential equations (7), (12) and (23), respectively. When (8), (22) and 
(24) are applied to the elements I and II, the relation among diffusion fluxes of  

T T T
R P QJ J J= +                           (25) 

is physically valid as a relation between the inside flux of the diffusion region 
and the outside one, where T I II

P P PJ J J= +   , T I II
Q Q QJ J J= +    and T I II

R R RJ J J= +   . 
Equation (25) yields the relation of  

( ) ( )I II
RP QP ,J J v vτ τ+ = − +                   (26) 

since I II
F F 0J J+ =  , I II

eq eq 0J J+ =  and (4) are valid regardless of the coordinate 
systems. The diffusion flux of ( )I II

RQv C C+  means the flux of diffusion par-
ticles and solvent ones caused by the coordinate transformation, where RQv  is 
the velocity of the origin Q  of x  axis against the origin R  of ξ  axis. The 
relation of  

( ) ( ) ( )I II I II
RQ RQJ J v C C vτ τ+ = − + = −             (27) 

is thus valid, since the diffusion region space moves in the opposite direction 
against the diffusion particles. 

Equations (26) and (27) yield a physically reasonable relation of  

RP RQ QPv v v= +                       (28) 

to be valid among the velocities of the coordinate systems. 

6. Kirkendall Effect 

In general, the diffusion experiments are performed at a high temperature be-
tween D0 τ τ≤ ≤  shown in Figure 2 and the temperature of experimental spe-
cimen becomes gradually a room temperature between D Fτ τ τ≤ ≤ . The diffu-
sion region space interacts with the free space outside the diffusion system then 
and subsequently the diffusion system becomes a thermal equilibrium state at 

Fτ τ= , where the entropy maximization principle and the free energy minimum 
principle stand against each other between D Fτ τ τ≤ ≤ . As can be easily seen, 
the situation corresponds to the motion of the raft and water flow between 

D Fτ τ τ≤ ≤  in Figure 1. 
The interface 0x =  is the so called Matano interface (M interface) whereas 
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the interface 0x =  is called the Kirkendall interface (K interface) in the metal-
lurgy field. The number of diffusion particles through the M interface is equal to 
that of solvent particles, since the shape variation of diffusion system is not ob-
served in usual experiments. It seems that the M interface is immobile after a 
thermal diffusion process in accordance with many experimental results. 

It is considered that the diffusion region is an isolated system and the mass 
center is immobile between D0 t t≤ ≤  . In other words, the M interface is the 
mass center of diffusion region in the initial state and the diffusion region space 
moves like the M interface is immovable between D0 t t≤ ≤   in a similar way to 
the mass center in the raft model in Figure 1. Subsequently, the diffusion region 
space moves with the temperature fall in a similar way to the movement of raft 
between D Ft t t≤ ≤ . In that case, the diffusion system gradually reaches a ther-
mal equilibrium state at a room temperature. However, the mass center is still 
immovable between A Bx x x≤ ≤ , since the diffusion region space has no mass. 

The coordinate origin set at a point P on the M interface in the initial state is 
also immovable, since the M interface is immovable. In other words, the relation 
of RP 0v =  is reasonably valid in the present diffusion system. In that case, (28) 
yields 

RQ QP 0v v+ =                        (29) 

because of RP 0v = . 
Here, using the initial and/or boundary values for (24), the relation yielding  

( ) ( )I II I I
QP A B A B 2v D D C C t= − −                (30) 

is reasonably obtained (See Appendix). 
An inert marker set at the K interface moves in accordance with the flow of 

diffusion region space between D0 t t≤ ≤   because of the characteristic of the 
inert marker itself. The K interface returns subsequently to the initial position of 

0ξ =  between D Ft t t≤ ≤ , since the diffusion region space interacts with the 
free space outside the diffusion system like the diffusion system becomes a 
thermal equilibrium state. It is considered that the diffusion region space inte-
racts with the free space near the specimen surface between A Bx x x≤ ≤ . Thus, 
the marker does not move in the x  axis direction then, since the diffusion re-
gion space moves in the surface direction perpendicular to the x  axis. The mi-
gration length of diffusion region space in the x  axis direction is thus still vi-
sualized by the marker position. 

Based on the above mentioned, the migration length of an inert marker is ex-
pressed as  

( ) ( )D I II I I
shift RQ A B A B D0

dL v t D D C C
τ

τ∆ = = − − −∫         (31) 

at Dτ τ=  in accordance with the shift between the coordinate systems ( ),t x  
and ( ),t x  . The diffusion equation (7) is equal to (12) because of RP 0v = , al-
though the diffusion flux of (8) is different from that of (22) even if RP 0v = . In 
that case, therefore, the inert marker exists at a point of shiftLξ = ∆  in the coor-
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dinate system of the diffusion region outside. This is the so-called K effect  
( )eff shiftLξ∆ = ∆ . Here, it is revealed that the K effect is caused by the shift be-

tween the coordinate systems ( ),t x  and ( ),t x   in a similar way to the 
well-known Doppler effect in the wave equation. 

For an arbitrary time τ , the empirical relation of K effect given by  

eff ,mξ τ∆ =                        (32) 

is well known, where ( )0m >  is a constant determined from the concerned ex-
perimental results. The above theoretical equation of K effect is then written as  

( ) ( )I II I I
eff A B A B .D D C Cξ τ∆ = − −               (33) 

Equation (33) shows that the K effect depends not only on the initial diffusiv-
ity values but also on the initial concentration values. Here, (33) is derived by 
using 2µ =  in Appendix. Therefore, we need reexamine a µ  value by using 
the relation of  

( ) ( )I II I I
A B A B

2m D D C C
µ

= − −                (34) 

so as to agree with the empirical equation (32). 
Hereinbefore, the Kirkendall effect was reasonably explained by the present 

interdiffusion theory, regardless of the intrinsic diffusion concept. It was thus 
revealed that the diffusion region space plays an important role in the interdiffu-
sion problems. At the same time, the discussions of setting coordinate system of 
diffusion equation are essentially dispensable for understanding the diffusion 
phenomena. 

7. Discussion 

The diffusion study is an important subject relevant to basic problems in the fa-
brication process of materials such as alloys, semiconductors, functional mate-
rials, and so on. Their diffusion problems in detail have been thus widely inves-
tigated in accordance with the industrial requirement for a long time. However, 
some unsolved problems relevant to the fundamental nonlinear diffusion equa-
tion, which are extremely dominant in mathematical physics, have been still 
leaved in the diffusion history. In the cause of them, the physical interpretation 
of the K effect has been misunderstood for a long time. 

As is well known, the physical solutions of a partial differential equation are 
determined from substituting the given initial and boundary values into the 
general solutions in mathematics. The difference between the physical solutions 
and the general solutions in mathematics has been confused in the diffusion 
history. For example, the expression of the diffusion flux J  using the general 
solutions is thus apparently different from J  using the physical solutions. Us-
ing the expression of the interdiffusion coefficient D  of the general solutions 
and the diffusivity jD  for I or IIj =  of the physical solutions, the well-known 
Darken equation is expressed as  

I II II I .D C D C D= +                      (35) 
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Based on the present mathematical theory, (35) is apparently wrong, since the 
left-hand side is a general solution whereas the right-hand is expressed by using 
physical solutions. Further, it is also revealed that the Darken equation is ma-
thematically wrong in the derivation process [5]. 

8. Conclusions 

It had been considered for a long time that the analytical solutions of (3) are 
impossible. However, we could reasonably obtain the general solutions of (13) as 
(16) and (17). In other words, the physical solutions of (3) were analytically ob-
tained as (18) and (19). In the present work, the fundamental concept of interdif-
fusion phenomena was reasonably clarified in accordance with the mathematical 
theory. Further, the analytical method discussed in the present work is reasona-
bly applicable to an interdiffusion problem of many elements system [16]. 

Here, the present results yield the following conclusions. 
1) In general, the discussion about setting the coordinate systems of diffusion 

equation in the diffusion problems is essentially necessary for understanding of 
the diffusion phenomena. 

2) An element in the interdiffusion region has only one diffusivity value. The 
so-called interdiffusion coefficient means the unsolved one in the partial diffe-
rential equation. On the other hand, the intrinsic diffusion coefficient corres-
ponds to the solved one using the given initial and boundary values for the gen-
eral solutions. Therefore, such an especial intrinsic diffusion coefficient con-
ceived in the diffusion history is essentially nonexistent in accordance with the 
mathematical theory. 

In view of the influence of misunderstanding problems pointed out here on 
the younger, we hope that the conclusions are universally known in the con-
cerned research field as soon as possible, just because of the fundamental matters 
themselves. 
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Appendix 

Even if the diffusion couple satisfies I I
A BC C≥  in the diffusion system shown in 

Figure 2, the generality of diffusion system holds still. In that case, the particles 
of element I diffuse from the interface at Ax x=   into the diffusion region be-
tween A Bx x x≤ ≤   . On the other hand, the particles of element II diffuse from 
the interface at Bx x=   into the diffusion region between A Bx x x≤ ≤   . The dif-
fusion junction depths I

junx∆  and II
junx∆  are estimated as  

I I
jun Ax D tµ∆ = 

  and II II
jun Ax D tµ∆ = 

 ,            (A-1) 

where µ  is a parameter and 2µ =  is tentatively adopted in the present work. 
Using (A-1) and the concentration difference of boundary values  

I I I
B AC C C∆ = −  and II II II

B AC C C∆ = − , the actual diffusion fluxes of elements I 
and II are expressed as  

( ) ( )
( ) ( )

I I I I I I I
Q A jun A A B

II II II II II II II
Q B jun B A B

2 ,

2 .

J t D C x D C C t

J t D C x D C C t

 = − ∆ ∆ = −

 = − ∆ ∆ = −

 



 



       (A-2) 

Equation (A-2) yields  

( ) ( ) ( ) ( )I II I II I I
Q Q A B A B 2 .J t J t D D C C t+ = − −           (A-3) 

The diffusion flux of (A-3) caused by the coordinate transformation corres-
ponds to the flux of diffusion region space given by  

( ) ( ) ( )I II I II I I
RQ A B A B 2 ,v C C D D C C t+ = − − − 

         (A-4) 

since the flux of diffusion region space moves in the opposite direction to the 
diffusion flux of (A-3). Substituting (A-4) into (29) yields  

( ) ( )I II I I
QP A B A B 2 .v D D C C t= − − 

                (30) 
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