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Abstract 
The solutions of Linear Programming Problems by the segmentation of the 
cuboidal response surface through the Super Convergent Line Series method-
ologies were obtained. The cuboidal response surface was segmented up to 
four segments, and explored. It was verified that the number of segments, S, 
for which optimal solutions are obtained is two (S = 2). Illustrative examples 
and a real-life problem were also given and solved. 
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1. Introduction 

Linear Programming (LP) problems belong to a class of constrained convex op-
timization problems which have been widely discussed by several authors: see 
[1] [2] [3]. The commonly used algorithms for solving Linear Programming 
problems are: the Simplex method which requires the use of artificial variables 
and surplus or slack variables, and the active set method which requires the use 
of artificial constraints and variables. Over the years, a variety of line search al-
gorithms have been employed in locating the local optimizer of response surface 
methodology (RSM) problems: see [4] and [5]. Similarly, the active set and 
simplex methods which are available for solving linear programming problems 
also belong to the class of line search exchange algorithms. 
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The line search algorithm, which is built around the concept of super con-
vergence, has several points of departure from the classical, gradient-based line 
series. These gradient-based line series do often times fail to converge to the 
optimum but the Super Convergent Line Series (SCLS) which are also gra-
dient- based techniques locate the global optimum of response surfaces with 
certainty. Super Convergent Line Series (SCLS) was introduced by [6], and 
later used by [7] and [8]. [9] modified the Super Convergent Line Series 
(SCLS) and used it to solve Linear Programming Problems, [10] applied Quick 
Convergent Inflow Algorithm to solve Constrained Linear Programming 
Problems on Segmented region, and [11] modified the “Quick Convergent In-
flow Algorithm” and used it to solve Linear Programming Problems based on 
variance of predicted response. In [12], it was verified and established that the 
best number of segments is two (S = 2) for Linear Programming Problems, 
four (S = 4) for Quadratic Programming Problems, and eight (S = 8) for Cubic 
Programming Problems, for non-over- lapping segmentation of the response 
surface. The above algorithms compared favourably with other Line Search 
algorithms that utilize the principles of experimental design.  

Other recent studies on line search algorithms for optimization problems 
are: [13] in which a modified version of line search for global optimization was 
proposed. The line search here uses a technique for the determination of ran-
dom- generated values for the direction and step-length of the search. Some 
numerical experiments were performed using popular optimization functions 
involving fifty dimensions; comparison with standard line search, genetic al-
gorithms and differential evolution were performed. Empirical results illu-
strate that the modified line search algorithm performs better than the stan-
dard line search and other techniques for three or four test functions consi-
dered. [14] focused on line search algorithms for solving large-scale uncon-
strained optimization problems such as quasi-Newton methods, truncated 
Newton and conjugate gradient. [15] proposed a line search algorithm based 
on the Majorize-Minimum principle; here, a tangent majorant function is built 
to approximate a scalar criterion containing a barrier function, which leads to 
a simple line search ensuring the convergence of several classical descent op-
timization strategies, including the most classical variants of non-linear con-
jugate gradient. [16] presented the fundamental ideas, concepts and theorems 
of basic line search algorithm for solving linear programming problems which 
can be regarded as an extension of the Simplex method. The basic line search 
algorithm can be used to find an optimal solution with only one iteration. [17] 
presented a performance of a one-dimensional search algorithm for solving 
general high-dimensional optimization problems which uses line search algo-
rithm as subroutines.  

In all the aforementioned works, none has gone beyond solving problems in 
two-dimensional spaces with segmentation. This paper is basically on obtaining 
optimal solutions and segmentation of Linear Programming Problems in three 
dimensional spaces of a cuboidal region. 
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2. Preliminaries 
2.1. Three Dimensional Non-Overlapping Segmentation of the  

Response Surface  

The space, X̂ , (the shape of a cube) is partitioned into subspaces called seg-
ments. These segments are non-overlapping with common boundaries. The 
space, X̂ , is partitioned into S non-overlapping segments as follows: 

In Figure 1(a), the cube (experimental space) is partitioned into two seg-
ments, S1 and S2, while in Figure 1(b) and Figure 1(c), the cubes are partitioned 
into three and four segments, respectively. From the above Figures and their re-
spective segments, support points will be picked to form their respective design 
matrices. The number of support points per segment, according to [18], should 
not exceed ( )1 2 1 1p p + + , where p is the number of parameters of the regres-
sion model under consideration. Therefore, ( )1 2 1 1p n p p≤ ≤ + + , where n is  
 

 
(a) 

  
(b)                                                           (c) 

Figure 1. (a): A vertical line, Ƨ, drawn through the middle of a Cube [Two segments (S = 2)]. (b): A vertical line, Ʈ, and a hori-
zontal line, ƥ, draw through the middle of a cube [Three Segments (S = 3)]. (c): A vertical line, Δ, and a horizontal line, Ԓ, drawn 
through the middle of a cube [Four Segments (S = 4)]. 
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the maximum number of support points per segment. The number of support 
points per segment as given by [6] is ( )1 1 2 1 1kn N n n+ ≤ ≤ + + , where n is the 
number of variables in the model, Nk is the number of support points in Nk seg-
ment. The support points per segment are arbitrarily chosen provided they sa-
tisfy constraint equations and do not lie outside the feasible region. 

2.2. Rationale of the Segmentation  

Design matrices are formed from the support points obtained from each of the 
segments created above. The segmentation of the response surface according to 
[6] is a rapid way of improving the average information matrix and obtaining 
the optimum direction vector. This is achieved by obtaining the linear combina-
tion of the information matrices from the different segments. The improved av-
erage information matrix (resultant matrix) is used to compute the optimum di-
rection vector, which locates the optimum direction and the optimizer in a very 
short period or with one iteration. Without segmentation, information leading 
to the optimizer would have been obtained from only a fraction of the entire re-
sponse surface. 

With segmentation, more support points are available at the boundary of the 
feasible region. [18] [19] [20] have shown that a design formed with support 
points taken at the boundary of the feasible region is better than any other de-
sign with support points taken at the interior of the feasible region. 

Theorem: The average information matrix resulting from pooling the seg-
ments using matrices of coefficients of convex combination is  

( ) T T

1
,

s

n k k k k
k

M H X X Hζ
=

= ∑
 

Proof:  
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0 0
0 0

,

0 0

S S

S S

X X X X X X X X

X X
X X

X X

=

 
 
 =  
 
  







   



 

where Hk is the matrix of coefficient of convex combination, T
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Thus,  
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Therefore, ( ) T T
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=

= ∑   

3. Methodology 
3.1. The Theory of Super Convergent Line Series 
3.1.1. Definitions and Preliminaries 
The Super Convergent Line Series (SCLS) is defined by [6] as 

X X dρ= −                          (1.1) 

X  is the vector of the optimal values, 

1

N

m m
m

X w x
=

= ∑  is the optimal starting points, where 0mw > ; 
1

1
N

m
m

w
=

=∑ ,  

1

1

1

m
m N

m
m

aw
a

−

−

=

=
∑

, 

T , 1, 2, , .m m ma X X m N= =   

d  is the direction vector defined as ( ) ( )1 .A Nd M Zζ−= , where  
( ) ( )T

0 1. , , , nZ Z Z Z= 
 is an n-component vector of responses; ( )i iZ f m= , is 

the ith row of the average information matrix, ( )A NM ζ , where ( )1
A NM ζ−  is 

the inverse of the average information matrix; 

ρ  is the step-length defined as 
T

Tmin i i

i

C X b
C d

ρ
 − =  
  

, where d  is the di-  

rection vector; T
iC  is the vector which represents the parameter of linear in-

equalities; X  is the starting point and ib  is a scalar of the linear inequalities; 

Nζ  is an N-point design measure whose support points may or may not have 
equal weights; 

Support points are pairs of points marked on the boundary and interior of the 
partitioned space which are picked to form design matrices; 

X  is the experimental space of the response surface that can be partitioned 
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into segments such that every pair of support points in the segment is a subset of 
X ; 

( ) ( )T
nk k kM X Xζ =  is the information matrix, ( ) ( ) 11 T

nk k kM X Xζ
−− =  is the 

inverse information matrix; 
S1 is segment 1, S2 is segment 2,  

( )det nkM ζ  is the determinant of the information matrix; 
Hi is the matrix of the coefficients of convex combination and is defined as  

 ( )1 2 , 1diag , , , , 1, 2, , ;i i i i nH h h h i k+= = 
  

With i = 1, 2 segments, the coefficients of convex combinations, Hi, of the 
segments are: 

{ }133111 122
1 11 12 13

111 211 122 222 133 233

diag , , diag , ,VV VH h h h
V V V V V V
 

= = + + + 
 (1.2) 

for the inverse information matrix in segment 1, 

{ }233211 222
2 21 22 23

111 211 122 222 133 233

diag , , diag , ,VV VH h h h
V V V V V V
 

= = + + + 
 (1.3) 

for the inverse information matrix in segment 2, 
where V111, V122, V133 are the variances of the inverse information matrix of seg-
ment 1 and V211, V222, V233 are variances of the inverse information matrix of 
segment 2, respectively.  

The average information matrix, ( )A NM ζ , is the sum of the product of the k 
information matrices and the k matrices of the coefficients of convex combina-
tions, thus  

( ) T T

1
;

s

A N k k k k
k

M H X X Hζ
=

= ∑    see [6]      (1.4) 

Segmentation is the partitioning of the experimental space, X , into segments. 
Segmentation can be non-overlapping and overlapping, and support points are 
selected from each segment to form design matrices. 

An unbiased response function is defined by 

( )1 2 00 10 1 20 2,f x x a a x a x= + +               (1.5) 

3.1.2. Algorithm for Super Convergent Line Series 
The algorithm follows the following sequence of steps: 

1) Partition the experimental space (Cube) into 1, 2, ,k s=   segments and 
select Nk support points from the kth segment; hence, make up an N-point design, 

( ) 1 21

11 2

, , , , , ,
; .

, , , , ,

s
n n

N k
kn n

x x x x
N N

w w w w
ζ

=

 
= = 
 

∑
 

 

 

2) Compute the vectors, , , .X d ρ
∗ ∗ ∗  

3) Move to the point, .X X dρ
∗∗ ∗ ∗= −  

4) Is X Xf∗ ∗= ? (where Xf ∗  is the optimizer of ( )f ⋅ ). 
Yes: stop, 
No: then go back to 1) above until the optimal solution is obtained. 
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5) Identify the segment in which the optimal solution is obtained. 

3.2. The Average Information Matrix, the Direction Vector, the  
Starting Point and the Step-Length  

3.2.1. The Average Information Matrix 
The average information matrix, ( )nM ζ , is the sum of the product of the k in-
formation matrices, and the k matrices of the coefficients of convex combina-  

tions given by ( ) T T

1
,

s

n K K K K
k

M H X X Hζ
=

= ∑
 

for two segments, the average information matrix is  

( )
11 21 31

T T T T
1 1 1 1 2 2 2 2 12 22 32

13 23 33

A N

m m m
M H X X H H X X H m m m

m m m
ζ ∗ ∗ ∗ ∗

 
 = + =  
 
 

.  

3.2.2. The Direction Vector  
The direction vector defined in Section 3.1.1 is computed as follows: 

If f(x) is the response function, then the response vector, Z, is given by  

0

1

2

n

z
z

Z z

z

 
 
 
 =
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 


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n
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z f m m m
z f m m m

z f m m m

+

+

+ + +

=

=

=









 

Hence, the direction vector defined in Section 3.1.1 is computed as  

( )

0

1
1

2A N

n

d

d
d M Z d

d

ζ−

 
 
 
 = =
 
 
 
 



. 

By normalizing such that *T * 1d d = , we have 

1
2 2 2

1 2

2
* 2 2 2

1 2

2 2 2
1 2

n

n

n

n

d
d d d

d
d d d d

d
d d d

 
 

+ + + 
 
 
 = + + +
 
 
 
 
 + + + 









,  

where d0 = 1 is discarded.  

3.2.3. Optimal Starting Point

 

The optimal starting point is obtained from the design matrices of the segments 
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considered. The optimal starting point defined in Section 3.1.1 is obtained as 
follows: 

1

1 1

1

; 0; 1. , 1, 2, , .
N N

m
m m m m m N

m m
m

m

aX w x w w w m N
w

−

= =

=

= ≥ = = =∑ ∑
∑

  

T , 1, 2, , .m m ma x x m N= =   

Using a 4-point design matrix, 
18

8
11

1

, , 1, 2, ,8.m
m m m

m
m

m

aX w x w m
a

−

−=

=

= = =∑
∑

  

3.2.4. The Step-Length 
The step-length is defined by 

T

T
min i i

i

C X b

C d
ρ

∗
∗

∗

 ′ − =  
′  

, where ρ∗  is the optimal step-length and d ∗  is the  

normalized direction vector, T
iC  is the vector which represent the parameter of 

linear inequalities, X
∗
 is the starting point while ib  is a scalar of linear in-

equalities. 

4. Results and Discussion 
4.1. Comparison of Results Obtained Using the Segmentation  

Procedure with Existing 

Results in the Literature 
Problem 1: [[21], Problem 7.2B, Question 2b, pp. 304] 
Maximize 1 2 32 2Z x x x= + +  
Subject to 1 2 34 3 8 12x x x+ + ≤  

1 2 34 12 8x x x+ + ≤  

1 2 34 3 8x x x− + ≤  

1 2 3, , 0x x x ≥  

Support points are picked from the boundaries of the partitioned segments 
(Figure 2) provided they do not violate the constraint equations. 

Thus ( ) ( ) ( ) ( ) ( ){ }1 0,1,0 , 0,1,1 , 0,0,1 , 1 2 ,0,0 , , 1 4 ,0,0X = 
 and  

( ) ( ) ( ) ( ) ( ) ( ){ }2 1,0,1 , 0,0,1 2 , 1,0,0 , 1,1 2 ,0 , 1,1,0 , , 1 2 ,0,0X = 
, 

where X1 and X2 is obtained from S1 and S2 respectively. 
Thus, the design and inverse matrices are given as follows (from Figure 2): 

1

1 0 1 0
11 0 0
2

11 0 0
2

11 0 0
2

X

 
 
 
 
 =
 
 
 
 
 

; 2

1 1 1 0

11 1 0
2

11 0 0
2

11 0 0
2

X

 
 
 
 
 =  
 
 
  
 

, 
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Figure 2. Using 2 segments (S = 2). 

 

( ) 1T
1 1

5 10 6 10
10 24 12 20
6 12 8 12

10 20 12 24

X X
−

− − − 
 − =
 −
 
− 

; ( ) 1T
2 2

9 14 6 18
14 24 12 28
6 12 8 12
18 28 12 40

X X
−

− − 
 − − =
 − −
 
− − 

 

The direction vector, 

2.000
1.000
2.000

d
 
 =  
 
 

; by normalizing d , we get 

0.8944
0.4472
0.8944

d ∗
 
 =  
 
 

,  

(See Section 3.2.2)  

1

0.2990
0.2758
0.1516

N

i i
i

X w x
∗

=

 
 = =  
 
 

∑ , the step-length, 1.1396ρ∗ = − ,  

1.318
0.7854
1.1709

X X dρ
∗∗ ∗ ∗

 
 = − =  
 
 

.  

Therefore, Max Z = 5.46. 
With S = 2 (2 Segments), the value of Z is Max. Z = 5.46 (in one iteration) 

which is close to the optimal value obtained by [21], problem 7.2b, Question 2b, 
pp. 304, as Max Z = 5.00 (in 3 iterations). The maximum values of Z for this 
problem using 3 and 4 segments are: 5.81 for (x1, x2, x3) = (1.265, 0.7891, 1.2431), 
and 5.77 for (x1, x2, x3) = (1.0008, 0.6606, 1.5523). These values are not optimal 
because they do not compare favourably with the existing solution got by [21] 
using the simplex method. 

Problem 2: [[22], Ex. 2.4, Q. 14(ii), p. 215] 
Maximize 1 2 35 3 7Z x x x= + +  
Subject to 1 2 32 26x x x+ + ≤  

1 2 33 2 26x x x+ + ≤  

1 2 3 18x x x+ + ≤  
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1 2 3, , 0x x x ≥  

Support points are picked from the boundaries of the partitioned segments 
(from Figure 3) provided they do not violate the constraint equations. 

Thus ( ) ( ) ( ) ( ) ( ){ }1 0,1,0 , 0,1,1 , 0,0,1 , 1 2 ,0,0 , ,  1 4 ,0,0X = 
 and 

( ) ( ) ( ) ( ) ( ) ( ){ }2 1,0,1 , 0,0,1 2 , 1,1,1 , 1,1 2,0 , 1,1,0 , , 1 2 ,0,0X = 
, 

Thus, the design and inverse matrices are given as follows (from Figure 3): 

1

1 0 1 0
1 0 1 1

11 0 0
4

1 0 0 1

X

 
 
 

=  
 
  
 

; 2

1 1 1 1
1 1 0 1

11 1 0
2

11 0 0
2

X

 
 
 
 =  
 
 
 
 

,  

( ) 1T
1 1

3 12 2 2
12 64 20 8
2 8 2 1
2 8 1 2

X X
−

− − − 
 − =
 −
 
− 

; ( ) 1T
2 2

9 14 6 5
14 24 12 10
6 12 8 6
5 10 6 6

X X
−

− 
 − − − =
 −
 

− 

 

The direction vector, 

5.0002
2.9998
6.9999

d
 
 =  
 
 

, by normalizing d , we get 

0.5488
0.3293
0.7683

d ∗
 
 =  
 
 

  

(See Section 3.2.2) 
1

0.3812
0.3318
0.2787

N

i i
i

X w x
∗

=

 
 = =  
 
 

∑ , the step-length 10.3306ρ∗ = − , 

6.0506
3.7337
8.2157

X X dρ
∗∗ ∗ ∗

 
 = − =  
 
 

. 

Therefore, Max Z = 98.96. 
With S = 2 (2 Segments), the value of Z is Max Z = 98.96 which is close to the  
 

 
Figure 3. Using 2 Segments (S = 2). 
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optimal value (in one iteration) obtained by [22], Ex. 2.4, Q 14(ii), p. 215, as Max 
Z = 98.80 (in two iterations), using the simplex method. The maximum value of 
Z for this problem using 3 and 4 segments are: 99.06 for (x1, x2, x3) = (6.0213, 
3.725, 8.2537) and 99.15 for (x1, x2, x3) = (6.0746, 3.675, 8.2503). 

4.2. Illustrative Problem and Application 

A producer of leather shoes makes three types of shoes, X, Y and Z, which are 
processed on three machines, K1, K2 and K3. The daily capacities of the machines 
are given in Table 1 as follows. 

The profit gained from shoe X is ₦3 per unit, shoe Y is ₦5 per unit and shoe Z 
is ₦4 per unit. What is the maximum profit for the three types of shoe pro-
duced? 

Solution: Let X1 be the unit of type X, X2 be the unit of type Y and X3 be the 
unit of type Z. 

Maximize 1 2 33 5 4Z x x x= + +  
Subject to 1 22 3 8X X+ ≤  

2 32 5 10X X+ ≤  

1 2 33 2 4 15X X X+ + ≤  

1 2 3, , 0X X X ≥  

In a similar manner, the design and inverse matrices are given as follows 
[from Figure 4]. 

 
Table 1. The daily capacity of the machines. 

 Types of shoes (Unit of types of shoes) Hours available per day 

Machines X Y Z  

K1 2 3  8 

K2  2 5 10 

K3 3 2 4 15 

 

 
Figure 4. Using 2 segments (S = 2). 

235 



T. Ugbe, P. Chigbu 
 

1

1 0 1 0
1 0 1 1

11 0 0
4

1 0 0 1

X

 
 
 

=  
 
  
 

; 2

1 1 1 1
1 1 0 1

11 1 0
2

11 0 0
2

X

 
 
 
 =  
 
 
 
 

,  

( ) 1T
1 1

3 12 2 2
12 64 8 8
2 8 2 1
2 8 1 2

X X
−

− − − 
 − =
 −
 
− 

; ( ) 1T
2 2

9 14 6 5
14 24 12 10
6 12 8 6
5 10 6 6

X X
−

− 
 − − − =
 −
 

− 

.  

The direction vector, 

3
5
4

d
 
 =  
 
 

; by normalizing d , we get 

0.4243
0.7071
0.5657

d ∗
 
 =  
 
 

,

1

0.3027
0.2953
0.2483

N

i i
i

X w x
∗

=

 
 = =  
 
 

∑ , step-length 2.1916ρ∗ = − ,  

1.2326
1.845
1.4881

X X dρ
∗∗ ∗ ∗

 
 = − =  
 
 

. Therefore, the maximum value of Z is 

 ₦18.88. This value in one iteration is close to the optimum value got by using 
the simplex method approach (in three iterations). When 3 and 4 segments were 
used, the maximum values of Z for this problem are ₦21.25 with corresponding 
values (X1, X2, X3) = (1.37, 2.08, 1.68) and ₦21.03 with corresponding values (X1, 
X2, X3) = (1.43, 2.01, 1.67). These values are not optimal because they do not 
compare favourably with the simplex method solution which is Max Z = ₦18.66. 

5. Conclusion 

Three dimensional Linear Programming problems have been solved using the 
line search equation, X dρ

∗ ∗ ∗− , of the Super Convergent Line Series, by seg-
menting the cuboidal response surface into 2, 3 and 4 segments. A real-life 
problem was also used to achieve the desired result. It was found that the optim-
al solution is attained at 2 segments (S = 2) and in one iteration or move even 
though up to 4 segments (S = 4) were considered. But comparing the solution 
with the simplex method’s result, a close result was obtained in 2 and 3 itera-
tions. Hence, as the name implies, the Super Convergent Line Series (SCLS) lo-
cates the optimizer in one iteration and better still with segmentation. 
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