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Abstract 

Let ( ){ }, 0X t t ≥  be a stable subordinator defined on a probability space 

( ), ,Ω    and let ta  for 0t >  be a non-negative valued function. In this 
paper, it is shown that under varying conditions on ta , there exists a function 

( )tβλ  such that 
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1. Introduction 

Let ( ){ }, 0X t t ≥  be a stable ordinator with exponent α  with 0 1α< < , de-
fined on a probability space ( ), ,Ω   . Let ta  for 0t >  be a non-negative 
valued function and ( ) ( ) ( )tY t X t a X t= + − , 0t > . Define 
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For any value of t, the characteristic function of ( )X t  is of the form 

( )( ) πe exp 1 tan , 0 1.
2

iuX t uiE t u
u

α α α
   = − − < <        

 

Limit theorems on the increments of stable subordinators have been inves-
tigated in various directions by many authors [1]-[6]. Among the above many 
results, we are interested in Fristedt [4] and Vasudeva and Divanji [3] whose 
results are the following limit theorems on the increments of stable subordi-
nators. 

Theorem 1 ([4]) 

( ) ( ) ( )
1 1

lim inf log log 1 almost surely . .
t

t t X t a s
α

α ααθ
−−

→∞
=  

Theorem 2 ([3]) Let 0 ta<  for 0t > , be a non-decreasing function of t  
such that 

(i) 0 ta t< ≤  for 0t > , 
(ii) ta →∞  as t →∞ , and 
(iii) ta t  is non-increasing. Then 
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In this paper, our aim is to investigate Liminf behaviors of the increments of Y. 
We establish that, under certain conditions on ta , 

( )
( )

( ) ( ) ( )

liminf 1 . .,

where .

t

t

Y t
a s

t

Y t X t a X t
βλ→∞

=

= + −

                  (2) 

Throughout the paper c and k (integer), with or without suffix, stand for posi-
tive constants. i.o. means infinitely often. We shall define for each 0u ≥  the 
functions ( )( )log log max ,1u u=  and ( )( )log log log log max ,3u u= . 

2. Main Result 

In this section, we reformulate the result obtained in Theorem 2 and establish 
our main result using ( )tβλ  with 0 1β≤ ≤  instead of ( )tξ . 

Theorem 3 Let ta , 0t > , be a non-decreasing function of t  such that 
(i) 0 ta t< ≤  for 0t > , 
(ii) ta →∞  as t →∞ , and 
(iii) ta t  is non-increasing. Then 

( )
( )

lim inf 1 . .t
Y t

a s
tβλ

→∞ =  

Remark 1 Let us mention some particular cases 
1. For ta t=  we obtain Fristedt’s iterated logarithm laws (see Thorem 1). 
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2. If 1β =  we have Vasudeva and Divanji theorem (see Theorem 2). 
3. If 0β =  under assumptions (i), (ii) and (iii) of Theorem 3 we also have 

( )
( )0

lim inf 1 . .
t

Y t
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=  

In order to prove Theorem 3, we need the following Lemma 
Lemma 1 (see [3] or [7]) Let 1X  be a positive stable random variable with 

characteristic function 
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Proof of Theorem 3. Firstly, we show that for any given 0ε > , as ,t →∞  

( ) ( ) ( )( )1 . 1.P Y t t i oβε λ≤ + =                   (3) 

Let 1u  be a number such that 
1

1ua > . Define a sequence ( )ku  through 

1 kk k uu u a+ = + , for 1, 2, .k =   Now we show that 
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Applying Lemma 1 with 
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one can find a 0k  such that, for all 0k k≥ , 
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where 0c  is some positive constant. Notice that 

( ) ( )1 1 11 1 1 for some 0.
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Hence 
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Therefore, for all 1k k≥ , we have 
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Observe that 
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From the fact that 
1

d
logk

t
t t

∞
= ∞∫  and from (4), (5), and (6) one gets 
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1 .k k
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∞

=
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Observe that ( )( )kY u  is a sequence of mutually independent random va-
riables (for, 1 kk k uu u a+ = + ) and by applying Borel-Cantelli lemma, we get 

( ) ( ) ( )( )1 . 1k kP Y u u i oβε λ≤ + =  

which establishes (3). 
Now we complete the proof by showing that, for any ( )0,1ε ∈ , 

( ) ( ) ( )( )1 . 0.kP Y t t i oβε λ≤ − =                  (7) 

Define a subsequence ( )kt , such that 

( ) ( )( )( )1 1
1 log , 1, 2,

kt k k ka t t t kβ ε− +
+= − =               (8) 

and the events tA  and kB  as 

( ) ( ) ( ){ }1tA Y t tβε λ= ≤ −  
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( ) ( ) ( ){ }
1

1inf 1 , 1, 2, .
k k

k kt t t
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+
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Note that 

( ) ( ). ., . ., .t kA i o t B i o k→∞ ⊂ →∞  

Further, define 

( ) ( ) ( ) ( ){ }1 11
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and observe that 

( ) ( ). ., . ., .k kB i o k C i o k→∞ ⊂ →∞  

Hence in order to prove (7) it is enough to show that 

( ). . 0.kP C i o =                          (9) 

We have 
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The fact that ta t  is non-increasing as t →∞  implies that 
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From lemma 1, we can find a ( )3 2k k≥  such that for all 3k k≥ , 
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where 1c  is a positive constant. 
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Now we get ( )
4 kk k P C∞

=
< ∞∑ , which in turn establishes (9) by applying to the 

Borel-Cantelli lemma. The proof of Theorem 3 is complete. 

3. Conclusion 

In this paper, we developed some limit theorems on increments of stable subor-
dinators. We reformulated the result obtained by Vasudeva and Divanji [3], and 
established our result by using ( )tβλ . 
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