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Abstract

Let {X (t),tZO} be a stable subordinator defined on a probability space
(Q,F,A) and let a for t>0 be a non-negative valued function. In this

paper, it is shown that under varying conditions on &, , there exists a function

/Iﬂ (t) such that

jiming (4 30) =X (1)
o 2 (t)

a-1

1
where Aﬁ(t):eaa;z(Iogé+ﬂlogIogt+(1—,6‘)loglogat] , 0<p<1,

Ha:(B(a))%a and B(a)z(l—a)alil[cos(%n:l.
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1. Introduction

Let {X (t),t > 0} be a stable ordinator with exponent o with 0<a <1, de-
fined on a probability space (Q,f,.A). Let a for t>0 be a non-negative
valued functionand Y (t)=X(t+a)—X(t), t>0. Define

a-1

1
Ay (1) = 0,a¢ (Iogé+ﬂlog logt +(1- 3)log Ioga1) ,

where 0< <1,

1

Ha=(B(a))L7a and B(a):(l—a)alaa(cos(%na_l.
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For any value of t, the characteristic function of X (t) is of the form

iux(t)\ _ a ui 1o
E(e )_exp[—t|u| [1—mtan(7j]], O<a<l.

Limit theorems on the increments of stable subordinators have been inves-
tigated in various directions by many authors [1]-[6]. Among the above many
results, we are interested in Fristedt [4] and Vasudeva and Divanji [3] whose
results are the following limit theorems on the increments of stable subordi-
nators.

Theorem 1 ([4])

l-a

1 —
|Irtllicnf g,t “(loglogt) « X (t)=1 almostsurely (as).

Theorem 2 ([3]) Let O0<a, for t>0, be a non-decreasing function of t
such that

(i) 0<a <t for t>0,

(ii) a, > as t—o0,and

(iii) a, /t is non-increasing. Then

liminf (X(t+a)-X(1)
o (1)

=1 as., (1)

a-1
1 a—

where &(t)= 0,a¢ Elogé+ log |Ogtj

o

In this paper, our aim is to investigate Liminf behaviors of the increments of Y.

We establish that, under certain conditions on a,,

Y (1)

liminf =1 as.,

t—o0 ﬂ’ﬁ(t) (2)
where Y (t)= X (t+a,)— X (t).

Throughout the paper cand 4 (integer), with or without suffix, stand for posi-
tive constants. i.o. means infinitely often. We shall define for each u>0 the
functions logu = log(max (u,1)) and loglogu =loglog(max (u,3)).

2. Main Result

In this section, we reformulate the result obtained in Theorem 2 and establish
our main result using A, (t) with 0< <1 instead of £(t).

Theorem 3 Let a,, t>0, beanon-decreasing function of t such that

(i) 0<a <t for t>0,

(ii) a, > as t—o0,and

(iii) a, /t is non-increasing. Then

Y (t)

t—o0 ﬂ«ﬂ (t)

Remark 1 Let us mention some particular cases

liminf =1 as.

1. For a, =t we obtain Fristedt’s iterated logarithm laws (see Thorem 1).
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2.If B =1 wehave Vasudeva and Divanji theorem (see Theorem 2).

3.If B =0 under assumptions (i), (ii) and (iii) of Theorem 3 we also have

liminf Y(t)

Be Ay (1)

In order to prove Theorem 3, we need the following Lemma

=1 as.

Lemma 1 (see [3] or [7]) Let X, be a positive stable random variable with

characteristic function

E (exp{iuX, }) =exp {—|u|“ [l—ﬁtan (%)]} O<a<l.

Then, as X —0,

where

1
a-1 —
B(a)=(1—a)aa[cos(%n g
Proof of Theorem 3. Firstly, we show that for any given ¢>0,as t— oo,
P(Y(t)<(1+&)4,(t) io)=1. (3)

Let U, be a number such that a, >1. Define a sequence (uk) through
Uy =U +8, ,for k=12,---. Now we show that

P(Y (u)<(1+£)4,(u,) io)=1.

From Mijhneer [8], we have

P(Y (1)< (1+e)2, (u)) -P| x = T g
ot
But
a-1
Ay (1Uk) =0, Iogu_k+ﬂlog logu, +(1-3)loglog a, | -
as a,
k

Applying Lemma 1 with

a-1

x=(1+¢)0, [Iog:—"+ﬂlog logu, +(1-)loglog aUk] “ )

Uk

one can find a Kk, such that, forall k>k,,

%%
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5\ Y2

u, (logu, )ﬂ (Iog a, ) /
&,

2| log

u, (logu, )’ (lo -
X exp —(1+g)“/(”’1) log c(1oguy) ( ga“k) ,

o

where ¢, issome positive constant. Notice that
.
(1+¢&)a1=(1-¢)<1 forsome & > 0.

Hence

> G B
> ] (|ogu )ﬂ(log )1—ﬁ 1/2 u,
2| log k K . Ay,
Ju 1
a, s 1-p\a)
k ((Ioguk) (Iogauk) )
— Co (ukﬂ_ukJ
172
u, (logu, )’ (loga, )" h
2| 1og  (log k)au( ga, )
Ju| 1
a, 5 1-p\l-a)
k ((Ioguk) (Iogauk) )

-5
Let 1, =u,/a, and m, =(logu, )y (Iog auk) . Note that 1, is non-decreasing

and m, > as k—o.Inturnonefindsa Kk, >k;, such that

‘1 méL
&21’

whenever k > k.
(log1,m, )V2 '

Therefore, for all k >k, , we have

K2
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P| X (1)S (1+8)ﬂ’ﬂ (uk)

1

%,
— _ | s
S e T LN [ S
2u, (logu, )" (loga, ) 2u, \ logu, ) loga,
>c (uk+1_uk) IOg auk 1 —c (uk+1_uk)
=0 =G, .
2u, logu, /loga, 2u, logu,
Observe that
J‘w dt < i (um—uk). ©)

ktlogt ¢Sy u, logu,

From the fact that :tld—tt =oo0 and from (4), (5), and (6) one gets
1 tlog

SP(Y (u) <(1+2) A (1)) ==

k=

LN

Observe that (Y (uk)) is a sequence of mutually independent random va-
riables (for, U, =U, +8, ) and by applying Borel-Cantelli lemma, we get

P(Y (u)<(1+£)4,(u,) in)=1

which establishes (3).
Now we complete the proof by showing that, for any ¢ €(0,1),

P(Y(t)<(1-¢)4,(t) io)=0. 7)
Define a subsequence (1, ), such that
8, = (to—t)/(logt ) k=12, 8)
and the events A and B, as
A=Y (1)<(1-£), (1)
and

B, ={t inf Y(t)g(l—s)/lﬂ(tm)}, k=12

KSt<tia

Note that
(A i.O.,'[—><>o)C(Bk i.O.,k—)oo).

Further, define
Co={X (b +a, )= X (ta) < (1-2) A, (t.0)}

and observe that

(Bk io.,.k— oo) c (Ck i.0., k —)oo).

Hence in order to prove (7) it is enough to show that
P(Ck i.o.):O. 9)

We have

%%
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P<X<tk+%>X<tk+1><<1svﬂ(tm)f[xmf %}

and
(1—5)/1,5 (t)
Ya
(atk + _tk+1)

Ya B 1-f
t.., (logt lo
:(1_5)@[—3%} Iog[k”( gmi( 92,)

(a-1)/a

k

The fact that @/t is non-increasingas t — oo implies that

a,, & 3

kil <% gor kil < tk+1
t t, ark t,

Hence for a given & >0 satisfying (1-¢)(1+ gl)l/a <1, there exists a k,
such that

a‘k+1/atk S(l-{—gl), for all kaz,
Let (1—8))(1+61)1/a:(1—52).Then,for k>Kk,,
t » (a-1)/
P(C)=P x(1)3(1—62)%['Ogﬂ(logtku)ﬁ(logaw) ] .
k+1

From lemma 1, we can find a k; (2 kz) such that for all k >k,,

tk+l s "’ 75
p(ck)gcl Iog—(|09tk+1) (IOgatku)

k+1

k

X eXp {(1— &, )a/(H) (Iog t;t—*l(log te.) (Iog a,, )M J} :

where ¢, isa positive constant.
Let (1-¢, )a/(a_l) =(1+¢&), & >0. Then,forall k=>k;,

-2 (1+&3)
t B atk+1
P(C/)<c (Iog ;:1 (logt,,, )ﬂ (Iog a, ., )l ﬂ] (t—j
K k

—(1+&3)

(( logt, ., )ﬂ (|09 a,, )1_ﬂ )
Since

(3, /ten) ™ < (3, t) " <3/,

then from (8) and for all k >Kk;, we have

t - e a, 15\ ()
P(Ck)scl[logat—k(logtk)ﬁ(logatk) ] ( kj((logtk)ﬁ(logatk) ) .

K b

<3
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t

-1/2
P(Ck)sq(log;—k(logtk)ﬂ(loga[k)1"] {tm—tk]
k

Observe that
e § e,
“t(logt)" it (logt, )"
and
(bea=t) (bt
tes (logt,)"™  t (logt )"
Hence

(tk+1 - tk ) — <o
kky tk (Iog tk )(1+as)

Now we get Z:;MP (C,) <0, which in turn establishes (9) by applying to the

Borel-Cantelli lemma. The proof of Theorem 3 is complete.

3. Conclusion

In this paper, we developed some limit theorems on increments of stable subor-
dinators. We reformulated the result obtained by Vasudeva and Divanji [3], and

established our result by using 4, (t).
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