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Abstract 
We investigate the metal-insulator transition in quasi-one-dimensional or-
ganic crystals of tetrathiotetracene-iodide, TTT2I3, in the 2D model. A crystal 
physical model is applied which takes into account two the most important 
hole-phonon interaction mechanisms. One is similar to that of deformation 
potential and the other is of polaron type. The scattering on defects is also 
considered and it is crucial for the explanation of the transition. The phonon 
polarization operator and the renormalized phonon spectrum are calculated 
in the random phase approximation for different temperatures applying the 
method of Green functions. We show that the transition is of Peierls type. The 
effect of lattice distortion on the dispersion of renormalized acoustic phonons 
is analyzed. 
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1. Introduction 

Quasi-one-dimensional (Q1D) organic crystals of tetrathiotetracene-iodide, 
TTT2I3, were synthesized independently and nearly simultaneously [1] [2] [3] [4] 
with the aim to find superconductivity in a low dimensional conductor. Howev-
er, these crystals with rather high electrical conductivity near room temperature, 
at low temperature showed a transition into a dielectric state. Such transition has 
firstly observed in the Q1D charge transfer compound TTF-TCNQ (tetrathia-
fulvalene-tetracyanoquinodimethane) [5] [6] and was the first experimental con-
firmation of the structural transition, predicted earlier by Peierls [7] in 1D con-
ductors.  
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TTT2I3 is also a charge transfer compound. The orthorhombic crystal struc-
ture consists of segregated chains or stacks of plane TTT molecules and of iodine 
chains. The lattice constants are a = 18.40 Å, b = 4.96 Å and c =18.32 Å, which 
demonstrates a very pronounced crystal quasi-one-dimensionality. The highly 
conducting direction is along b. The compound is of mixed valence. Two mole-
cules of TTT give one electron to iodine chain formed of 3I

−  ions that play the 
role of acceptors. Only TTT chains are conductive and the carriers are holes. The 
electrons on iodine ions are in a rather localized states and do not participate in 
the transport. In the crystals grown by sublimation of TTT and iodine in an inert 
gas flow [3] the room electrical conductivity σ along b direction achieves (103 - 
104) Ω−1∙cm−1, but in those grown from solution [1] [2] σ ~ (800 - 103) Ω−1∙cm−1. 
Such variation in σ of crystals, grown in different laboratories, shows that the 
conductivity properties of TTT stacks are highly sensitive to defects and impuri-
ties. It is caused by the purity of initial materials and the conditions of crystal 
growth. In all crystals, with the lowering of temperature the conductivity firstly 
grows, reaches a maximum after that falls. The temperature of the maximum, 
Tmax, and the value of the ratio σmax/σ300 depends on the iodine content. Crystals 
with a surplus of iodine, TTT2I3.1, have Tmax ~ (34 - 35) K and very sharp fall of 
σ(T) after the maximum. 

The aim of present paper is to demonstrate that this sharp decrease of σ(T) is 
determined by the Peierls structural transition in the TTT chains. At our know-
ledge, the Peierls transition in TTT2I3 was not studied neither theoretically, nor 
experimentally. It is known that the Peierls structural transition is connected by 
the competition of two processes that take place, when the temperature is de-
creased. From one side, it is favorable that the lattice distorts because this dimi-
nishes the electronic energy of the crystal, lowering the Fermi energy. However, 
this distortion increases the lattice elastic energy. At some temperature, named 
the Peierls critical temperature Tp, when the first process prevails over the 
second one, a Peierls structural transition takes place. 

The Peierls structural transition has been studied in many Q1D crystals 
[8]-[14]. In TTF-TCNQ crystals, the transition takes place at 54 K into TCNQ 
stacks and at 38 K into TTF stacks with the opening of respective band gaps in 
the electronic spectrum above the Fermi energy and a strong diminution of elec-
trical conductivity. We have also studied the transition at 54 K in a more com-
plete physical model [15] [16]. With the lowering temperature, some modifica-
tions in the phonon spectrum take place [17] [18], and at some temperature, the 
renormalized phonon frequency becomes equal to zero for a given value of the 
phonon wave vector. At this temperature the Peierls transition occurs.  

Note that earlier the crystals of TTT2I3 have been investigated as good candi-
dates for thermoelectric applications [19] [20]. It was predicted [21] [22] that af-
ter optimization of the carrier concentration in such crystals values of dimen-
sionless thermoelectric figure of merit~4 could be realized. However, not all pa-
rameters of these crystals are determined experimentally. Other aim of present 
paper is to use the investigation of the Peierls transition in order to determine 
more precisely some parameters of TTT2I3.  
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We will apply a more complete crystal model [23] [24], which takes into ac-
count two the most important hole-phonon interactions. The first interaction is 
similar to that of deformation potential and is determined by the variation of the 
transfer energy of a carrier from one molecule to the nearest one, caused by 
acoustic lattice vibrations. Other interaction is of polaron type and is determined 
by the variation of the polarization energy of molecules surrounding the con-
duction electron caused by the same acoustic vibrations. The scattering on 
structural defects is also taken into account. We show that the Peierls structural 
transition explains the sharp decrease of electrical conductivity in TTT2I3 at low 
temperature. The dispersion of renormalized phonons and the Peierls critical 
temperature are determined. For the simplicity, we consider the 2D physical 
model. 

2. The Physical Model 

We apply the two-dimensional physical model described in [16] for TTF-TCNQ 
crystals, considering the interchain interaction in the plane of TTT stacks small. 
The Hamiltonian of the crystal in the tight binding and nearest neighbor ap-
proximations has the form: 

( ) ( ) ( )
,

,H a a b b A a a b bε ω+ + + +
− −= + + +∑ ∑ ∑k k q q q k k q q q

k q k q
k k q�       (1) 

where the first term is the energy operator of free holes in the periodic field of 
the lattice, ( )a a+

k k  are the creation and annihilation operators of such hole 
with a two-dimensional wave vector k and projections (kx, ky). The energy of the 
hole ( )ε k , measured from the top of conduction band, has the form: 

( ) ( ) ( )1 22 1 cos 2 1 cosx yw k b w k aε = − − − −k               (2) 

Here 1w  and 2w  are the transfer energies of a hole from one molecule to 
another along the chain (x direction) and in perpendicular direction (y direc-
tion). In Equation (1) ( )b b+

q q  are creation and annihilation operators of an 
acoustic phonon with two-dimensional wave vector q and frequency ωq . The 
second term in the Equation (1) is the energy operator of longitudinal acoustic 
phonons, 

( ) ( )2 2 2 2 2
1 2sin 2 sin 2 ,x yq b q aω ω ω= +q                  (3) 

where 1ω  and 2ω  are limit frequencies for oscillations in x and y directions. 
The third term in Equation (1) represents the hole-phonon interactions. As it 
was mentioned above, two interaction mechanisms are considered: the first is 
similar to that of deformation potential and the second is of polaron type. The 
coupling constants of the first interaction are proportional to the derivatives 1w′  
and 2w′  of 1w  and 2w  with respect to the intermolecular distances. The 
coupling constant of second interaction is proportional to the average polariza-
bility of the molecule 0α . This interaction is important for crystals composed of 
large molecules as TTT, so as 0α  is roughly proportional to the volume of mo-
lecule.  
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The square module of matrix element ( ),A k q  from Equation (1) can be 
written in the form: 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) }

1 22 2
1 1

22
2

, 2 sin sin , sin

sin sin , sin

x x x x

y y y y

A w NM k b k q b q b

d k a k q a q a

ω γ

γ

−
′  = − − − 

 + − − − 

qk q �
  (4) 

where M is the mass of the TTT molecule, N is the number of molecules in the 
basic region of the crystal, 2 1 2 1d w w w w′ ′= = , the parameters γ1 and γ2 have 
the sense of the amplitudes ratio of the second hole-phonon interaction to the 
first one along chains and in the transversal direction: 

2 5
1 0 12e b wγ α ′= ; 2 5

2 0 22e a wγ α ′=                 (5) 

The analysis shows that the Hamiltonian from the Equation (1) can not ex-
plain the sharp decrease of electrical conductivity for temperatures lower than 
Tmax = 35 K, even, when we vary the crystal parameters and consider only the 
first interaction mechanism. It is necessary to take into account also the dynam-
ical interaction of carriers with the defects. The static interaction will give con-
tribution to the renormalization of hole spectrum. The defects in TTT2I3 crystals 
are created due to different coefficients of dilatation of TTT and iodine chains. 
The Hamiltonian of this interaction defH  is presented in the form: 

( ) ( ) ( )
, 1

exp
dN

def x x n
n

H B q iq x a a b b+ +
− −

=

= − +∑∑ k k q q q
k q

          (6) 

Here ( )xB q  is the matrix element of the hole interaction with a defect, 

( ) ( ) ( )2 ,x q xB q NM I qω= ⋅�  where ( )xI q  is the Fourier transformation of  

the derivative with respect to intermolecular distance from the energy of interac-
tion of a carrier with a defect, nx  numbers the defects, which are considered li-
near along x-direction of TTT chains and distributed randomly.  

( ) ( )( )2
sinx xI q D bq=  

where the constant D = 1.05 and determines the intensity of hole interaction 
with a defect.  

In order to investigate the Peierls transition, the method of temperature de-
pendent retarded Green functions is applied [25]. The retarded Green functions  
for lattice displacements ( ) 2u b b+

−= +q q q  are determined as: 

( ) ( ) ( ) ( ) ( ) ( )1, ; ,
r

D t t u t u t i t t u t u tθ−′ ′ ′′ ′ ′ ′= ≡ − − −qq q q q q�     (7) 

where ( ) ( );
r

u t u t′ ′q q  is abbreviated notation of retarded Green function, 
...  indicates an average over a grand canonical ensemble from Equation (1), 
( ) ( ),u t u t′ ′q q -are operators in Heisenberg representation, ( ) 1tθ =  when 0t >  

and ( ) 0tθ =  when 0t < . 
The equation of motion for the operator uq is deduced as follows: 

( ) ( ) ( ) ( )
2

22
2

d
2 ,

d x

u
i u A B q a a

t
ω ω +

+ = + ⋅ − + ∑q
q q q k k q

k
k q� � �    (8) 
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On the base of Equation (8), one can obtain the first equation for the Green 
function ( ),D t t′ ′qq : 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

22
2

d ,
, 2 , ;

d x

D t t
i D t t A B q a a u t

t
ω ω′ +

′ ′+

′
′ ′ = + ⋅ − + ∑qq

q qq q k k q q
k

k q� � �  (9) 

Further, one can obtain the equation of motion for the new Green function 

( );a a u t+
′+ ′k k q q , which will contain new Green functions of higher order of 

the type ( ) ( );a a u t u t+
′′ ′′ ′− + − ′k q k q q q  etc. We obtain an infinite chain of equa- 

tions. In order to cut up the chain, let’s consider that the hole-phonon interac-
tion is weak and express the three-particle Green function through the one-par- 
ticle Green function as follows 

( ) ( ) ( ),; ,a a u t u t a a D t tδ+ +
′′ ′′ ′ ′′ ′− + − + + −′ ′≈k q k q q q k q k q q q qq       (10) 

Thus, a closed equation for the function ( ),D t t′ ′qq  is obtained that corres-
ponds to the random phase approximation. 

Now it is conveniently to pass to Fourier transformation of the function 
( )D t t′ ′−qq  after t t′− : 

( ) ( ) ( ) ( )( ); d exp
E

D t t u t u t E u u iE t t
+∞

′ ′ ′
−∞

′ ′ ′− = = − −∫qq q q q q �  (11) 

As a result, it follows: 

( )
( ) ( )

22
,π

2 , ; .

E E

x E

E u u u u

A B q a a u

ω
δ ω

ω

′ ′ ′−

+
′+

= +

 + ⋅ − + ∑

q
q q q q q q q

q k k q q
k

k q

�
�

�
  (12) 

where  

( ) ( ) ( )
( ) ( )

0 02 ,
; .x

E E

A B q n n
a a u u u

E ε ε
++

′ ′+

 − + − =
+ − +

k k q
k k q q q q

k q
k k q

  (13) 

From Equations (12) and (13) it results the expression for the Fourier trans-
formation of the lattice displacement Green function  

( )
( ) ( ) ( )

( ) ( )

22 0 0
22

,

,
2 .

π
x

E

A B q n n
E u u

E
ω

ω ω δ
ε ε

+

′ ′−

  − + −   − − = + − +  

∑
k k q q

q q q q q q
k

k q

k k q
�

� �  (14) 

In order to distinguish the retarded Green function it is needed to put, 

, 0E iδ δ += Ω + →� , then the pole of 
E

u u ′q q  determines the real and im- 

aginary part of the renormalized lattice frequency. 

( ) ( ) ( )
( ) ( )

22 0 0

2 2
,4 xA B q n n

i
ω

ω
ε ε δ

+
 − + −  Ω = +

− + + Ω +∑
k k qq

q
k

k q

k k q� �
       (15) 

The real part of Equation (15) will determine the renormalized lattice fre-
quency Ω(q), as the solution of the transcendent equation 

( ) ( ) 1 2
1 , ,ωΩ = −Π Ω  qq q                 (16) 
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where the principal value of the dimensionless polarization operator takes the 
form: 

( )
( ) ( ) ( )

( ) ( )

22
,4Re , .

xA B q n n

ω ε ε
+

 − + −  Π Ω = −
− + + Ω∑

k k q

kq

k q
q

k k q� �
    (17) 

Here, ( ) 2
,A −k q  and ( ) 2

xB q  are, respectively, the square module of ma- 

trix elements of the hole-phonon interaction from Equation (4), and of hole in-
teraction with defects from Equation (6), the nk  is the Fermi distribution func-
tion. The Equation (16) can be solved only numerically.  

3. Results and Discussions 

Computer simulations are performed for the following parameters [20]: M = 6.5 
× 105 me (me is the mass of the free electron), w1 = 0.16 eV, 1w′  = 0.26 eV∙Å−1, a 
= 18.35 Å, b = 4.96 Å, c = 18.46 Å. The sound velocity at low temperatures is vs1 
= 1.5·105 cm/s along chains (in b direction), d = 0.015, γ1 = 1.7, and γ2 is deter-
mined from the relations: γ2 = γ1b5/(a5d). For vs2 in a transversal (in a direction) 
we have taken 1.35 × 105 cm/s. 

Figures 1-4 present the dependences of renormalized phonon frequencies 
Ω(qx) as functions of qx for different temperatures and different values of qy . In 
the same graphs, the dependences for initial phonon frequency ω(qx) are pre-
sented too. It is seen that the values of Ω(qx) are diminished in comparison with 
those of frequency ω(qx) in the absence of hole-phonon interaction. This means 
that the hole-phonon interaction and structural defects diminish the values of 
lattice elastic constants. Also, one can observe that with a decrease of tempera-
ture T the curves change their form, and in dependencies Ω(qx) a minimum ap-
pears. This minimum becomes more pronounced at lower temperatures. 

Figure 1 shows the case, when qy = 0. In this case the interaction between 
TTT chains is neglected. The Peierls transition begins at T = 35 K. At this tem-
perature, the electrical conductivity is strongly diminished, so as a gap in the 
carrier spectrum is fully opened just above the Fermi energy. In addition, it is  
 

 
Figure 1. Renormalized phonon spectrum Ω(qx) for γ1 = 1.7 and different temperatures. 
The dashed line is for the spectrum of free phonons. In this case qy = 0. 
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Figure 2. Renormalized phonon spectrum Ω(qx) for γ1 = 1.7 and different temperatures. 
The dashed line is for the spectrum of free phonons. The case of qy = π/4. 
 

 
Figure 3. Renormalized phonon spectrum Ω(qx) for γ1 = 1.7 and different temperatures. 
The dashed line is for the spectrum of free phonons. The case of qy = 2kF. 
 

 
Figure 4. Renormalized phonon spectrum Ω(qx) for γ1 = 1.7 and different temperatures. 
The dashed line is for the spectrum of free phonons. The case of qy = π. 
 
seen that the slope of Ω(qx) at small qx is diminished in comparison with that of 
ω(qx). This means that the hole-phonon interaction and structural defects have 
reduced also the sound velocity in a large temperature interval. When the inte-
raction between transversal chains is taken into account (qy ≠ 0), the tempera-
ture when Ω(qx) = 0 is diminished. 
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Figure 2 shows Ω(qx) for qy = π/4 and different temperatures. One can see 
that Ω(qx) attains zero at T ~ 30 K. Figures 2-4 correspond to the 2D physical 
model, qy ≠ 0. 

When qy = 2kF (Figure 3), the temperature, when Ω(qx) = 0, decreases addi-
tionally and has the value of T = 21 K.  

Figure 4 shows the dependences of Ω(qx) on qx for qy = π and different tem-
peratures. It is observed that the temperature, when Ω(qx) = 0, decreases still 
more and equals T = 19 K, thus, our calculations show that at this temperature 
the Peierls transition is finished. A new superstructure must appear. Unfortu-
nately, at our knowledge, such experiments were not realized. It would be inter-
esting to verify experimentally our conclusions. As it is seen from [3], at T = 19 
K, the electrical conductivity is strongly reduced, but achieves zero at T = 10 K. 
This can be explained by further increase of the gap above the Fermi level, when 
the temperature decreases from 19 K to 10 K. The existence of an energy gap 
above the Fermi energy at temperatures higher than that of phase transition have 
been observed in crystals of tetramethyl tetrathiafulvalene [26], which have sim-
ilar to TTT2I3 temperature dependence of electrical conductivity. 

Figure 5 and Figure 6 show the dependencies of the real part of dimension-
less polarization operator ( )Re ,xqΠ Ω  as function of qx for different values of 
qy and different temperatures at Ω = 0. In Figure 5, it is presented the case, when 
qy = 0, and the interaction between TTT chains is not taken into account. It is 
observed a peak near the value of unity. This means that the Peierls transition 
begins at T = 35 K. 

In Figure 6 it is presented the same dependence of polarization operator as 
function of qx, but for qy = π. From this graph it is observed that, when the inte-
raction between TTT chains is taken into account, the Peierls critical tempera-
ture decreases and transition is finished at T = 19 K. 

4. Conclusion 

We have investigated the behavior of phonons near Peierls structural transition 
in quasi-one-dimensional organic crystals of TTT2I3 (tetrathiotetracene iodide)  
 

 
Figure 5. Polarization operator as function of qx for qy = 0 and T = 35 K. 
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Figure 6. Polarization operator as function of qx for qy = π and T = 19 K. 

 
type in 2D approximation. A more complete crystal model is applied which 
takes into account two the most important hole-phonon interactions. One inte-
raction is of deformation potential type and the other is similar to that of pola-
ron. The ratios of amplitudes of second hole-phonon interaction to the first one 
along chains and in transversal direction are noted by γ1 and γ2, respectively. 
The interaction of holes with the structural defects in direction of TTT chains is 
taken into account too. Analytical expression for the polarization operator was 
obtained in random phase approximation. The method of retarded temperature 
dependent Green function is applied. The numerical calculations for renorma-
lized phonon spectrum, Ω(qx), for different temperatures are presented in two 
cases: 1) when qy = 0 and the interaction between transversal chains is neglected 
and 2) when qy ≠ 0 and interactions between the adjacent chains are considered. 
It has been established that Peierls transition begins at T ~ 35 K in TTT chains 
and reduces considerably the electrical conductivity. Due to interchain interac-
tion the transition is finished at T ~ 19 K. It is demonstrated that the hole-phonon 
interaction and the interactions with the structural defects diminish Ω(qx) and 
reduce the sound velocity in a large temperature interval. 
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