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Abstract 
A simplified model is proposed for an easy understanding of the coarse- 
grained technique and for achieving a first approximation to the behavior of 
gases. A mole of a gas substance, within a cubic container, is represented by 
six particles symmetrically moving. The impacts of particles on container 
walls, the inter-particle collisions, as well as the volume of particles and the 
inter-particle attractive forces, obeying a Lennard-Jones curve, are taken into 
account. Thanks to the symmetry, the problem is reduced to the nonlinear 
dynamic analysis of a SDOF oscillator, which is numerically solved by a step- 
by-step time integration algorithm. Five applications of proposed model, on 
Carbon Dioxide, are presented: 1) Ideal gas in STP conditions. 2) Real gas in 
STP conditions. 3) Condensation for small molar volume. 4) Critical point. 5) 
Iso-kinetic energy curves and iso-therms in the critical point region. Results of 
the proposed model are compared with test data and results of the Van der 
Waals model for real gases. 
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1. Introduction 

Recently, in Computational Chemistry, the coarse-grained molecular dynamics 
technique is often used, by which millions of molecules are represented by a few 
hundred particles [1]-[13]. For example, if a mole of a gas substance is simulated 
by a thousand particles, by use of Avogadro number, it is noticed that every par-
ticle represents about 6 × 1020 molecules. By this technique, the computational 
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handling of chemical problems becomes possible and usually a satisfactory ap-
proximation to observed behavior is achieved. 

If we consider an amount of a gas substance, represented by a few particles, 
first in a large container (Figure 1(a)) and then in a small container (Figure 
1(b)), the following two observations can be made [14]: 
1. In the large container of Figure 1(a), the volume of particles is not significant, 

compared with the volume of the container. On the contrary, in the small 
container of Figure 1(b), the volume of particles is significant. 

2. In the large container of Figure 1(a), the mean distance between a couple of 
particles is large, so, as well known from Physical Chemistry [14] and de-
scribed by Lennard-Jones curve [15], the inter-particle attractive forces result 
small up to negligible. On the contrary, in the small container, the mean dis-
tance, between a couple of particles, is small, so the inter-particle attractive 
forces exhibit significant values. 
For the above two reasons, for a quite large molar volume, as in Figure 1(a), 

the volumes of particles and the inter-particle attractive forces can be ignored. 
So, the amount of gas substance under consideration obeys the ideal gas laws. 

On the contrary, for a small molar volume, as in Figure 1(b), the particles 
volumes and the inter-particle attractive forces must be taken into account. That 
is, we have a real gas, which significantly deviates from the behavior of ideal 
gases. 

J. D. van der Waals [16], by taking into account the molecular volumes and 
the inter-molecular attractive forces, developed a semi-rational, semi-empirical 
model, which is simple and exhibits a satisfactory approximation to the observed 
behavior of real gases. 

The kinetic behavior of gases, ideal and real ones, is often described by the 
Maxwell-Boltzmann stochastic model [17]. The stochastic models are accurate 
but complicated. On the other hand, they obey some required symmetries. And 
it is recognized [18] [19] that, alternatively to a stochastic model, a symmetric 
deterministic model can be used, which is much simpler, but usually exhibits sa-
tisfactory approximation to test data. 
 

 
(a)                                  (b) 

Figure 1. An amount of a gas substance, represented by a few particles. (a) In a large 
container; (b) In a small container. 
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Also, a very coarse-grained model can be used, that is consisting of very few, 
very large particles. This is similar to the concept of fundamental vibration mode 
of structural dynamics. Where there exist a lot of high vibration modes (with 
small periods and usually small amplitudes, too), which are of negligible interest, 
but complicate the computation and require a very small time steplength. Whe-
reas, the fundamental vibration mode is the simplest mode and, at the same 
time, the most representative of the dynamic behavior of the structure. 

In the present work, such a symmetric deterministic model is proposed for 
real gases, which is very coarse-grained, that is, it consists of very few - very large 
particles, and is compared to corresponding test data [14] [20], as well as to re-
sults of the Van der Waals model [14] [16] for real gases. 

In the recent literature on the coarse-grained technique [1]-[13], advanced 
models are proposed, for the accurate description of the behavior of real mate-
rials, which can be used in the Design. Whereas, the proposed here simplified 
model, aims to an easy understanding, of the coarse-grained technique, by re-
searchers of other than Chemistry fields and to a first approximation to the be-
havior of gases. 

2. Proposed Model 

A mole of a gas substance is considered, within a cubic container of side L 
(Figure 2), represented by six equal spherical particles, each one with mass m = 
M/6, where M molar mass. A reference axes system Ixyz is considered, with ori-
gin I at the center of cube and the axes x, y, z parallel to the principal directions 
of cube. The centers of the six particles are located on the axes x, y, z, initially at 
the middles of distances of I from the centers of six faces of cube, that is they 
have initial coordinates 0 0 0 4x y z L= = = ±  (Figure 2).  

We assume that the six particles move symmetrically. So, by considering the 
plane Iyz (Figure 3(a)), what happens in this plane, the same happens in the 
planes Ixy, Ixz, too. 
 

 
Figure 2. Initial positions , ,o o ox y z  of the six particles of proposed model in the cubic 
container of side L. 
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(a)                     (b)                   (c)                  (d) 

Figure 3. The three successive characteristic states of the particles of proposed model, 
within the plane Ixy (a) of the container; (b) Initial state; (c) Impacts of particles on con-
tainer walls; (d) Inter-particle collisions in the central region of the container. The arrows 
represent instantaneous velocities of the particles. 
 

The particles are initially provided with equal speeds directed outwards. And 
they pass successively through three characteristic states: 1) Initial state (Figure 
3(b)). 2) Impacts of particles on container walls (Figure 3(c)), where their 
speeds are inversed. 3) Inter-particle collisions, in the central region of the con-
tainer, where again their speeds are inversed. 

Obviously, all the six particles, as they move symmetrically, they pass simul-
taneously from the above three characteristic states. 

The mutual repulsive forces F between a particle and a container wall (Figure 
4(a)) are described by the repulsive part of a Lennard-Jones curve [14] [15] 
(Figure 4(b)). If the perpendicular distance   of the center of particle from 
container wall is quite large: 

1.1225 2D≥  

where D diameter of particle and 61.1225 2= , then 

0,F =  

that is no force F is developed between the particle and the wall. 
On the contrary, if   is quite small: 

1.1225 2,D<  

a mutual repulsive force F is developed between particle and wall, given by the 
equation (Figure 4(b)): 

0 13 7
2 1F F

r r
 = − + 
 

                     (1) 

where 
2

r
D

=
  and the determination of force coefficient F0 of Lennard-Jones 

curve is described in the following Section 4.1. 
The mutual forces F, attractive or repulsive, between any couple of particles, 

with a distance   of their centers (Figure 5(a)), are described by the Len-
nard-Jones curve of Figure 5(b). In Figure 5(c) is shown enlarged the attractive 
part of this Lennard-Jones curve, because of the significance of attractive forces. 

For any distance   of the centers of two particles, their mutual force F is 
given by the following equation, corresponding to the Lennard-Jones curves of 
Figure 5(b) and Figure 5(c):  
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(a)                                   (b) 

Figure 4. (a) Perpendicular distance   of a particle from container wall and mutual re-
pulsive force F between particle and wall; (b) Repulsive part of a Lennard-Jones curve de-
scribing the function ( )F 

. 

 

 
Figure 5. (a) Distance   and mutual inter-particle force F, attractive (+) or repulsive 
(−), between a couple of particles; (b) Lennard-Jones curve describing the function 
( )F 

; (c) The Lennard-Jones curve with enlarged its attractive part. 

 

0 13 7
2 1 ,F F

r r
 = − + 
 

                    (2) 

where .r D=   
Thanks to the symmetrical movement of all the six particles, it is enough to 

study the movement of only one particle, let choose that on right part of axis Iy 
of Figure 2 and name it R (right), as shown in Figure 6. If the distance of this 
particle from container wall at right is quite small 1.1225 2y D′ = < , then the 
mutual particle-wall repulsive force is activated, according to Figure 4 and equ-
ation (1), and let call this force Fw.  

At left of Figure 6, the particle R interacts with the other five particles of the 
model. The relative position of point R under consideration with respect to four 
of these particles, F, B, O, U (front, back, over, under) is symmetric. So, the ho-
rizontal resultant F4 of the four equal forces (attractive or repulsive), by which 
the points F, B, O, U act on point R is, according to Figure 5 and Figure 6 and 
Equation (2): 

(a)

(b)

(c)
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Figure 6. The particle R under consideration is moving on axis Iy. At right, it reaches up 
to impact with container wall. At left, it interacts with all the other five particles: (F, B, O, 
U) and L. 
 

4 0 13 7
2 14 0.7071 ,F F

r r
 = × − + 
 

               (3) 

where r D=   and 0.7071y D= . 
Finally, the left particle L acts on particle R, by an, always attractive, force F



, 
which is given by Figure 5 and Figure 6 and Equation (2), with 2y= . 

So, the horizontal force on particle R, due to inter-particle action, is 

4iF F F= +


 

and the total horizontal force on particle R, due to inter-particle action and im-
pact on wall is,  

R i wF F F= +  

and the acceleration of particle R, under consideration, is, at any instant,  

( )i wF F mγ = + . 

3. Step-by-Step Algorithm 

It has been described, in the previous Section 2, how the proposed model is re-
duced, thanks to the symmetric movement of its six particles, to the study of the 
movement of the single particle R (Figure 6). So, the problem is reduced to the 
nonlinear dynamic analysis of a SDOF (single degree of freedom) oscillator, 
which can be solved numerically by a step-by-step time integration algorithm. 

For this purpose, the algorithm of trapezoidal rule (or Newmark algorithm of 
constant average acceleration) is chosen, combined with a predictor-corrector 
technique, with two corrections per step [21], which has been proved simple and 
effective. 
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3.1. Flow-Chart 

The flow-chart of the proposed algorithm is shown in Figure 7 and is briefly 
described below. 

First, the constant input data are read: particle mass m and diameter D, force 
coefficient oF  of L-J (Lennard-Jones) curve, side L of cubic container, time 
step-length t∆  of the algorithm. 

The initial conditions are read: position y, temperature T and speed v of the 
particle R under consideration. The initial speed v results from initial tempera-
ture T, by a thermodynamic postulate, which will be described in following sec-
tion 4.1. 

The subroutine L-J (Lennard-Jones) is called, which, from the initial position 
y of the particle, determines the initial forces iF  and wF , acting on it, and its 
initial acceleration ( )i wF F mγ = + . 
 

 
Figure 7. Flow-chart of the proposed step-by-step time integration algorithm. 
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Within each step of the algorithm, first the steps counter n is increased by 1 
and time t by t∆ . 

Then, the prediction is performed, which determines the predicted values 
,p py v  of state variables and the subroutine L-J is called, which, from the given 

py  determines the predicted acceleration pγ .  
The first correction, by trapezoidal rule, determines the first corrections 

1 1,y v  of the state variables. The subroutine L-J, from 1y , finds the first correc-
tion of acceleration 1γ . 

The second and final correction finds the final values of ,y v , for present step, 
and the subroutine L-J, from y, determines the final forces iF , wF  and accele-
ration γ , for present step. 

The output, of present step of algorithm, is printed: steps counter n, time t, 
position y and speed v of the particle, forces iF  due to inter-particle action and 

wF  due to impact on wall, instantaneous total kinetic energy, for all six particles 
2. . 1 2K E Mv= , where M = 6 m. 

At the end of step of algorithm, three summations are made: The present force 

iF , due to inter-particle action, is summed to iF∑ . The present wF , due to 
impact on wall is summed to wF∑ . The present second power of speed 2v  is 
summed to 2v∑ . 

Then, if the first cycle of oscillation has not yet been completed, we continue 
with the next step of the algorithm.  

When the first cycle of oscillation is completed, by returning to the initial state, 
if we continued the algorithm, everything would be repeated the same, with only 
a small algorithmic damping. So, the algorithm is interrupted and the global 
output data are printed, which are:  
1) Mean inter-particle force i iF F n= ∑ . 
2) Mean particle-wall impact force w wF F n= ∑ .  

It results i wF F≈ − , as is due for global equilibrium. 

3) Pressure on wall 2
wP F L= , in Pascals = N/m2, which, divided by 101,325 

N/m2, turns to atm units. 

4) Mean 2nd power of speed 2 2v v n= ∑ , and mean (rms) speed ( )1 2
2 ,v v=  

which, for small molar volumes, results significantly lower than the initial 
speed.  

5) Mean total kinetic energy 21. .
2

K E M v=  in Joules = N⋅m. 

3.2. Computer Program 

Based on the step-by-step time integration algorithm, described in the previous 
section 3.1. and the flow-chart of Figure 7, a simple and short computer pro-
gram has been developed, with only about 45 Fortran instructions for the main 
program of step-by-step algorithm and only about 25 Fortran instructions for 
the L-J (Lennard-Jones) subroutine, that is totally only about 70 Fortran instruc-
tions. 
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The program is written in the version Force 2.0 of Fortran, whose compiler is 
free available, even in Internet cafés. 

4. Applications 

The proposed simplified coarse-grained dynamic model for real gases is applied 
on Carbon Dioxide (CO2), which exhibits a particular behavior in Critical point 
region, as it condensates for rather high temperatures, slightly lower than 

31 C 304 KT = = . 
From the next Section 4.1, it is apparent that, in order to calibrate the pro-

posed model on other gases, the following data are required: molar mass, in-
compressibility limit of molar volume, as well as temperature, pressure and mo-
lar volume at the Critical Point. 

4.1. Determination of Parameters 

The numerical values of parameters of proposed model are determined below, 
which will be used in the following applications: 
1) The mass of a particle is 6 0.044 kgr 6 0.007333 kgrm M= = = , where M = 

0.044 kgr is the molar mass of Carbon Dioxide. 
2) The diameter D of a particle is determined on the basis of criterion of in- 

compressibility of closely-packed equal spherical particles, as shown in Figure 
8. According to experimental evidence [14] [16] [20], the in-compressibility 
limit of molar volume, for Carbon Dioxide, is about V = 50 cm3, which cor-
responds to a cubic container with side L = 3.684 cm. In Figure 8, the spheri-
cal particles of proposed model are shown, closely -packed in such a small 
container. The inter-particle distances are 1.1225D and the particle-wall dis-
tances are 1.1225D/2, as, for smaller distances, mutual repulsive forces begin 
to develop (see Figure 4 and Figure 5). So, on the basis of configuration of 
Figure 8, the following inequality must be valid: 

( )0.7071 0.5 1.1225 3.684 cm 2D + × <  

from which 
1.3594 cmD <  

and a value D = 1.35 cm is chosen. 
 

 
Figure 8. Closely-packed particles of proposed model, in a small container, in the limit of 
in-compressibility of Carbon Dioxide, according to experimental evidence [14] [16] [20]. 
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3) The force coefficient oF  of Lennard-Jones curve (Equations (1) and (2)) is 
determined by calibration of proposed model on the Critical point of Carbon 
Dioxide. For a cubic container with the critical volume 394 cmcV = , that is 

4.55 cmcL =  and for the critical temperature 31 C 304 KcT = = , according 
to test data [14] [16] [20], various values of oF  are tried, until to achieve a 
value of pressure, with satisfactory approximation to the experimental critical 
pressure of CO2, 72.8 atmcP = . In this way, a value 675 kNoF =  is obtained. 
Application on Critical point is described in Section 4.5. 

4) For the side L of cubic container, in STP (standard temperature-pressure) 
conditions, the value 28.195 cmL =  is chosen, which corresponds to a vo-
lume V = 22.414 liters. And, in the Critical point region of CO2, values of L 
ranging from 4.0cm up to 9.0 cm are used, which correspond to container vo-
lumes V = L3 ranging from 64 cm3 up to 729 cm3. 

5) The time step-length t∆  of the proposed step-by-step integration algorithm 
can be determined on the basis of the accuracy criterion of the algorithm [21], 

max 0.5 radtω ∆ <  

where 2
max maxK mω = . 

A maximum stiffness maxK  appears in two cases: inter-particle collision 
(Figure 5 and Figure 6 and Equation (3)) and particle-wall impact (Figure 4 
and Equation (1)). By linearization of branch AK in the Lennard-Jones curves in 
Figure 4(b) and Figure 5(b), the stiffness of the above two cases can be deter-
mined on the basis of Figure 9(a) and Figure 9(b), respectively. It is observed 
that both give the same value of stiffness, represented by Figure 9(c), which is 

6 2
max

2 675 kN2 0.1225 816.4 10 kgr sec
0.1225 0.0135 cmoK F D ×

= = = ×
×

  

So,  
6 2

2 11 2 2max
max

816.4 10 kgr sec 1.113 10 rad sec ,
0.007333 kgr

K
m

ω ×
= = = ×  

max 333700 rad secω =  

and the time step-length of the algorithm must be, for accuracy [21]: 

max

0.5 rad 0.5 rad 0.001498 msec.
333700 rad sec

t
ω

∆ < = =  

 

 
(a)                      (b)              (c)                 (d) 

Figure 9. (a) Maximum stiffness at inter-particle collision; (b) Maximum stiffness at par-
ticle-wall impact; (c) Common maximum stiffness Kmax of both above cases. 
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However, the cost, from using a further shorter time step-length t∆  of the 
algorithm, is negligible, as the computing time, for the first oscillation cycle of 
the model, is only a few seconds. So, a 410 msect −∆ =  is chosen, much shorter 
than that required by the above accuracy criterion of the algorithm, so that to 
achieve more accuracy. 
6) The initial position of the particle R under consideration is 0 4y L= , where 

L side of cubic container, as mentioned in Section 2 and according to Figure 2 
and Figure 6. 

7) Initial temperatures, ranging from 0 50 C 223 KT = − =  in liquid phase re-
gion up to 0 100 C 373 KT = =  in gas phase region, are used.  

8) The initial speed 0v , of the particle under consideration, is obtained from the 
initial temperature T0, by the thermodynamic postulate: 

( )1 2
0 03 ,v RT M=  

where R = 8.3144 Joules−1∙K−1 is the value of gas constant for ideal gases. How-
ever, for small molar volumes, through the oscillation of the particle, the speed v 
is significantly reduced, which implies mean values of R much smaller than the 
initial one, as will be shown in the applications. 

4.2. First Application. STP Conditions. Ideal Gas 

A mole of Carbon Dioxide is considered, within a cubic container of side L = 
28.195 cm, that is volume 3 22.414 litersV L= = , with an initial temperature  

0 0 C 273 KT = = , thus an initial speed of the particle  

( )1 21
0 3 8.3144 Joules K 273 K 0.044 kgr 393.5m sec.v −= × ⋅ × =   

In this first application, point particles are assumed, that is with zero volume, 
and the inter-particle attractive forces are ignored. So, we have an ideal gas. This 
case is simple, so it will be solved by hand. 

Within the first cycle of oscillation, the particle, starting from the position 

0 4y L=  (Figure 6), goes to impact on wall at right, where the speed is re-
versed. Then, an inter-particle collision occurs at left, where the speed is again 
reversed and the particle returns to the initial position. So, the particle runs 
twice the distance L/2 (Figure 6), with the constant speed v = 393.5 m/sec and 
the period of oscillation is 

2 2 0.28195 m 0.7165 msec.
393.5m sec

L L
v v

τ = = = =  

In Figure 10(a), a sketch of the large container, with the point particles (of 
zero volume), in the initial state is shown, with the speeds directing outwards. In 
Figures 10(b)-(f), for the first oscillation cycle, the variations, with respect to 
time t, of five quantities, are presented: (b). Position y of the particle. (c). Speed v. 
(d). Inter-particle impulse iF dt . (e). Particle-wall impulse wF dt . (f). Total ki-
netic energy, for all six particles, 

2. . 1 2K E Mv=  

where M = 6 m. 
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Figure 10. First application. STP conditions. Ideal gas. (a) Large container of side L = 
28.195 cm with point-particles in the initial state. In the following diagrams, variations of 
five quantities, with respect to time t; (b) Position y of the particle; (c) Speed v; (d) In-
ter-particle impulse iF dt ; (e) Particle-wall impulse wF dt ; (f) Total kinetic energy 

2. . 1 2K E Mv= . 

 
At inter-particle collision and particle-wall impact, the impulse-momentum 

conservation equation can be written: 

2 2 0.007333 kgr 393.5m sec 5.771 kgr m seci wF dt F dt m v mv= − = ∆ = = × × = ⋅  

Here, 0dt →  (tends to zero) and i wF F= − →∞  (tend to infinity). How- 
ever, as everyone, of the two above impulses, occurs once in an oscillation cycle, 
we can obtain the finite mean values of forces iF , wF , by simply dividing the 
above impulses by the period τ: 

3
5.771 kgr m sec2 8.055 kN
0.7165 10 seci wF F mv τ −

⋅
= − = = =

×
 

where iF , wF  are opposite, as is due for equilibrium, and are noted in Figure 
10(d) and Figure 10(e), respectively. 

The pressure on the wall is 

2
2 2

8.055 N 101.320 Pascal 1.0 atm.
0.28195 mwP F L= = = ≈  

as was expected for an ideal gas in STP conditions. 
As the speed is constant, the total kinetic energy is, at any instant,  
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2 2 21 1. . 0.044 kgr 393.5m sec 3406.5 Joules
2 2

K E Mv= = × =  

The potential energy is 

2 33 3. . 101.320 N m 0.022414 m 3406.5 Joules
2 2

P E PV= = × =  

and the thermodynamic quantity is 

13 3 8.3144 Joules K 273.15 K 3406.5 Joules.
2 2

RT −= ⋅ × =  

It is observed that 3. . . . ,
2

K E P E RT= =  as is due for an ideal gas. That is, the 

proposed model describes accurately the behavior of an ideal gas. 

4.3. Second Application. STP Conditions. Real Gas 

The same input data, of the previous first application, in STP conditions, are 
again considered, that is a cubic container with side L = 28.195 cm, thus volume 

3 22.414 litersV L= = , and initial temperature 0 0 C 273 KT = = , thus initial 
speed of the particle 0 393.5m secv = . However, now, the volume of particles, 
with diameter D = 1.35 cm, and the inter-particle attractive forces, described by 
a Lennard-Jones curve (Figure 5, Equation (2)), with a force coefficient  

0 675 kNF = , are taken into account. So, we have a real gas, and the proposed 
step-by-step time integration algorithm is used, in order to follow the oscillation 
of the particle. 

In Figure 11(a), is shown the large container of side L = 28.195 cm, with the 
particles of diameter D = 1.35 cm, in the initial conditions. In the Figures 
11(b)-(f), are presented, within the first oscillation cycle, the variations, with 
respect to time t, of five quantities: b) position y of the particle. c) speed v. d) in-
ter-particle force iF . e) particle-wall force wF . f) total kinetic energy  

2. . 1 2K E Mv= , n = 6312 steps of the algorithm have been performed, within the 
first oscillation cycle, with a time-steplength 410 msect −∆ = , thus the period is 

0.6312 msecτ = .  
The mean inter-particle force is 

57620 N 6312 9.128 kNi iF F n= = =∑  

and the mean particle-wall force 

57080 N 6312 9.050 kNw wF F n= = =∑  

It is observed that i wF F≈ − , as is due for global equilibrium. The mean forces 

iF , wF  are noted in the Figure 11(d) and Figure 11(e), respectively. 
The pressure on the wall is  

2 6 2 29.050 10 N 0.28195 m 113840 Pascal 1.123 atm 1.0 atmwP F L= = × = = >  

that is, it slightly deviates from the ideal gas value. 
The mean 2nd power of speed is 

6 2 2
2 2 2 21.002 10 m sec 158750 m sec

6312
v v n ×

= = =∑  
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Figure 11. Second application. STP conditions. Real gas. (a) Large container of side L = 
28.195 cm with particles of diameter D = 1.35 cm, in the initial state. In the following 
diagrams, variations of five quantities with respect to time t; (b) Position y of the particle; 
(c) Speed v; (d) Inter-particle force iF ; (e) Particle-wall force wF ; (f) Total kinetic en-

ergy 2. . 1 2K E Mv= . 

 
So, the mean (rms) speed is 

( ) ( )
1 2 1 22

0158750 398.4 m sec 393.5 ,v v v= = = > =  

that is, slightly larger than initial speed.  
And the mean kinetic energy is 

2 2 2 21 1. . 0.044 kgr 398.4 m sec 3491.9 Joules 3406.5,
2 2

K E Mv= = × = >  

that is, it slightly deviates from the corresponding value of ideal gas. The mean 
kinetic energy is noted on the diagram K.E.-t of Figure 11(f), for comparison. 

4.4. Third Application. Condensation for Small Molar Volume 

A small cubic container with side L = 4.55 cm, thus molar volume  
3 394 cmV L= = , is considered, the same as in the Critical point of Carbon Dio-

xide, according to test data [14]. And a low initial temperature 0 50 C 223 KT = − = , 
which implies a low initial speed of the particle  

( )1 21
0 3 8.3144 Joules K 223 K 0.044 kgr 355.6 m sec.v −= × ⋅ × =  A sketch of the 

small container, with the particles of diameter D=1.35cm, in the initial state, is 
shown in Figure 12(a). 
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Figure 12. Third application. Condensation for small molar volume. (a) Small container 
of side L = 4.55 cm with particles of diameter D = 1.35 cm, in the initial state. In the fol-
lowing diagrams, variations of four quantities, with respect to time t; (b) Position y of the 
particle; (c) Speed v; (d) Inter-particle force iF ; (e) Total kinetic energy 2. . 1 2K E Mv= . 

 
The application run by the proposed step-by-step algorithm, with  

410 msect −∆ = . The first oscillation cycle was completed in 475 steps, thus the 
period is 0.0475 msec.τ =  

In Figures 12(b)-(e), the variations, with respect to time t, of four quantities, 
are presented: b) position y of the particle. c) speed v. d) inter-particle force iF . 
e) total kinetic energy 2. . 1 2 .K E Mv=  

In the present application, because of the low initial temperature, thus low ini-
tial speed and kinetic energy, too, the inter-particle attractive forces iF  over-
come the kinetic energy of the particle, thus preventing it from reaching to im-
pact on the wall. So zero particle-wall forces 0wF =  and zero pressure P result, 
which mean that a liquid phase exists.  

Because of the zero particle-wall forces, 0wF = , the sum of inter-particle 
forces results zero, 0iF =∑ , for equilibrium, as noted in the Figure 12(d). 

The mean 2nd power of speed results 
2 2

2 2 2 223368000 m sec 49196 m sec ,
475

v v n= = =∑  

thus the mean (rms) speed is 0221.8 m sec 355.6 ,v v= < =  significantly small-
er than the initial speed. Finally, the mean kinetic energy results  
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2 2 2. . 1 2 0.044 kgr 221.8 m sec 1082 Joules,K E = × × =  

which is noted on the diagram K.E.-t of Figure 12(e), for comparison. 

4.5. Fourth Application. Critical Point 

The same small cubic container of side L = 4.55 cm of previous application is 
considered, which implies a volume 3 394 cm ,cV L= = known, from experiments, 
as the critical molar volume of Carbon Dioxide [14]. And the initial critical 
temperature 31 C 304 KcT = =  is provided, which implies an initial particle 
speed  

( )1 21
0 3 8.3144 Joule K 304 K 0.044 kgr 415.1 m sec.v −= × ⋅ × =  

In Figure 13(a), a sketch of the above small container, of side L = 4.55 cm, is 
shown, with the particles of diameter D = 1.35 cm, in the initial state, with the 
speeds directed outwards. 
 

 
Figure 13. Fourth application. Critical point. (a) The small container of side L = 4.55 cm 
with particles of diameter D = 1.35 cm, in the initial state. In the following diagrams, 
variations of five quantities with respect to time t; (b) Position y of the particle; (c) Speed 
v; (d) Inter-particle force iF ; (e) Particle-wall force wF ; (f) Total kinetic energy  

2. . 1 2K E Mv= . 
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The application run by the proposed step-by-step algorithm, with  
410 msec.t −∆ =  The first oscillation cycle was completed in 562 steps, so the pe-

riod is 0.0562 msecτ =  
In Figures 13(b)-(f), the variations, with respect to time t, of five quantities, 

are presented: b. position y of the particle. c. speed v. d. inter-particle force iF . e. 
particle-wall force wF . f. total kinetic energy 2. . 1 2 .K E Mv=  

The mean inter-particle force results 8.500 kN 562 15.12 kN.i iF F n= = =∑  

The mean particle-wall force results 8.609 kN 562 15.32 kN.w wF F n= = − = −∑   

It is observed that ,i wF F≈ −  as is due for global equilibrium. The mean forces 

iF , wF  are noted on the diagrams Fi − t, Fw − t of Figure 13(d) and Figure 
13(e), respectively. 

The pressure on the wall is  
2 2 2 6

6

15.32 kN 0.0455 m 7.400 10 Pascals

7.400 10 101325 73.03 atm,
wP F L= = = ×

= × =
 

close to the experimental critical pressure 72.8 atmcP =  [14]. 
The mean 2nd power of speed is 

2 2
2 2 2 233265000 m sec 59190 m sec .

562
v v n= = =∑  

Thus, the mean (rms) speed results 

( )1 2
059190 243.3m sec 415.1 ,v v= = < =  

much smaller than the initial speed. 
The mean kinetic energy results 

2 2 2 2. . 1 2 1 2 0.044 kgr 243.3 m sec 1302 Joules,K E Mv= = × × =  

which is noted on the diagram K.E.-t of Figure 13(f), for comparison. 
The above mean kinetic energy . .K E  corresponds to a value of gas constant 

R = 2.856 Joules mole−1∙K−1, as obtained by equating 1302 Joules 3 2 304 K.R= ×  
The present value of R is much smaller than the value R = 8.3144 of ideal gases. 
This will be discussed in the fifth application of next section 4.6. 

The present application is adapted to the Critical point by its initial tempera-
ture 31 C 304 KT = = , which is the critical temperature of Carbon Dioxide, 
according to test data [14]. In the fifth application of next Section 4.6. The Criti-
cal point of CO2 will be determined in two different ways: By the group of iso- 
kinetic energy curves of Figure 14 and by the group of iso-therms of Figure 16. 
Both cases are close to the Critical point of present application. 

4.6. Fifth Application. Iso-Kinetic Energy Curves in the  
Critical Point Region 

For side of cubic container ranging from L = 4.0 cm up to 9.0 cm, with a step 
0.2 cmL∆ = , that is, volume V = L3 ranging from 64 cm3 up to 729 cm3. And for 

initial temperature ranging from 0 50 C 223 KT = − =  up to 100 C 273 K= , 
with a step 10 C 10 KT∆ = = , thus, for initial speed ranging from  

0 355.6 m secv =  up to 459.8 m/sec, for every couple of L, T0, the corresponding 
pressure P and mean kinetic energy . .K E  have been determined. Every point  
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Figure 14. Fifth application. Iso-kinetic energy curves ( )2. . 1 2 ,K E Mv=  in the Critical 

Point region of Carbon Dioxide obtained by the proposed model. C.P. = Critical Point. In 
the drawning of successive curves, between 1100 and 1400 Joules the step is 50 Joules, 
between 1400 and 1800 Joules the step is 100 Joules, between 1800 and 3000 Joules the 
step is 200 Joules. 
 
(V, P) was placed on the volume-pressure plane, with the corresponding . .K E  
noted on it. 

Then, by linear interpolation between successive values of . .K E , iso-kinetic 
energy curves, for rounded values of . .K E , were obtained, as shown in Figure 
14, for . .K E  ranging from 1100 Joules up to 3000 Joules. 

It is observed that, under the iso-kinetic energy curve of 1100 Joules, a Liquid 
phase exists, with zero pressures. Between the curve of 1100 Joules and the Crit-
ical curve of 1300 Joules, a Vapor phase exists with low pressures. And above the 
Critical curve, a Gas phase exists, with high pressures. That is, the Critical iso-

. .K E  curve of 1300 Joules is the boundary between the Vapor and Gas phases. 
By placing the above iso-kinetic energy curves of proposed model on the same 

P-V (pressure-molar volume) plane, together with the corresponding iso-therms 
of test data of Eastman-Rollefson [14] [20] and those of Van der Waals model 
[14] [16] and, by equating, at points of intersection of iso- . .K E  curves with iso- 
therms, . . 3 2 ,K E RT=  values of gas constant R are obtained. And a variation 
of R values, in the Critical point region of Carbon Dioxide is revealed. Both, test 
data of Eastman-Rollefson and results of Van der Waals model exhibit similar 
trends, as regards this variation. 

It is observed that the gas constant R exhibits values, in Critical point region, 
ranging from 2.85 Joules mole−1∙K−1 up to 5.0, much smaller than the well- 
known value 8.3144, which is approximately valid for large molar volumes and 
accurately valid for ideal gases. The obtained variation of R values is described 
by the graph of Figure 15. 
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Figure 15. Variation of gas constant R values in the Critical Point region of Carbon Di-

oxide, obtained by comparison of iso- . .K E  curves of proposed model of Figure 14 with 
corresponding iso-therms of Eastman-Rollefson tests [14] [20] and those of Van der 
Waals model [14] [16]. 
 

With the help of this graph, the iso-kinetic energy curves of proposed model, 
of Figure 14, have been transformed to the iso-therms shown in Figure 16, for 
temperatures ranging from T = 250 K up to 400 K with a step 10 KT∆ = . 

The above iso-therms of proposed model are compared with corresponding 
ones of the test data of Eastman-Rollefson [14] [20], in Figure 17, as well as with 
those of Van der Waals model [14] [16], in Figure 18. 

It is observed, in the Figure 17 and Figure 18, that the proposed model better 
represents the wave-shaped isotherms of the Van der Waals model, in the Vapor 
region, than the horizontal linear isotherms of the test data by Eastman–Rollef- 
son. Also, the proposed model approximates better the larger incompressibility 
limit of the molar volume given by the Van der Waals model (Figure 18), than 
the smaller one of the test data by Eastman-Rollefson (Figure 17). 

5. Conclusions 

A simplified coarse-grained dynamic model, for real gases, is proposed. Five ap-
plications of this model, on Carbon Dioxide, are presented: 
1) In STP conditions, by ignoring particle volume and inter-particle attractive 

forces, the proposed model accurately represents the behavior of an ideal gas. 
2) Again in STP conditions, but taking into account the particles volume and in-

ter-particle attractive forces, the proposed model slightly deviates from the 
behavior of an ideal gas, as was expected. 

3) For a small molar volume and a low initial temperature, the inter-particle at-
tractive forces overcome the initial kinetic energy of particles and prevent 
them from reaching at impact with container wall. So, a Liquid phase exists, 
with zero pressure.  
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Figure 16. Iso-therms of proposed model in Critical Point region of Carbon Dioxide, ob-

tained from transformation of iso- . .K E  curves of proposed model of Figure 14, by use 
of variation of gas constant R values of Figure 15. C.P.: Critical Point. 
 

 
Figure 17. Comparison of iso-therms of proposed model to corresponding ones of East-
man-Rollefson tests [14] [20], in the Critical Point region of Carbon Dioxide. 
 

 
Figure 18. Comparison of iso-therms of proposed model with corresponding ones of Van 
der Waals model [14] [16] in the Critical Point region of Carbon Dioxide. 
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4) At the Critical point of Carbon Dioxide, the proposed model closely predicts 
the values of critical molar volume, temperature and pressure, known from 
experiments [14]. 

5) Iso-kinetic energy curves have been determined, by the proposed model, in 
the Critical point region of Carbon Dioxide. By comparing these iso-kinetic 
energy curves to corresponding iso-therms of test data by Eastman-Rollefson 
[14] [20] and to those of Van der Waals model [14] [16], a variation of values 
of gas constant R, in Critical point region, is revealed, ranging from 2.85 up to 
5.0 Joules mole−1∙K−1. With the help of this variation of values of R, the 
iso-kinetic energy curves of proposed model are transformed to iso-therms, 
which are compared to corresponding ones of test data by Eastman-Rollefson, 
as well as to iso-therms of Van der Waals model. And a better agreement is 
achieved between the proposed model and the Van der Waals model, as 
shown in Figure 18, as regards a larger in-compressible molar volume and 
particularly the wave-shaped iso-therms in the Vapor region.  
The above five numerical experiments show that the proposed simplified 

model can approximate the observed behavior of real gases. 
In the present work, in order to achieve simplicity, the accuracy is reduced. 

However, if a refined version of the proposed model, with more particles, is de-
veloped, the accuracy can be improved. 
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