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Abstract 
Maximum likelihood (ML) estimation for the generalized asymmetric Laplace 
(GAL) distribution also known as Variance gamma using simplex direct 
search algorithms is investigated. In this paper, we use numerical direct search 
techniques for maximizing the log-likelihood to obtain ML estimators instead 
of using the traditional EM algorithm. The density function of the GAL is 
only continuous but not differentiable with respect to the parameters and the 
appearance of the Bessel function in the density make it difficult to obtain the 
asymptotic covariance matrix for the entire GAL family. Using M-estimation 
theory, the properties of the ML estimators are investigated in this paper. The 
ML estimators are shown to be consistent for the GAL family and their as-
ymptotic normality can only be guaranteed for the asymmetric Laplace (AL) 
family. The asymptotic covariance matrix is obtained for the AL family and it 
completes the results obtained previously in the literature. For the general 
GAL model, alternative methods of inferences based on quadratic distances 
(QD) are proposed. The QD methods appear to be overall more efficient than 
likelihood methods infinite samples using sample sizes 5000n ≤  and the 
range of parameters often encountered for financial data. The proposed 
methods only require that the moment generating function of the parametric 
model exists and has a closed form expression and can be used for other mod-
els. 
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1. Introduction 
1.1. Generalized Asymmetric Laplace (GAL) Distribution 

The generalized asymmetric Laplace distribution (GAL) is a four parameters in-
finitely divisible continuous distribution with four parameters given by 

( ), , , .θ µ σ τ ′=β                          (1) 

The parameter θ  is a location parameter and σ  is a scale parameter. The 
parameter µ  can be viewed as the asymmetry parameter of the distribution 
and τ  is the shape parameter which controls the thickness of the tail of the 
distribution. If 0µ = , the distribution is symmetric around θ , see Kotz et al. 
([1], p. 180). It is flexible and can be used as an alternative to the four parameters 
stable distribution. The GAL distribution has a thicker tail than the normal dis-
tribution but unlike the stable distribution where even the first positive moment 
might not exist, all the positive integer moments exist. Its moment generating 
function is  

( ) ( )
2 2

e , , 0, , , , ,
11
2

s

M s
s s

θ

τ σ τ θ µ σ τ
µ σ

′= ≥ =
 − − 
 

β          (2) 

s  must satisfy the inequality 

2 211 0.
2

s sσ µ− − >                        (3) 

The GAL distribution is also known as variance gamma (VG) distribution. It 
was introduced by Madan and Senata [2], Madan et al. [3]. For the GAL distri-
bution, we adopt the parameterizations used by Kotz et al. [1]. It is not difficult 
to relate them to the original parameterization, see Senata [4]. The commonly 
used parameterisations will be discussed in Section (1.2). 

From the moment generating function, it is easy to see that the first four cu-
mulants of the GAL distribution are given by 

2 2
1 2,      ,c cθ τµ τσ τµ= + = +                    (4) 

2 3 4 2 2 4
3 43 2 ,      6 12 3 .c cτσ µ τµ τµ τµ σ τσ= + = + +            (5) 

Note that 3 0c =  if 0µ =  and 3c  can be positive or negative depending on 
values of the parameters .Therefore, the GAL distribution can be symmetric or 
asymmetric. Furthermore, with 4 0c > , the tail of the GAL distribution is thick-
er than the normal distribution. These characteristics make the GAL distribution 
useful for modelling asset returns, see Senata [4] for further discussions on fi-
nancial modelling using the GAL distribution.  

The moments can be obtained based on cumulants and they are given below, 
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The GAL distribution belongs to the class of normal mean-variance mixture 
distributions where the mixture variable follows agamma distribution with shape 
parameter τ  and scale parameter equal to 1, i.e., with density function  

( ) ( )
11 e , , 0w

wf w w wτ τ
τ

− −= >
Γ

, ( ).Γ  is the commonly used gamma func-

tion. 
This leads to the following representation in distribution using Expression 

(4.1.10) in Kotz et al. ([3], p. 183), 
d Y ZX Yθ µ σ= + +  where                  (6) 

1) ( )~ 0,1 ,Z N  
2) ( )~ ,1Y G τ  as given by expression (8) and independent of Z  
3) , , ,θ µ σ τ  are parameters with , 0σ τ > 。 
The representation given by expression (6) is useful for simulating samples 

from a GAL distribution. Note that despite the simple closed form expression for 
the moment generating function, the density function is rather complicated as it 
depends on the modified Bessel function of the third kind with real index λ , 
i.e., ( )K uλ  see Kotz et al. ([1], p. 315) for various representations for the func-
tion ( ).Kλ . The density function will be introduced in Section (1.2). Using the 
moment generating function of the GAL distribution, it is easy to see that the 
distribution is related to a Lévy process, see Podgorski and Wegener [5] for GAL 
processes. 

The GAL parametric family can be introduced as a limit case of the genera-
lized hyperbolic (GH) family where the mixing random variable belongs to the 
generalized inverse Gaussian family, see Mc Neil et al. [6] for properties of the 
GH family. Note that the GAL family is nested within the bilateral gamma family 
as the GAL random variable can be represented in distribution as 

1 2
1

2
dX G Gσθ κ

κ
 = + − 
 

,                   (7) 

1G  and 2G  are independent random variables with common gamma dis-
tribution. The common mgf of the gamma distribution is given by 

( )
( )

1
1

GM s
s α=

−
, see expression (4.1.1) given by Kotz et al. ([1], p. 183). 

If we introduce κ  using 1
2
σµ κ

κ
 = − 
 

, the GAL distribution can also be  

parameterised using the four equivalent parameters, i.e., with , , ,θ σ κ τ . 
Moment estimation for the GAL family has been given by Podgorski and We-

gener [5]. Maximum likelihood estimation for the GH family by fixing the pa-
rameter τ  within some bounds has been given by Protassov [7], McNeil et al. 
([6], p. 80). For ML estimation, they implicitly assumed that the mixing random  
variable ~ Gamma ,

2
Y φτ 

 
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 which implies the following form of the moment  
generating function for X , 
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From the above expression, it is easy to see that the parameter 0φ >  is re-
dundant and the parameterisation using five parameters will introduce instabili-
ty in the estimation process. It appears to be simpler to use the parameterisation 
given by Kotz et al. [1] or the parametrisation used by Madan and Senata [2], 
Madan et al. [3], Senata [4] with only four parameters by letting 2φ = . 

Hu [8] advocated fitting the GAL distribution using the EM algorithm but the 
drawback of this approach is the difficulty to obtain the information matrix us-
ing the method of Louis [9], see McLachlan and Krishnan [10] for a comprehen-
sive review of the EM algorithm. The lack of a closed form asymptotic cova-
riance matrix for the estimators might create difficulties for hypotheses testing. 

1.2. Some Properties of the GAL Distribution and  
Parameterisations 

In this subsection, we first review a few parameterisations which are commonly 
used for the GAL distribution. 

Definition 1 (GAL density) 
From the GH density, the density function for the GAL distribution can be 

obtained and it can be expressed as 

( )
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       (8) 

The vector of parameters is ( ), , ,θ µ σ τ ′=β  and we shall call this parametri-
sation parameterisation1.The density can be derived using thenormal mean va-
riance mixture representation given by expression (6). See expression (3.30) 
given by Mc Neil et al. ([6], p. 78). 

Alternatively, by letting 1
2
σµ κ

κ
 = − 
 

 and keeping other parameters as in  

parametrisation 1, we obtain the following expression for the density of a GAL 
distribution  
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      (9) 

with the vector of parameters given by ( ), , ,θ κ σ τ ′=β . We shall call this para-
meterisation, parameterisation 2 which is used by Kotz et al. ([1], p. 184). 

Note that ,θ σ  are respectively the location and scale parameter with either 
parameterisation 1 or 2. Setting 0, 1θ σ= = , the standardized GAL density with 
parameterisation 2 will have only two parameters and it is given by 
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or equivalently by using parametrisation1, 
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Following Kotz et al. [1] we only use these two parametrisations but it is easy 
to see their relationships with parametrisation 3 used by Madan et al. [3] and 
Senata [4]. With parametrisation 3, the mgf of the GAL distribution is  

( ) 1
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e ,
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s ' s
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=
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                  (10) 

the parameters are , , ,cθ σ ν′ ′  with 
2

2, , 1 ,cµ σθ σ ν τ θ
ν ν

′ ′= = = = . 

The first four moments using parameterisation 3 as given by Senata ([4], p. 
181) aregiven below, 
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The GAL random variable can also be expressed as the difference of two in-
dependent gamma random variables, the GAL random variable is nested inside 
the class of bilateral gamma random variable Y  which can be represented as 

1 2
dY G Gθ= + −                         (11) 

with 1G , 2G  are independent gamma random variables with the mgf’s given  

respectively by ( )
( )1

1

1
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s αβ

=
−

. We obtain the 

GAL random variable by letting 1 2
σβ

κ
=  and 2 2

κσβ = . 

The class of bilateral gamma distribution was introduced by Küchler and 
Tappe [11] and they have shown that the Esscher transform of a bilateral gamma 
distribution remains within this class of distribution .More specifically, let EY   

be the random variable with mgf given by ( ) ( )
( )E

Y
Y

Y

M s h
M s

M s
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that 1 2
E dY G Gθ= + − , 1G  and 2G  are independent gamma random va-

riables with common shape parameter ( )1α α =  and scale parameters given  
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 . 

For option pricing with the risk neutral approach, this property is useful as it 
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is easy to simulate samples from a bilateral gamma distribution. The use of Es-
scher transform to find risk neutral parameters for option pricing in financeis-
due to the seminal works of Gerber and Shiu [12]. The Esscher transform risk 
neutral parameters can also be interpreted as minimum entropy risk neutral pa-
rameters. See Miyahara [13] for this interpretation, see section 4 for more dis-
cussions on financial applications. 

For numerical methods to find estimators, Nelder-Mead simplex method and 
related derivative free simplex methods are recommended. Derivative free simp-
lex direct search methods are well described in chapter 16 of the book by Bier-
laire [14]. 

The paper is organized as follows. In Section 2, some submodels of the GAL 
family are introduced to highlight the difficulty on obtaining the asymptotic co-
variance matrix using classical likelihood theory. Asymptotic properties of the 
ML estimators are investigated in section (3). The ML estimators for the GAL  

family are shown to be consistent for 1
2

τ > . For the special case with 1τ = ,  

this corresponds to the asymmetric Laplace (AL) model, we obtain the asymp-
totic covariance matrix in closed form using the approach based on M-estima- 
tion theory as given by Huber [15] which completes the missing components of 
expression (2) given by Kotz et al. ([16], p. 818). As an alternative to ML estima-
tion, QD estimation based on matching cumulant generating functions is devel-
oped in section (4) for the entire GAL family. The QD estimators are shown to 
be consistent and follow an asymptotic normal distribution. The asymptotic co-
variance matrix can be obtained in closed form for the entire GAL family using 
QD methods which makes testing for parameters easy to implement. Chi-square 
goodness of fit tests statistics can also be constructed based on the distance func-
tion used to obtained QD estimators. The methods are also general and can be 
applied to other models. Numerical issues and simulations illustrations are dis-
cussed in Section (5). A limited simulation study shows that the proposed QD 
estimators perform better than ML estimators overall for sample sizes 5000n ≤  
using parameters values often encountered for financial data. Some applications 
drawn from finance are discussed in Section (6). 

We shall consider first a few submodels of the GAL model to show the diffi-
culties encountered when likelihood theory is used to obtain the asymptotic co-
variance matrix for ML estimators. 

The difficulties are mainly due to the score functions when viewed as func-
tions of the parameters have a discontinuity point and fail to be differentiable. If 
the asymptotic covariance matrix for the ML estimators is derived based on like-
lihood theory, it will have missing components. This is the problem of expres-
sion (2) given by Kotz et al. ([16], p. 818) for the AL family, a subfamily of the 
GAL family. M-estimation theory will be used to replace likelihood theory for 
deriving the asymptotic covariance matrix.  

2. Some Subfamilies of the GAL Family 

Example 1 
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Let 0, 1, 1, 1µ τ σ τ= = = =  and the only parameter is the location parameter  

and the family is symmetric around θ . Using the result ( )1
2

π e
2

uK u
u

−= , the  

density function is reduced to 

( ) 0
0

0

1 1, e , .
2 2

x
sf x s

s

θ

θ
−

−

= =  

Equivalently, 

( ) ( ) ( ) 2
0 0

1, , e , .
2

xf x f x f x xθ θ −= − = −∞ < < ∞  

This is the well known double exponential distribution, the maximum like-
lihood estimator for θ  is the sample median. There is no Fisher information 
matrix available as the score function is discontinuous with respect to the para-
meter θ . The asymptotic variance of the sample median can be found by using 
M-estimation theory, see Huber [17], Huber [15], also see Amemiya ([18], p. 
148-154) on the least absolute deviations (LAD) estimator .We shall use the 
same approach to derive the asymptotic covariance matrix for the ML estimators 
for the GAL distribution with 1τ = . The GAL distribution when 1τ =  is the 
asymmetric Laplace (AL) distribution. The AL distribution will be introduced 
below. 

Example 2 
Using the density of the GAL distribution and setting 1τ = , we obtain the AL 

distribution with only 3 parameters. The location and scale parameters are given 
respectively by ,θ σ  and the asymmetry parameter µ . If parameterisation 2 is 
used, the density function ( ); , ,g x θ σ κ  of the AL distribution is based on the 
standardized AL density as given by expression (4.1.31) in Kotz et al. ([1], p. 189) 
with  

( ) 2 2 2; , , exp exp ,
2 2

1 1, .

XXg x

k k

θθθ σ κ δ γ
σγ σ σ

γ κ δ κ

    − − = −              

= + = −

 

The AL family can be considered as a subfamily of the GAL family and the 
score functions for this model are again discontinuous. We shall derive the 
asymptotic covariance matrix using M-estimation theory in Section (3.2) and 
complete the expression (2) of Kotz et al. ([16], p. 818). The expression derived 
by the authors has missing components as it is derived based on likelihood 
theory. Kotz et al. [16] used a different parametrisation but it is equivalent to the 
one used in Kotz et al. ([1], p. 189) and it is not difficult to establish the links 
between these 2 parameterisations. 

3. Maximum Likelihood Estimation for the GAL Family 
3.1. Maximum Likelihood Estimation for the GAL Distribution 

For consistency of the MLE, the following Theorem which is Theorem 2.5 given 
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by Newey and McFadden ([19], p. 2131) is useful. We make the basic assump-
tion that we have a random sample which consists of n iid observations 

1, , nX X  drawn from the GAL parametric family with density ( );f x β  
where 0β  is the vector of the true parameters. 

Theorem (Consistency) 
Assume that: 
1) If 1 2≠β β  then ( ) ( )1 2; ;f x f x≠β β . 
2) The parameter space Θ  is compact, 0 ∈β Θ . 
3) ( );f x β  is a continuous with respect to β . 
4) ( )( )sup ln  ;E f x∈ < ∞β βΘ . 
Under the conditons stated, the ML estimators (MLE) given by the vector β̂  

is obtained by maximizing the log of the likelihood function 

( ) ( )1ln ln ;n
iL f x
=

= ∑β β  is consstent, 0
ˆ p→β β . 

One can see that the conditions for consistency are mild, the condition d) will  

be satisfied for the GAL family if 1
2

τ >  as the density function remains 

bounded. For 1
2

τ ≤ , the density functions with 0, 0θ µ= =  tend to infinity as  

0x +→ , see Theorem 4.1.2 given by Kotz et al. ([1], p. 190-192). 
It might be possible to prove consistency using the approach to obtain results 

of Theorem 4 by Broniatowski et al. ([20], p. 2578). 
For asymptotic normality, it is more complicated as standard theory often re-

quires that the function ( )ln L β  being twice differentiable with respect to β . 
The appearance of the Bessel function creates further complications. It makes it 
very difficult to establish asymptotic properties even with the use of M estima-
tion theory. 

For the special case with 1τ =  which corresponds to the AL distribution, the 
density function can be expressed without the use of the Bessel function and M- 
estimation theory can be used to find the asymptotic covariance matrix for the 
ML estimators. Asymptotic normality has been shown by Kotz et al. ([1], p. 
158-174) but the asymptotic covariance matrix of the ML estimators is still in-
complete. 

The formula (2.2) given by Kotz et al. ([16], p. 818) does not give the correct 
asymptotic covariance for the ML estimators. The complete formula for the 
asymptotic covariance matrix of the ML estimators can be obtained using 
M-estimation theory. An example is given at the end of section (3.2) which 
shows that one cannot recover the common asymptotic variance of the sample 
median using results in Kotz et al. ([16], p. 818). 

M-estimation theory allows the score functions when viewed as functions of 
the parameters to have a few points of discontinuities and full differentiability 
with respect to β  can be replaced by one side differentiability accordingly. 
Amemiya ([18], p. 151) uses this approach. For establishing asymptotic normal-
ity for the sample median, the sample median is viewed as a root given by a solu-
tion of the estimating equation 
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( )1

1 , 0n
ii x

n
ψ θ

=
=∑ ,  

using the indicator function [ ].I ,  
( ) [ ],x I xψ θ θ= − <  and ( ) [ ] ( ), , , 0x I x xψ θ θ ψ θ= > =  if x θ= . 

The function ( ),xψ θ  is simply the one side derivative and we adopt the 
notation 

( ),
x

x
θ

ψ θ
θ

∂ −
=

∂
 with the meaning of one side derivative, also see Hogg et  

al. ([21], p. 538) on estimating equations based on the sign test. The probability 
of the existence of such a root tend to 1 as n →∞ . 

Another M estimator for the location parameter θ  has been proposed by 
Huber ([17], p. 232-233). It consists of estimating θ  by solving 

( )1

1 , 0n
ii x

n
ψ θ

=
=∑  with 

( ),x xψ θ θ= −  if x kθ− ≤ , k is chosen. 

( ),x kψ θ = , if x kθ− > . 
For M-estimators based on ( ),xψ β , where β  is a vector of parameters, 

Huber [17], Huber [15] has generalized and relaxed conditions for the classical 
Taylor expansion. The technical details can be found in his seminal paper and in 
Huber [15]. It can be summarized as follows. Suppose that the M-estimators 
given by β̂ , given as the roots of the following estimating functions 

( )1

1 , 0n
i x

n
ψ

=
=∑ β .                      (12) 

Under the following main conditions: 

a) ( )1

1 ˆ, 0n p
ii x

n
ψ

=
→∑ β , assuming 0

ˆ p→β β  has been shown, 

b) ( ) ( ) ( ) ( )( )0 00 0 0, , ,E E xλ λ ψ= = =β ββ β β β  

with assumption N-3 given by Huber ([15], p. 132) and ( )λ β  is differentiable 
with respect to β , then we have the following representation: 

( ) ( ) ( ) ( )0 0 01

1 ˆ, 1n
pi x n o

n
ψ

=
= −Λ − +∑ β β β β , 

( ) ( )

0

0

λ

=

∂
Λ =

′∂
β β

β
β

β
 and ( )1po  is a term converging to 0 in probability. 

When we compare with the usual Taylor expansion, we only require  
( ) ( )( )0

,E xλ ψ= ββ β  to be differentiable with respect to β . This differentia-
bility condition is satisfied for the AL family. Note that if indeed the score func-
tions are differentiable then ( )0−Λ β  is the Fisher information matrix. 

For the technical details on how to verify the conditions N-3, see Hinkley and 
Revankar ([22], p. 7). The condition 1) is usually verified by making use of the 
Lebesgue dominated convergence theorem (LDGT) as given by Rudin ([23], p. 
321). It can become every technical to construct integrable functions to bound 
the score functions in order to check the sufficient conditions for the LDGT but 
they are expected to hold for the AL distribution with the existence of all integer 
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positive moments and the parameters space is assumed to be compact. Essen-
tially, we need to show that the condition 2) is met by showing the convergence 
in probability of the integrals 

( ) ( ) ( ) ( ) ( )
0 00 0

ˆ, d , d 0p
nx F x x F x Eψ ψ

∞ ∞

−∞ −∞
→ = =∫ ∫ β ββ β β , ( )nF x  is the  

sample distribution function, the score functions are given by expressions 
(14)-(16). 

From the above representation, we then have  

( ) ( )( )( ) ( )( ) ( )( )0

1 1
0 0 0 0

ˆ 0, ,Ln N V xψ
− − ′

   − → Λ Λ   ββ β β β β . 

The asymptotic covariance matrix of β̂  is given by 

( ) ( )( ) ( )( ) ( )( )0

1 1
0 0 0

1ˆ ,V x
n

ψ
− − ′

   = Λ Λ   V ββ β β β ,        (13) 

( )( )0 0,xψVβ β  is the covariance matrix of the vector ( )0,xψ β , ( )0,xψ β  is 
the vector of the true score functions or quasi score functions if a proxy density 
function is used to replace the true density function. 

Now based on M-estimation theory, we proceed to find ( )0Λ β  and  
( )( )0 0,V xψβ β  for the AL distribution to obtain the asymptotic covariance ma-

trix of the ML estimators in the following section.  

3.2. Asymptotic Covariance Matrix for the AL Family 

Kotz et al. [1], Kotz et al. [16] have shown that the ML estimators for the AL dis-
tribution have an asymptotic normal distribution but their asymptotic cova-
riance matrix given by expression (3.5.1) of Kotz ([1], p. 158) which is identical 
to expression (2) given by Kotz et al. ([16], p. 818) is still incomplete. If M-esti- 
mation theory is used then the asymptotic covariance matrix should be based on 
Corollary (3.2) as given by Huber ([15], p. 133), also see expression (12.18) given 
by Woolridge ([24], p. 407). 

Since 

( ) ( )2 2ln ; , , ln 2 ln ln
2 2

xx
g x

θθδ γθ σ κ σ γ
σ σ

−−
= − − + − , 

the following derivatives are the score functions of the AL distribution, 

( ) ( ) ( )

( ) [ ] [ ] ( )
1

ln ; , , 2 2; , , ;
2 2

; ,with i; .f0

g x
x v x

v x I x I x v x x

θ σ κ δ γψ θ σ κ θ
θ σ σ

θ θ θ θ θ

∂
= = − −

∂
= − > + < = =

       (14) 

( ) ( ) ( )
2 2 2

ln ; , , 1 2 2; , ,
2 2

xg x x
x

θθ σ κ θδ γψ θ σ κ
σ σ σ σ

−∂ −
= = − − +

∂
,   (15) 

( ) ( ) ( )
3

ln ; , , 2 2; , ,
2

xg x x
x

γ
θθ σ κ θδ γκψ θ σ κ

κ γ κ σ κ σ

∂
−∂ −∂ ∂∂= = − + −

∂ ∂ ∂
. (16) 

Let ( ), ,θ σ κ ′=β  and 0β  the vector of the true parameters we need to find 
first the vector 
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( ) ( ) ( ) ( )( )
( ) ( )( )0

1 2 3, ,

; , , , 1, 2,3

,

.i iE x iβ

λ λ λ λ

λ ψ θ σ κ

= ′

= =

β β β β

β
 

Subsequently, we need to find the derivatives of these expressions with respect 
to β  then evaluated at 0=β β  to obtain the matrix ( )0−Λ β . The matrix 

( )0−Λ β  generalizes the Fisher information matrix. 
It will be reduced to this matrix if the score functions ( ); , 1, 2,3,i x iψ =β  are 

differentiable with respect to β . It is clear that the elements of ( )0Λ β  will 
have closed form expressions but are lengthy to display. To obtain  

( )( )0
; , , , 1, 2,3iE x iψ θ σ κ =β , note that we have a location and scale parameter. 

Consequently, it appears to be simpler to define first the standardized AL densi-
ty as the AL density with 0, 1θ σ= = , i.e., 

( ) ( )2 2 2; exp exp
2 2

g x x xε κ δ γ
γ

   
= −      

   
 and the AL density with three  

parameters as 

( ) 1; , , ;xg x gε
θθ σ κ κ

σ σ
− =  

 
. 

Making use of ( );g xε κ , 

( )( )0

0 0
0 0

0 0 0 0

1 1; ; d ; d
x x

E v x g x g x
θ

ε εθ

θ θ
θ κ κ

σ σ σ σ
∞

−∞

   − −
= −   

   
∫ ∫β , 

or  

( )( )0

0
0

0

; 1 2 ;E v x Gε
θ θ

θ κ
σ

 −
= −  

 
β ,               (17) 

( );G xε κ  is the distribution function with density function ( );g xε κ . 
Similarly, 

( ) ( ) ( )
0

0 0
0 0

0 0 0

1; d ; d
x x

E x x g x x g x
θ

ε εθ

θ θ
θ θ κ θ κ

σ σ σ
∞

−∞

   − −
− = − + −   

   
∫ ∫β . (18) 

Therefore, 
( )0

E x θ
θ

∂ −

∂
β  can be obtained by first evaluating the term 

( ) 0 0
0 0

0 0 0 0

0
0

0

1 1; d ; d

1 ; ,

x xx g x g x

G

ε εθ θ

ε

θ θθ κ κ
θ σ σ σ σ

θ θ κ
σ

∞ ∞   − −∂
− = −   ∂    

  −
= − −  

  

∫ ∫
 

using Leibnitz’s rule which taking into account the lower bound of the interval 
also depends on θ  then subsequently evaluate using Leibnitz’s rule the expres-
sion 

( ) 0 0
0 0

0 0 0

1 ; d ;xx g x G
θ

ε ε
θ θ θθ κ κ

θ σ σ σ−∞

   − −∂
− =   ∂    

∫ . 

Consequently, 
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( )0 0
0

0

1 2 ; .
E x

Gε

θ θ θ
κ

θ σ
∂ −  −

= − +  ∂  

β  

The elements of ( )0Λ β  can be found subsequently by first forming 

( ) ( ) ( ) ( )( )01 0 1 0
2 2; , ; d ;

2 2
x g x x E v xδ γλ ψ θ

σ σ
∞

−∞
= = − −∫ ββ β β β , 

( )( )0
;E v x θβ  is as given by expression (17). Also, 

( ) ( ) ( )

( )( ) ( )0 0

2 0 2 0

2 2

; , ; d

1 2 2 ,
2 2

x g x x

E x E x

λ ψ

δ γθ θ
σ σ σ

∞

−∞
=

= − − − + −

∫

β β

β β β β
 

( )0
E xβ θ−  is as given by expression (18), ( )

0 0 0 0E x θ τ µ= +β  with 0 1τ =
using expression (4). With 

( ) ( ) ( )3 0 3 0; , ; dx g x xλ ψ
∞

−∞
= ∫β β β β  or equivalently, 

( ) ( )( ) ( )0 03 0
2 2; ,

2
E x E x

γ
γ γκλ θ θ

γ κ σ κ

∂
∂ ∂∂= − + − − −
∂ ∂β ββ β  

then the matrix ( )0Λ β  can be obtained by differentiating with respect to β  
the vector 

( ) ( ) ( ) ( )( )0 1 0 2 0 3 0; ; , ; , ;λ λ λ λ= ′β β β β β β β β  and set 0=β β , i.e., 

( ) ( )

0

0
0

;λ

=

∂
Λ =

′∂
β β

β β
β

β
. 

Clearly, the elements of the matrix ( )0Λ β  have closed form expressions but 
are lengthy to display. Packages like MATLAB or Mathematica can handle sym-
bolic derivatives and can be used to obtain these elements. Substituting 0β  by 
the ML estimator β̂  in ( )0Λ β  yields an estimate for the matrix ( )0Λ β . 

Now we turn our attention to the matrix ∑ which is the covariance matrix of 
the vector of score functions ( ) ( ) ( ) ( )( )0 1 0 2 0 3 0, , , , , ,x x x xψ ψ ψ ψ ′=β β β β . Us-
ing a different but equivalent parameterisation, this matrix has been obtained by 
Kotz et al. ([16], p. 818), Kotz et al. ([1], p. 158) but its inverse does not give the 
asymptotic covariance matrix of the ML estimators as claimed in their paper. It 
is not difficult to establish the relationships between the parameterisation used 
in example 2 and the one used in the paper by Kotz et al. ([1], p. 818).  

Note that the inverse of Σ is not the asymptotic covariance matrix of the ML  

estimators is due to ( ) ( )

0

0
0

;λ

=

∂
Λ =

′∂
β β

β β
β

β
 is not equal to 1−−Σ  if the differ-  

rentiability assumptions for the score functions do not hold, see corollary (3.2) 
and proposition (3.3) given by Huber ([15], p. 133). 

The matrix Σ  can also be estimated by the following estimator 

( ) ( )1

1 ˆ ˆ, ,n
i ii x x

n
ψ ψ

=
′   

   ∑ β β . 
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Let us consider the following location model with known 0σ  and check the 
expression (2.2) as given by Kotz et al. ([16], p. 818) has missing components. 
The density function is given by 

( ) 0

2

0

1; e
2

x
f x

θ
σθ

σ

− −

= , or alternatively the density can also be expressed as 

( ) ( ) ( ) 0

2

0 0
0

1; , e
2

x

f x f x f x σθ θ
σ

−

= − = . 

This subfamily will correspond to their parametrisation with 1κ =  in their 
paper. The sample median θ̂  is the ML estimator for θ , using their result it will  

lead to conclude that the asymptotic variance is given by 
12 2

0ln
2

fE σ
θ

−
 ∂  =   ∂  

,  

as indicated by case1 in the table of their paper. On the other hand, it is known 
that the asymptotic distribution of the sample median is given by 

( )
( )( )0 2

0

1ˆ 0,
4 0

Ln N
f

θ θ
 
 − →
 
 

, see expression (2.4.19) given by Lehmann  

([25], p. 81) for example. For the location model being considered, we have  

( )( )2 2
00

1 1
84 0f σ

= . Clearly, 
2
0

2
0

1
28
σ

σ
≠  but the correct asymptotic variance can  

be obtained using expression (13). 
For the general GAL distribution with four parameters, alternative methods of 

estimation based on quadratic distances (QD) which make use of the empirical 
cumulant generating function will be introduced in the next section. The QD  
methods are developed based on empirical findings which show that the ML 
methods for finite sample sizes as large as n = 5000 do not give good estimates 
for the shape parameter τ  and the scale parameter σ  but ML methods give 
good estimates for the other two parameters. Howewer, the overall efficiency of 
ML methods lags behind QD methods in finite samples. Also, QD methods be-
side giving better estimates for σ  and τ , the methods can be used for para-
meter testing since the asymptotic covariance matrix for the QD estimators can 
be obtained explicitly for the entire GAL family. The methods also provide a chi- 
square test statistics of goodness-of-fit for the model being used. Therefore, it 
might be of interests to consider using QD methods whenever ML methods 
might have deficiencies. 

4. Quadratic Distance Methods 

General Quadratic distance (QD) theory has been developed in Luong and 
Thompson [26]. Howewer, if it is used for estimating parameters of the GAL 
distribution we need to specify a distance which can generate estimators with 
good efficiencies. For applied works, it is also preferable to have methods which 
are relatively simple to implement numerically. 

For financial data, observations are recorded as percentages so they are small 
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in magnitude, we recommend minimizing the following distance based on 
matching the empirical cumulant generating function ( )nK t  with its model 
counterpart ( )K tβ  using the following points 

, 1, , 20jt j m= =  

with  

1 2 10 11 12 200.01, 0.02, , 0.1, 0.01, 0.02, , 0.1.t t t t t t= = = = − = − = −     (19) 

The choice of points as given above is suggested based on empirical findings 
that overall, the QD estimators are more efficient than the ML estimators for the 
range of parameters often encountered for modelling financial data using finite 
sample sizes as large as n = 5000. Note that the set of points chosen does not in-
clude the origin 0. 

The empirical moment generating function, empirical cumulant generating 
function are given respectively by 

( ) 1

1 e in sX
n iM s

n =
= ∑  and ( ) ( )logn nK s M s= . 

The model cumulant generating function is ( )K tβ , ( ) ( )logK t M t=β β  
with ( )M sβ  being the model moment generating function as defined by ex-
pression (1). The proposed QD estimators given by the vector β  is obtained by 
minimizing with respect to β  the following specific QD distance given by 

( ) ( ) ( )( )220
1 n j jjD K s K s
=

= −∑ ββ .                (20) 

Once the estimates are obtained, goodness of fit test statistics with an asymp-
totic chi-square distribution with 16r =  degree of feedom can also be con-
structed. General QD distances theory can be used to derive the asymptotic co-
variance matrix of the QD estimators and the chi-square goodness of fit test sta-
tistics. They will be given at the end of this section. Having the asymptotic cova-
riance matrix of the QD estimators in closed form for the GAL family is useful 
for parameter testing. 

For notations, let us define the vector based on observations 

( ) ( )( )1 , , , 20n n n mz K t K t m′= = . 

Its model counterpart is the vector 

( ) ( )( )1 , , mz K t K t ′= β β β . 

Therefore, 

( ) ( ) ( ).n nD z z z z′= − −β ββ  

Observe that the elements of the covariance matrix MV  for the vector 
( ) ( )( )1 , ,n n mn M t M t ′

  are given by 

( ) ( ) ( ) ( ), , 1, , 20, 1, , 20.M i j i jV i j M t t M t M t i j= + − = = β β β  

The elements of the approximate covariance matrix based on the differential 
method or delta method for 
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( ) ( )( )1 , ,n n mn K t K t ′
  

are given by 

( ) ( ) ( ) ( )( ) ( ) ( )( ), , 1, , 20, 1, , 20.K i j i j i jV i j M t t M t M t M t M t i j= + − = = β β β β β  

Under the regularity conditions given by Lemma (3.4.1) of Luong and 
Thompson ([26], p. 244), the QD estimators given by the vector β  are consis-
tent. Clearly, we need to assume that on the restricted parameter space the mod-
el moment generating function and the covariance matrix MV  given by expres-
sion (21) are well defined. Some modifications might be necessary if the me-
thods are applied to other models. The conditions are met in general for the 
GAL distribution when used for modeling financial data. We then have 

( ) ( )

( ) ( )
0

1 1

0, ,

.

L

K

n N

V− −

− →

′ ′ ′=

V

V S S S S S S

β β
 

The asymptotic covariance for the QD estimators is simply 1
n

V . 

All the expressions which form V  as given above are evaluated under the 
true vector of parameters 0β , ( ) ( )1 2 3 4, , , , , ,θ µ σ τ β β β β ′′= =β  and  

( ) ( )

( ) ( )

1 1

1 4

1 4

m m

K t K t

K t K t

β β

β β

∂ ∂ 
 

∂ ∂ 
 =
 
∂ ∂ 
 ∂ ∂ 

S



  



β β

β β

, ′S  is the transpose of S . 

We also use ( ) ( ) ( )0 0 2 2 0, ,K= = =S S V Vβ β βΣ Σ  to emphasize that these 
matrices depend on 0β . The matrix 2Σ  is derived below. For constructing test 
statistics with chi-square limiting distribution, use expression (3.4.2) given by 
Luong and Thompson ([26], p. 248) to obtain 

( ) ( )20,L
nn z z N− →

β Σ  with 2Σ , a covariance matrix which depends on 

0β  and  

( ) ( )1 1
2 .K

− −   ′ ′ ′ ′= − −   I S S S S V I S S S SΣ             (21) 

In practice, 0β  needs te be replaced by β  so that an estimate of 2Σ  can be 
defined as  

( )2 2= 
 βΣ Σ . 

We need to find the Moore-Penrose (MP) generalized inverse for 2
Σ  to con-

structa chi-square statistics. The quadratic form constructed with the MP inverse 
will follow a chi-square distribution asymptotically. Many computer packages 
provide prewritten functions to find the Moore-Penrose inverse of a matrix. It 
can also be computed easily using the spectral decomposition of 2

Σ , i.e., using 
the representation 2 ′= PDPΣ . The columns of the matrix P  are the eigen-
vectors of 2

Σ  and D  is a diagonal matrix with the diagonal elements being 
the corresponding eigenvalues of 2

Σ  given respectively by 0, 1, ,i i mλ ≥ =  . 
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The matrix P  is orthonormal with the property I′ =PP . 
The Moore Penrose inverse 2

MP
Σ  can be obtained as 

2
MP − ′= PD PΣ  with 
−D  being the diagonal matrix constructed based on the diagonal elements 

, 1, , 20i iλ =   of D . The diagonal elements of −D  are given as 
1

i
i

λ
λ

− =  if 0iλ >  and 0iλ
− =  if 0iλ = . 

For discussions on property of the Moore Penrose generalized inverse, 
see Theil ([27], p 273-274), also see expressions (4.3 - 4.6) given by Harville ([28], 
p 504). For numerical computations using R, see section 8.3 given by Fieller 
([29], p. 123-133). The chi-square test statistics for testing the null hypothesis 
which specifies that observations are drawn from the GAL family can be based 
on the criterion function  

( ) ( ) ( ) ( ) ,n nQ n z z z z−′ ′= − −PD Pβ ββ                (22) 

( ) ( ) ( )( ) ( )2 16L
n nQ n z z z z χ−′ ′= − − →PD P

 



β ββ .         (23) 

The limiting distribution of the test statistics is chi-square with 16r = , based 
on Theorem 3.4.1 of Luong and Thompson ([26], p. 248). The test statistics can 
also be viewed as a generalized Pearson test statistics. The criterion function 
( )Q β  can also be used to find a good starting vector to initialize the algorithms 

for finding the QD estimators, see section (3) given by Andrews ([30], p. 917- 
922) for more discussions and section (5.2) of this paper.  

5. Numerical Issues  
5.1. Simplemoment Estimators 

The simple approximate moment estimate proposed by Senata [4] can be found 
explicitly and can be used as starting points for numerical optimization to find 
QDE or MLE. Let the first four moments be denoted by ˆ , 1, 2,3, 4sj jµ =  with  

( )1

1ˆ , 1, , 4
jn

j ii X X j
n

µ
=

= − =∑   and equalizing with the model counterparts  

and neglecting all the terms with , 2,3, 4j jθ ′ =  yields the following system of 
estimating equation for moment estimation, 

2 2 4 4
1 2 3 4ˆ ˆ ˆ ˆ, , 3 , 3 3cµ θ µ σ µ σ θ ν µ σ ν σ′ ′ ′ ′ ′ ′= + = = = + . The moment estimators 

are 

( )
( )

( ) ( )

44
2 3

2 14 2

ˆ
ˆ3ˆ ˆ, ' , '.

3
, c

µ σ µ
σ µ ν θ µ θ

σ ν σ

′−
′ = = = = −

′ ′
 When converted to the  

parameterization given by Kotz et al. [16], the approximate moment estimators  

for 2, , ,τ σ µ θ  are given respectively as 2 21 , , , cτ σ σ ν µ θ ν θ
ν

′ ′= = = = . The  

approximate moment estimators are not efficient but they are simple and given 
explicitly .Therefore, they can be used as starting points for the numerical algo-
rithms to implement QD or ML estimation. Moment estimators can also be veri-
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fied to see whether they are appropriate as starting points. This will be discussed 
in the next section. 

5.2. The Choice of an Initial Vector 

Most of the algorithms will return a local minimizer and the vector which gives 
the estimators is defined to be the global minimizer. Due to this limitation, some 
cares are needed to ensure that we can identify the global minimizer. In practice, 
it is important to test the algorithm with various starting vectors, see Andrews 
[30]. Andrews [30] has suggested that it is preferable to have the starting vector  

( ) ( ) ( ) ( ) ( )( )0 0 0 0 0, , ,θ µ σ τ ′=β  close to the vector of the estimators given by β   

which globally minimizes the objective function. We might look for a different 
starting vector if the vector of moment estimators cannot be used as a starting 
vector to initialize the numerical algorithm. 

The criterion function ( )Q β  given by expression (22) which is used to con-
struct goodness of fit test can also be used to select a good starting vector. The 
starting vector ( )0β  is subject to the screening test by checking whether 

( )( ) ( )0 2
0.95 16Q χ≤β , 

( )2
0.95 16χ  is the 95th percentile of the chi-square distribution with 16 degree 

of freedom to be qualified as a suitable starting vector, see expression (3.5) given 
by Andrews ([30], p. 919). If ( )0β  passes the screening test then one might con-
sider to use ( )0β  as the vector of starting points for the numerical algorithm 
used to find the vector of estimators, otherwise look for another one. 

5.3. A limited Simulation Study  

For financial data, observations are recorded as percentages so they are small in 
magnitude. We are in the situation of modeling with values for θ  and µ  are 
near 0. The plausible values for τ  and , 0 10,0 0.1σ τ σ< ≤ < ≤ . For parame-
ters with these ranges we observe that the ML estimators for τ  and σ  do not 
perform well for sample size as large as 5000n = . For comparisons between QD 
methods vs ML methods, the ratio of total Mean square errors is used as a 
measure for the overall relative efficiency. Due to the limited capacity on com-
puting as we only have access to a laptop computer, we can only use M = 100 
samples with each sample is of a size n = 5000. 

The overall relative efficiency for comparisons is defined as the ratio 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

MSE MSE MSE MSETMSE
.

ˆTMSE ˆ ˆ ˆMSE MSE MSE MSE

QD
ML

θ µ σ τ

θ µ σ τ

+ + +
=

+ + +



  

 

The expressions for MSE and TMSE which appear in Table 1 are estimated 
using simulated samples. The results of the simulation study are lengthy. We 
only extract the key findings, which is summarized using Table 1. 

The study seems to indicate that overall ML methods are less efficient than 
QD methods but ML methods are more efficient for estimating the first two 
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Table 1. Illustrations of simulation results. 

(a) 

Parameters 
values 

0θ =  0.0001µ = −  0.001σ =  0.5τ =  

MSE(ML) 125.376 10−×  102.960 10−×  132014.178 10−×  11534911.573 10−×  

MSE(QD) 126118.876 10−×  10104.562 10−×  131.099 10−×  115.083 10−×  

MSE(QD)/ 
MSE(ML) 

1138.031 35.316 45.457 10−×  69.502 10−×  

Overall relative efficiency: ( )
( )

TMSE QD
0.003

TMSE ML
= . 

(b) 
Parameters 

values 
0θ =  0.0001µ = −  0.001σ =  1.0τ =  

MSE (ML) 123.327 10−×  115.788 10−×  109.634 10−×  52.596 10−×  

MSE (QD) 12263740.061 10−×  1127671.291 10−×  100.105 10−×  50.000 10−×  

MSE (QD)/ 
MSE(ML) 

79,268.320 4771.434 0.0109 61.967 10−×  

Overall relative efficiency: ( )
( )

TMSE QD
0.0207

TMSE ML
= . 

(c) 
Parameters 

values 
0θ =  0.0001µ = −  0.001σ =  2.0τ =  

MSE(ML) 81.420 10−×  84.860 10−×  98882.744 10−×  45.6984 10−×  

MSE(QD) 83.518 10−×  811.500 10−×  90.001 10−×  40.000 10−×  

MSE(QD)/ 
MSE(ML) 

2.5265 2.3658 0.0001 74.19341 10−×  

Overall relative efficiency: ( )
( )

5TMSE QD
8.357 10

TMSE ML
−= × . 

 
parameters namely ,θ µ  for the AL family and for the entire GAL family in fi-
nite samples where little is known about the asymptotic distributions of the ML 
estimators. 

6. Financial Applications 
6.1. Option Pricing and Risk Neutral Parameters 

For options as they are tradable, risk neutral parameters are used for pricing. 
Risk neutral parameters are related to the physical parameters which can be es-
timated using historical data. A set of risk neutral parameters can be obtained by 
using the Esscher transform change of measure, see Schoutens ([31], p 77) based 
on the seminal works of Gerber and Shiu [12]. They can also be viewed as min-
imum entropy risk neutral parameters, see Miyahara [13]. We keep the four 
historical parameters of the GAL distribution as risk neutral parameters but in-
troduce an extra parameter h∗  which is given by the following equation with 
h  being the unknown variable and r is the known risk free rate, 
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( ) ( )log 1 logr M h M h= + −  

where ( )M s  is the moment generating function as given by expression (2). 
Therefore, the risk neutral parameters are given by the vector 

( )0 0 0 0 0, , , ,N hβ θ σ µ τ∗ ′= .  

The price of the asset is modeled as 0e TX
TS S=  where: 

a) 0S  is the initial asset price at time 0t = , 
b) 

1
T

T iiX R
=

= ∑ , 
c) the log returns ( ) ( )1log log , 1, ,i i iR S S i T+= − = 

 are i.i.d as ( )~R GAL β  
with mgf ( )M sβ . 

We also assume 1T ≥  and T  is a positive integer. 
For pricing an European call option with the initial price 0S , strike price K  

and interest rate r , the price of the European call option is ( )( )e rT
TE S K−

+
−  

where ( ) ( )( )max ,0T TS K S K
+

− = −  and the expectation is under risk neural 
parameters. Therefore, it is possible use simulated samples from a bilateral 
gamma distribution to obtain an estimate for ( )( )TE S K

+
−  and price the op-

tion. 
Senata ([4], p. 182-184) has illustrated the use of the GAL family, moment and 

ML methods to analyze historical data from the Dow Jones industrial average 
and other indexes. It is not difficult to see that QD methods can be considered as 
alternative methods for analyzing financial data. 

Beside option pricing, measures of risks are used in finance and actuarial 
sciences. These measures will depend on the underlying distribution which is 
specified by a set of parameters. We briefly discuss these notions below. The in-
ferences techniques can also be applied to estimate the parameters using histori-
cal data and quantify the level of risks incurred. 

6.2. VaR, CVar, EvaR Using the GAL Distribution 

The Value at Risk at confidence level 1 α−  of a continuous loss random varia-
ble X  with distribution function ( )F x  and density function ( )f x  is de-
fined as 

( ) ( )1
1 1VaR L Fα α−
− = −  is the quantile of the loss X R= −  specified by 

( )( )1P X VaR Xα α−> = , the probability of the potential loss encountered by 
the holder of a financial assetfor one unit of time. The conditional value at risk  

( ) ( )
1

1
1 d

VaR
CVaR X xf x x

α
α α −

∞

− = ∫ , see Rockafellar and Uriyasev [32] for this mea-  

sure of risk. If the log return random variable R  follows a ( ), , ,GAL θ σ µ τ , 
( )~ , , ,R GAL θ σ µ τ , then the loss random variable is ( )~ , , ,X GAL θ σ µ τ− − . 

Ahmadi-Javid [33] proposed a coherent measure of risk, the entropic value-at 
risk (EVaR) using the Chernoff bound, see the seminal paper by Chernoff [34] 
for the bound. EVaR is defined implicitly using of the moment generating func-
tion ( )M z . Since the moment generating function of the GAL distribution is 
relatively simple and does not involve the Bessel function, Evar can also be 
computed easily. For more discussions on estimation and risk measures, see 
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Toma and Dedu [35]. 

7. Conclusion 

As we can see in finite samples, ML methods only offer good estimators for two 
of the four parameters for the GAL family. Asymptotic normality can only be 
guaranteed for the AL family and the lack of a covariance matrix in closed form 
prevents hypotheses testing for the GAL family. Due to these restrictions, QD 
methods are developed as complementary methods to ML methods. The me-
thods appear to be suitable for estimation and for parameter testing. The me-
thods also produce a criterion function when evaluated at the values taken by the 
QD estimators gives a chi-square goodness-of-fit test statistics for the GAL 
model. The criterion function can be used to select a starting vector which is 
close to the vector of the QD estimators to start a numerical search algorithm. 
These last two features are not shared directly by ML methods and appear to be 
useful for applications. 

Acknowledgements 

The helpful and constructive comments of referees which lead to an improve-
ment of the presentation of the paper and support from the editorial staffs of 
Open Journal of Statistics to process the paper are all gratefully acknowledged 
here. 

References 
[1] Kotz, S., Kozubowski, T.J. and Podgorski, K. (2001) The Laplace Distribution and 

Generalizations. Birkhauser, Boston. https://doi.org/10.1007/978-1-4612-0173-1 

[2] Madan, D.P. and Senata, E. (1990) The Variance Gamma (VG) Model for Share 
Market. Journal of Business, 63, 551-524. https://doi.org/10.1086/296519 

[3] Madan, D.P., Carr, P. and Chang, E.C. (1998) The Variance Gamma Process and 
Option Pricing. European Finance Review, 2, 79-105.  
https://doi.org/10.1086/296519 

[4] Seneta, E. (2004) Fitting the Variance Gamma Model to Financial Data. Journal of 
Applied Probability, 41, 177-187. https://doi.org/10.1017/S0021900200112288 

[5] Podgorski, K. and Wegener, J. (2011) Estimation for Stochastic Models Driven by 
Laplace Motion. Communications in Statistics, Theory and Methods, 40, 3281- 
3302. https://doi.org/10.1080/03610926.2010.499051 

[6] McNeil, A.J., Frey, R. and Embrechts, P. (2005) Quantitative Risk Management. 
Princeton University Press, Princeton. 

[7] Protassov, R.S. (2004) EM-Based Maximum Likelihood Parameter Estimation for 
Multivariate Generalized Hyperbolic Distributions with Fixed λ. Statistics and 
Computing, 14, 67-77. https://doi.org/10.1023/B:STCO.0000009419.12588.da 

[8] Hu, W. (2005) Calibration of Multivariate Generalized Hyperbolic Distributions 
Using the EM Algorithm with Applications in Risk Management, Portfolio Optimi- 
zation and Portfolio Credit Risk. Unpublished PHD Thesis, Department of Mathe- 
matics, The Florida State University, Tallahassee. 

[9] Louis, T.A. (1982) Finding the Observed Information Using the EM Algorithm. 
Journal of the Royal Statistical Society Series B, 44, 98-130. 

https://doi.org/10.1007/978-1-4612-0173-1
https://doi.org/10.1086/296519
https://doi.org/10.1086/296519
https://doi.org/10.1017/S0021900200112288
https://doi.org/10.1080/03610926.2010.499051
https://doi.org/10.1023/B:STCO.0000009419.12588.da


A. Luong 
 

367 

[10] McLachlan, G.J. and Krishnan, T. (2008) The EM Algorithm and Extensions. 2nd 
Edition, Wiley, New York. https://doi.org/10.1002/9780470191613 

[11] Küchler, U. and Tappe, S. (2008) Bilateral Gamma Distributions and Processes in 
Fi-nancial Mathematics. Stochastic Processes and Their Applications, 118, 261-283. 

[12] Gerber, H.U. and Shiu, E.S.W. (1994) Option Pricing by Esscher Transforms. 
Transactions of the Society of Actuaries, 46, 99-191. 

[13] Miyahara, Y. (2012) Option Pricing in Incomplete Markets: Modeling Based on 
Geometric Lévy Processes and Minimal Entropy Martingales Measures. Imperial 
College Press, London. 

[14] Bierlaire, M. (2006) Introduction à l’optimisation différentiable. Presses Polytech- 
niques et Universités Romandes, Lausanne. 

[15] Huber, P. (1981) Robust Statistics. Wiley, New York.  
https://doi.org/10.1002/0471725250 

[16] Kotz, S., Kozubowski, T.J. and Podgorski, K. (2002) Maximum Likelihood Estima-
tion of Asymmetric Laplace Parameters. Annals of Institute of Statistical Mathema- 
tics, 54, 816-826. https://doi.org/10.1023/A:1022467519537 

[17] Huber, P. (1967) The Behaviour of Maximum Likelihood Estimates under Nonstan- 
dard Conditions. In: Proceeding 5th Berkeley Symposium on Mathematical Statis- 
tics and Probability, Vol. 1, University of California Press, Berkeley. 

[18] Amemiya, T. (1985) Advanced Econometrics. Harvard University Press, Cam-
bridge. 

[19] Newey, W.K. and McFadden, D. (1994) Large Sample Estimation and Hypothesis 
Testing. In: Engle, R.F. and McFadden, D., Eds., Handbook of Econometrics, Vol. 4, 
North Holland, Amsterdam. 

[20] Broniatowski, M., Toma, A. and Vajda, I. (2012) Decomposable Pseudodistances 
and Application in Statistical Estimation. Journal of Statistical and Planning Infe- 
rence, 142, 2574-2585. 

[21] Hogg, R., McKean, J.W. and Craig, A.T. (2013) Introduction to Mathematical Stati- 
stics. 7th Edition, Pearson, New York. 

[22] Hinkley, D.V. and Revankar, N.S. (1977) Estimation of the Pareto Law form Under- 
reported Data: A Further Analysis. Journal of Econometrics, 5, 1-11. 

[23] Rudin, W. (1976) Principles of Mathematical Analysis. McGraw Hill, New York. 

[24] Woolridge, J.M. (2010) Econometric Analysis of Cross Section and Panel Data. 2nd 
Edition, MIT Press, Cambridge. 

[25] Lehmann, E.L. (1999) Elements of Large Sample Theory. Springer, New York.  
https://doi.org/10.1007/b98855 

[26] Luong, A. and Thompson, M.E. (1987) Minimum Distance Methods Based on Qua- 
dratic Distances for Transforms. Canadian Journal of Statistics, 15, 239-251.  
https://doi.org/10.2307/3314914 

[27] Theil, H. (1971) Principle of Econometrics. Wiley, New York. 

[28] Harville, D.A. (1997) Matrix Algebra from a Statistician’s Perspective. Springer, 
New York. https://doi.org/10.1007/b98818 

[29] Fieller, N. (2016) Basics of Matrix Algebra with R. Chapman and Hall, New York. 

[30] Andrews, D.W.K. (1997) A Stopping Rule for the Computation of the Generalized 
Method of Moments Estimators. Econometrica, 65, 913-931.  
https://doi.org/10.2307/2171944 

[31] Schoutens, W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives. 
Wiley, New York. https://doi.org/10.1002/0470870230 

https://doi.org/10.1002/9780470191613
https://doi.org/10.1002/0471725250
https://doi.org/10.1023/A:1022467519537
https://doi.org/10.1007/b98855
https://doi.org/10.2307/3314914
https://doi.org/10.1007/b98818
https://doi.org/10.2307/2171944
https://doi.org/10.1002/0470870230


A. Luong 
 

368 

[32] Rockafellar, R.T. and Uriyasev, S. (2002) Conditional Value-at-Risk for General 
Loss Distribution. Journal of Banking and Finance, 26, 1443-1471. 

[33] Ahmadi-Javid, A. (2012) Entropic Value-At Risk: A New Coherent Risk Measure. 
Journal of Optimization: Theory and Applications, 155, 1105-1123.  
https://doi.org/10.1007/s10957-011-9968-2 

[34] Chernoff, H. (1952) A Measure of Asymptotic Efficiency for Tests of a Hypothesis 
Based on a Sum of Observations. Annals of Mathematical Statistics, 23, 497-507.  
https://doi.org/10.1214/aoms/1177729330 

[35] Toma, A. and Dedu, S. (2014) Quantitative Techniques for Financial Risk Assess-
ment: A Comparative Approach Using Different Risk Measures and Estimation Me- 
thods. Procedia Economics and Finance, 8, 712-719. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojs@scirp.org  

https://doi.org/10.1007/s10957-011-9968-2
https://doi.org/10.1214/aoms/1177729330
http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	Likelihood and Quadratic Distance Methods for the Generalized Asymmetric Laplace Distribution for Financial Data
	Abstract
	Keywords
	1. Introduction
	1.1. Generalized Asymmetric Laplace (GAL) Distribution
	1.2. Some Properties of the GAL Distribution and Parameterisations

	2. Some Subfamilies of the GAL Family
	3. Maximum Likelihood Estimation for the GAL Family
	3.1. Maximum Likelihood Estimation for the GAL Distribution
	3.2. Asymptotic Covariance Matrix for the AL Family

	4. Quadratic Distance Methods
	5. Numerical Issues 
	5.1. Simplemoment Estimators
	5.2. The Choice of an Initial Vector
	5.3. A limited Simulation Study 

	6. Financial Applications
	6.1. Option Pricing and Risk Neutral Parameters
	6.2. VaR, CVar, EvaR Using the GAL Distribution

	7. Conclusion
	Acknowledgements
	References

