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Abstract 
This paper considers the NP (Non-deterministic Polynomial)-hard problem 
of finding a minimum value of a quadratic program (QP), subject to m non- 
convex inhomogeneous quadratic constraints. One effective algorithm is pro-
posed to get a feasible solution based on the optimal solution of its semidefi-
nite programming (SDP) relaxation problem. 
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1. Introduction 

Consider the following quadratic optimization problem with non-convex inho-
mogeneous quadratic constraints: 

( )

( )

T

TT

min   

s.t.    1, 1, , ,

nx R

k k

f x x Ax

x A x b x k m

∈
=

+ ≥ = 

             (1) 

where ( ), 1, ,k n nA A R k m×∈ =   are symmetric positive semidefinite matrices 
and k nb R∈ . Note that if 1,n =  then the problem (1) is easily solved, so as-
sume 2.n ≥  Generally, this problem is NP-hard [1] [2] [3]. It has a lot of ap-
plications in telecommunications, robust control, portfolio and so on. So it’s 
helpful to solve it. 

By means of the work of Lovász and Schrijver [4], Shor [5], and others that 
certain NP-hard combinatorial optimization problems can be approximated by 
semidefinite programming (SDP) problems, for which efficient solution me-
thods exist [6] [7]. So many mathematics workers with this motive put forward a 
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lot of algorithms to solving quadratic optimization problem based on the semi-
definite programming (SDP) relaxation. Recently, there were several results on 
solving different forms of quadratic problems. The results can be summarized as 
follows. 

• � If all kA  are symmetric positive semidefinite n n×  matrices with posi-
tive definite sum and A is an arbitrary symmetric n n×  matrix. A. Nemirov- ki 
[8] produce a feasible solution x  such that, with constant probability, 

( ) ( ) ( )2

1 .
2 ln 2

f x v SDP
m

≥ ⋅                      (2) 

• � If ( )T
, 0, , 0,k k k kA A A A b= =  Luo et al. [9] showed that the ratio be-

tween the original optimal value and the SDP relaxation optimal value is 
bounded by ( )2O m , have 

( )
( )

227 .
π

v P m
v SDP

≤                          (3) 

• � If all , kA A  are symmetric matrices, and two or more of them are indefi-
nite. S. He et al. [10] compute a feasible solution x  such that, 

( ) ( )
6 210 .
π
mf x v SDP≤ ⋅                     (4) 

• � Of special interest is the case of ellipsoid constraints 

( ) ( )
( )

T T

2

, 2 ,

, 1, , ,

k k k k k

k k k

A F F b F

c g h k m

= =

= − = 

                   (5) 

where , , 0,1,k n k n kF R g R h∈ ∈ ∈  ⋅  denotes the Euclidean norm, so 
2T , 1, ,k k k k k kx A x b x c F x g h k m+ + = + − =  . Nemirovski [8] show that if all 

0kb =  and kA  are positive semidefinite. Then a feasible solution x  can be 
generated from (SDP) satisfying 

( ) ( )( ) ( ) ( ){ }1, ,
1 , min 1, max .

2 ln 2 1
k

k mf x v SDP m rank A
m

µ
µ =≤ ⋅ = +

+ 

    (6) 

• � In particular, if (1) has a ball constraints, { }min 1, .m nµ = +  Ye and 
Zhang(Corollary 2.6 in [11]) showed that a feasible x satisfying 

( ) { } ( )1 ,
min 1,

f x v SDP
m n

≤ ⋅
−

                (7) 

can be found in polynomial time. 
• � Ye. [12] extended the above result to allow the ellipsoids not to have a 

common center but assuming 0A . Ye showed that a feasible solution x  can 
be randomly generated such that 

( ) ( )
( )( )( ) ( )

2

1, ,T

1, ,

1 max
.

4 ln 4 max

k

k m

k

k m

g
E xA x v SDP

mn rank A

=

=

−
≤ ⋅

⋅





            (8) 

However, the existing algorithms are just for the problem of discrete problems 
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or continuous problems, which is mostly based on homogeneous or inhomoge-
neous convex constraint problems. For this kind of quadratic optimization 
problem with non-convex inhomogeneous quadratic constraints, cannot find a 
very effective algorithm. This paper will propose a new effective algorithm to 
solve this problem. 

This paper is organized as follows. In Section 2, we present a semidefinite pro- 
gramming (SDP) relaxation of (1). In Section 3, we propose a new effective algo-
rithm to get the feasible solution of quadratic optimization problem (1) with 
non-convex inhomogeneous quadratic constraints. At last, some conclusions 
and the future works are given in Section 4. 

Notations. Throughout this paper, we denote by nR  and nS+  the n-dimen- 
sional real vector space and n n×  positive semidefinite symmetric matrices 
space. 0A  denotes that A is semidefinite. ( )Tr ⋅  represents the trace of a 
matrix. The inner product of two matrices A and B is denoted by 

( ) ( )1 1
n nT

ij iji jA B Tr AB a b Pr
= =

• = = ⋅ ⋅∑ ∑  stands for the probability. 

2. Semidefinite Programming (SDP) Relaxation 

In this section, we present a semidefinite programming (SDP) relaxation of (1). 
To avoid trivial cases, we first make the following assumption. 

Assumption Let 2k k kb A y= , has a solution, .k ny R∈  
Assume t is a constant, and satisfy 2 1t = . (1) is equivalent to: 

( )
( )

( )
( ) ( )

T

,

T TT 2
T

2

min    ,

1     s.t.        1, 1, ,
1

                  1.

nx t R R

k k k k k

k k k

f x t x Ax

x A x b x t y A y t k m
y A y

t

∈ ×
=

 + ⋅ + ⋅ ≥ =  +

=


(9) 

Let *x  be the global optimal solution of the above problem, the objective 
value is ( )*v x . Assume 0X  , it’s block structure like this: 

( ) ( )

( )( ) ( )
( ) ( )

1 3

1 1
3 2

.n n
H

X X
X S

X X
+ × +

+

 
 = ∈
 
 

              (10) 

where 

( ) ( ) ( )
T T T

1
0 1 20, 0, 1, , .

0 0 11
2

k k

k

k k k k k k k

A bA
B B k m

y A y b y A y

 
  

= = =  
   +

  

  (11) 

By letting TX xx=  and dropping the rank one constraint, the semidefinite 
programming relaxation of (9) can be drawn up as follows. 

( ) ( )1 1
1, 1

min   
 s.t.   1, 1, ,
        1, 0, .

k

n n
n n

B X
B X k m
X X X R + × +

+ +

•
• ≥ =

= ∈




             (SDP) 

An optimal solution of SDP relaxation (SDP) can be computed efficiently us-
ing, say, interior-point mathods; see [13] and references therein. 
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3. Algorithm 

In this section, we bring an effective algorithm for solving (1). The algorithm is 
divided into two parts. The main idea as follows: the first stage produces a solu-
tion which satisfies the first constraint of problem (9). Making a small change to 
the solution which obtained in the first stage, we can get the solution of (9) in 
the second stage. We will set the randomization algorithm as follows. 

3.1. The First Stage 

The first stage of the algorithm uses the randomization algorithm, which is pro-
posed by Luo et al. [3]. At first, we need obtain an optimal solution *X  of 
(SDP), then construct a feasible solution for the first constraint of problem (9) 
using the following randomization procedure: 
 
Algorithm 1 The first stage of approximation algorithm 

step 1: Generate a random vector nRξ ∈  from the real-valued normal distribution ( )*0,N X .  

step 2: Let 
Tmin k

k

x
B

ξ
ξ ξ

= , ( )TT 1
1, .n

nx x x R +
+= ∈   

 
First, it can be easily verified that ( )TT

1, nx x x +=   satisfy the first constraint of 
problem (9). 

( )
( ) ( )

TT TT 2
1 1T T

1 1,
min1

k
k k k k k

n n kk k k
k

Bx A x b x x y A y x
By A y

ξ ξ
ξ ξ+ +

 + ⋅ ⋅ + ⋅ = ≥  +
   (12) 

(12) is equivalent to: 

( )
( )

T
T

T 2
1 1 1 1

1 1 , 1, , .
1

k k k k k

k k k
n n n n

x x xA b y A y k m
x x x xy A y + + + +

  
 + + ≥ ∀ = 
  +  



   

(13) 

Lemma 1 For x  generated in step 2, we have that 

2 4 2
1

1 4 1 .
10010n

pr
x m+

 
≥ ≥ 

 

                     (14) 

Proof. By the step 2, we first have 
T

1
1 T

,
min

n
n k

k

ex
B

ξ

ξ ξ
+

+ =                        (15) 

where ( )1 1
1

n
ne R + ×
+ ∈  is a vector with the ( )1 thn +  element being 1 and all the 

other elements being 0. By denoting T
1 1,n nQ e e+ +=  we obtain that 

T T T
1 12

1

T T

1 1 min

1 min .

k
n nk

n

k

k

pr M pr B e e
Mx

pr B Q
M

ξ ξ ξ ξ

ξ ξ ξ ξ

+ +
+

   ≤ = ⋅ ≤   
  
 = ⋅ ≤ 
 



        (16) 

By using the total probability formula for the last term in (16), we have 
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( ) ( )
( ) ( )

T T T

T T

1 min > min 1

1 > min .

k k

k k

k

k

pr M Q pr M B pr M B
M

pr Q pr M B

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

 ≤ ⋅ ≤ ⋅ ≤ + ⋅ 
 

≤ ≤ +
   (17) 

By Lemma 3.1 and Lemma 3.2 in [10], 

( ) ( )( ) ( )( )T * T T T 31 1 .
100

pr Q pr Tr QX Q pr E Q Qξ ξ ξ ξ ξ ξ ξ ξ≤ = ≤ = ≤ < −  (18) 

Since *X  is feasible for (SDP), it follows that ( )* 1kTr B X ≥  for all 
1, ,k m=  . Since ( ) ( )T * 1,k kE B Tr B Xξ ξ = ≥  so 

( ) ( )( )
( )( ) ( )( )

T * T

T T T T

1

min min

 min .

k k k

k k

m
k k k k

k k

pr M B pr MTr B X B

pr ME B B pr ME B B

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ
=

> ≤ >

= > ≤ >∑
    (19) 

According to Lemma 1 in [9], we have 

( )( )
( )( )T T

2 2 1 1
max , .

π 2
k k

m M
pr ME B B Mξ ξ ξ ξ

 + − > ≤  −  

   (20) 

Thus, it follows from (17), (18), (19) and (20) that: 

( )( )
2

1

2 2 1 11 31 max , .
100 π 2n

m M
pr M m M

x +

 + −   ≤ ≤ − + ⋅    −    


   (21) 

The proof is completed by setting 4 2
4 .

10
M

m
=  

Note that by Lemma 1 and (13), it can be concluded that 

( )
( )

T
T

T 4 2
1 1 1

1 4 1 .
100101

k k k k k

k k k
n n n

x x xpr A b y A y
x x x my A y + + +

     + + ≥ ≥  
  +   
  

(22) 

So there is a x , for any 1, ,k m=   satisfies: 

( )
( ) ( )TT

T 4 2
1 4 .

101
k k k k k

k k k
x A x b x y A y

my A y
 + + ≥  +

      (23) 

3.2. The Second Stage 

In this part, we make a change to the solution which constructed in the first 
stage in order to satisfy the problem (9). In this stage, we will by ways of the al-
gorithm in [14]. 

The procedure as follows: 
 

Algorithm 2 The second stage of approximation algorithm 

step 1: Let 
1

ˆ : .
n

xx
x +

=


 

step 2: Introduce a parameter [ ) ( ) ( ) ( ) ( ){ }TTˆ ˆ ˆ ˆ: min 1, , 1, 1, , .k kx A x b x k mτ τ τ τ τ= ∈ +∞ + ≥ =   
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Let ( ) ( )T2 Tˆ ˆ ˆk kf x A x b xτ τ τ= + , so ( )f τ  can be seen as a quadratic func-
tion for τ . The symmetry axis of ( )f τ  is: 

( )T

T

ˆ
.

ˆ ˆ2

k

k

b x
x

x A x

−
=                            (24) 

Because the 


x  can’t make ( ) ( ) ( ) ( )
TTˆ ˆ ˆ 1k kx A x b x+ ≥  for all 1, ,k m=   

set up. We introduce a parameter 


τ , and construct a new solution ˆx̂τ . It’s 
the feasible solution of (1). 

When ( )TTˆ ˆ ˆ 1k kx A x b x+ > , the symmetry axis of ( )f τ  satisfies: 

( )T
T

T T T

ˆ ˆ ˆ 1 1 1 1 .
ˆ ˆ ˆ ˆ ˆ ˆ2 22 2 2

k k

k k k

b x x A xx
x A x x A x x A x

− −
= < = − <             (25) 

So for all 1,τ >  can make ( ) ( ) ( ) ( )
TTˆ ˆ ˆ 1k kx A x b xτ τ τ+ >  set up. It’s helpful 

for us to solve the problem, because we only need to find τ  satisfying 

( ) ( ) ( ) ( )
TTˆ ˆ ˆ 1k kx A x b xτ τ τ+ >  in the situation of ( )TTˆ ˆ ˆ 1k kx A x b x+ ≤  

When ( )TTˆ ˆ ˆ 1k kx A x b x+ ≤ , because ( )0 1, ,kA k m=   are symmetric, 

2k k kb A y= . To simplify the writing, we introduce the following notations: 



( )


( )


( ) ( )
1 1 1 1
2 2 2 2ˆ ˆ, , ,k k k k k k

k k kx A x y A y z A x A y= = = +     (26) 

So 

( ) ( )

( )
 

( )
 

( )
  

T2 T

2 2 2 2
T2

2 2 2

2

ˆ ˆ ˆ

ˆ

.

k k

k
k k k k

k k k

f x A x b x

x x b x y y

x z y

τ τ τ

τ τ τ τ

τ τ τ τ

= +

        
 = − + + + −                       

     
= − + −          

     

   (27) 

According to the norm inequality: 

.x y x y− ≥ −                         (28) 

we have 



( ) ( ) ( ) ( )
 

22 221 1 1 1
2 2 2 2ˆ ˆ .k k k k k k

k k kx A x A x A y A y z y
     
 = ≥ + − = −              

 (29) 

For [ )1, ,τ ∈ +∞  using (28), (29). The last term in (27) can be simplified to 
be 

( )
   

         

2 2 2

2

2 2 2

2 22 2 ,

k k k k

k k k k k k k k k k

z y z y

z y y z y z y y z y

τ τ τ τ

τ τ τ τ

     
≥ − − + −          

     
             = − + − = − + −                                   

 (30) 
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Whenever 

     

 

2 2

2

1

,

k k k k k k

k k

y z y z y y

z y

τ

       
 − − + − +                    ≥

 
−  

 

 it can be easily 

checked that ( ) ( ) ( ) ( )
TTˆ ˆ ˆ 1.k kx A x b xτ τ τ+ ≥  

From (23), we can get 

( )
( ) ( )

 

TT
T 4 2

2

1 4ˆ ˆ ˆ
101

1 1 ,
50

k k k k k

k k k

k k

x A x b x y A y
my A y

z y
m

 + + ≥  +

  
 ⇔ ≥ +      

      (31) 

and we also have 

( )
 

2
TTˆ ˆ ˆ 1 1 .k k

k kx A x b x z y
 

+ ≤ ⇔ ≤ +   
 

             (32) 

Thus 

     

 

 

 

2 2 2

21, , 1, ,

1 1

ˆ max max .

k k k k k k k k

k m k m

k kk k

y z y z y y y y

z yz y

τ
= =

            − − + − +       + +                         ≤ ≤
 

−−  
 

 

 (33) 

Using (31) and (32), the last term in (33) can be simplified as 

 

 

 

 

2 2

21, , 2

1 1

max , .
1 11

50

k k k k

k m

k kk k

y y y y

y yy y
m

=

 
        
 + + + +                       ≤  

      
  + −   + −               



       (34) 

We will give the analysis of (34) as follows. 
First, let 



 

 



 

 

2 2

2 2

1 1

, .
11 1

50

k k k k

k k

k k k k

y y y y

f y g y

y y y y
m

       
+ + + +                        = =                  + −    + −             

  (35) 

we can simplified 


kf y
 
  
 
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

 

 

 

2

2
2

2

1

1 .

1

k k

k k k

k k

y y

f y y y

y y

   
+ +                  = = + +                      + −      
   

          (36) 

Since 


0ky ≥ , we know that 


kf y
 
  
 

 is an increasing function about 


ky . 

However, 


kg y
 
  
 

 is a function depend on 


ky  and the number of the con-

straints. According to simple calculations, we find, when satisfies 
 1

50 1ky
m

<
−

, 


kg y
 
  
 

 is an increasing function about 


ky . In this situation, 

we also have 
 

k kg y f y
   

>      
   

. When 
 1

50 1ky
m

>
−

, 


kg y
 
  
 

 becomes small-

er with the increase of 


ky . 

where 

 

1 2 1, ,1, ,
max , min .k kk mk m

y yγ γ
==

   
= =      

   


              (37) 

we can write (34) as a piecewise function about 1γ  and 2γ  

( )

( )

( )( )

( )

( )( )
( )
( )

2
1 1

1 2
2

1 1

1 2 1 2

2 2
2 2 1 1

1 22
2

1 1
2 2

1 1,
50 11 1

50

1 1, ,
50 1 50 1

1 1 1max , , .
50 11 11

50

m
m

f
m m

m
m

γ γ
γ γ

γ γ

γ γ γ γ

γ γ γ γ
γ γ

γ γγ γ


 + + < −
 + −


= +∞ > < − −
  
  

+ + + +   >  − + − + − 
 

(38) 

So it can be easily verified that 

( )
 

1 2 1 2 1, ,1, ,
ˆ, ,  with  max , min ,k kk mk m

x f x y yγ γ γ γ
==

   
= ⋅ = =      

   


          (39) 

is a feasible solution of the original problem. 

4. Conclusions 

For the quadratic optimization problem with non-convex inhomogeneous qua-
dratic constraints, it’s NP-hard. We can’t find an effective algorithm solving it. 
In this paper, we put forward an effective algorithm. According to it, many 
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problems in life can be solved. Through the algorithm, we can get the feasible 
solution of (1). Transforming the original problem into (SDP) is a very impor-
tant step in solving the problem. So we give the semidefinite programming 
(SDP) relaxation of (1) in Section 2, then propose an effective algorithm which 
given in Section 3 to construct the feasible solution of (1). 

In the future, I will do the following work: discusses the quality of the feasible 
solution about (1), and gives some numerical experiments to verify it, we will 
consider the problem with inhomogeneous objective function. To this problem, 
we want to find an algorithm solve it by ways of the effective algorithm which 
put forward in this paper. 
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