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Abstract 
It is important to segment mass region accurately in a computer-aided diag-
nosis (CADx) scheme for evaluating the likelihood of malignancy of the mass 
on ultrasonographic breast image. The purpose of this study was to develop a 
novel level set method for segmentation of breast mass on ultrasonographic 
image. Our database consisted of 151 ultrasonographic images with 70 malig-
nant and 81 benign breast masses. In a novel level set method, an energy func-
tion was defined with region-based, edge-based, and regularizing terms. The 
region-based term analyzed global information, whereas the edge-based term 
analyzed local information. The regularizing term also controlled the length of 
the boundary curve. The region of breast mass was segmented so that the 
energy based on those terms was minimized. With our proposed method, true 
positive (TP) ratio, false positive (FP) ratio, jaccard similarity (JS), and Dice 
similarity coefficient (DSC) were 92.2%, 9.1%, 84.2%, and 91.3%, respectively. 
These results tended to be substantially higher than those with two conven-
tional segmentation methods. Our proposed method based on the novel level 
set method was shown to segment mass region accurately on ultrasonographic 
breast image. 
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1. Introduction 

It can be difficult for clinicians to determine whether a lesion with breast mass is 
malignant or benign since they are often obscure at ultrasonography. The posi-
tive predictive value of ultrasonography, i.e., the ratio of the number of breast 
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cancers found to the number of biopsies, is typically 10% - 20% [1] [2] [3] [4] [5]. 
To improve this positive predictive value, many investigators have developed 
computer-aided diagnosis (CADx) schemes [6]-[12]. Objective features for 
shape information such as shape irregularity, depth-width ratio, and degree of 
circularity were determined from the segmented mass region in conventional 
CADx schemes. The likelihood of malignancy for the mass was then evaluated 
by analyzing those features. Inaccurate segmentation of mass region will lead to 
inaccurate evaluation of the likelihood of the malignancy. Therefore, some in-
vestigators have developed computerized segmentation methods for breast 
masses on ultrasonographic images. Park et al. [13] proposed a computerized 
segmentation method based on wavelet transformation for solid nodules. Shan 
et al. [14] developed a completely automatic segmentation method using a re-
gion growing technique. These methods analyzed the likelihood that each pixel 
belonged to a breast mass on the ultrasonographic image. Therefore, these me-
thods occasionally generated holes and isolated points in ultrasonographic im-
ages with speckle-pattern noise. To reduce the influence of speckle-pattern noise, 
it is important to analyze not only local image information but also global in-
formation. 

A level set method based on an active contour model [15] [16] [17] [18] is one 
of the region extraction methods which have been widely used for medical im-
ages. Chan and Vese proposed a region-based active contour without edges 
model (ACWE) which analyzed global information such as the means of differ-
ent regions, and showed better than other models for regions with weak edges 
[17]. However, it would be difficult to apply the ACWE into the ultrasono-
graphic images with inhomogeneous intensities because it assumes that the im-
age was statistically homogeneous.  

It is known that a Gaussian mixture model (GMM) is effective statistical mod-
eling method for modeling a complex distribution of image. In previous studies, 
GMM was shown to be useful in color data modeling and human skin color 
modeling [19] [20]. Therefore, we considered that it would be able to segment 
mass regions on ultrasonographic images more accurately by introducing the 
concept of statistical modeling method to a term of an energy function in the 
level set method. 

The purpose of this study was to develop a novel level set method introduced 
the concept of statistical model. In the level set, an energy function was defined 
with three energy terms: a region-based term, edge-based term, and regularizing 
term. The concept of statistical model was introduced as the region-based term. 
The region of the breast mass was segmented so that the energy based on those 
terms was minimized. The segmentation performance was evaluated by applying 
our proposed method to our database, and was also compared with those for two 
conventional segmentation methods. 

2. Materials 

Our database consisted of 151 ultrasonographic breast images obtained from 151 
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patients at Mie University Hospital, Tsu, Japan. It included 70 malignant and 81 
benign masses. The pathology of each mass was proved by pathological diagno-
sis. The ultrasonographic images were acquired with an ultrasound diagnostic 
system (APLIO XG SSA-790A, Toshiba Medical Systems Corp.) with a 12-MHz 
linear-array transducer (PLT-1204AT). The diagnosis of benign cases was con-
firmed by fine needle aspiration, and then the patients were again examined at 6 
to 12 months after the initial diagnosis. The ultrasonographic image was con-
structed from a pixel size of 0.05 mm × 0.05 mm and a grey scale resolution of 
256. The true breast mass regions were determined as gold standard by the con-
sensus of an experienced clinician and breast surgeon. Informed consent was 
obtained from all patients. Institutional review board approval was obtained for 
this study at Mie University Hospital. 

Our database was divided randomly into two datasets A and B for optimizing 
and evaluating our proposed methods. The dataset A consisted of 31 malignant 
and 44 benign masses, whereas dataset B consisted of 39 malignant and 37 be-
nign masses. 

3. Methods 

Figure 1 shows a schematic diagram of our proposed method for the segmenta-
tion of region of breast masses. The contrast of mass region in ultrasonographic 
image was first enhanced using a modified sigmoid function [21]. The region of 
breast mass was segmented by the novel level set method with the energy func-
tion consisted of three energy terms: a region-based term, edge-based term, and 
regularizing term. 
 

 
Figure 1. Schematic diagram of our proposed method for the segmentation of region of 
breast masses. 
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3.1. Contrast Enhancement 

In ultrasonographic breast images, contrast between mass and background tissue 
was often low. We first normalized an input ultrasonographic image (I) using a 
following equation. 

( ) ( )( ) ( ), , .NI x y I x y Min Max Min= − −              (1) 

( ),I x y  was a pixel value at each pixel ( ),x y . Min and Max were the mini-
mum and maximum pixel values in the input image I. The value range of the 
normalized image NI was from 0.0 to 1.0. To enhance the contrast, we employed 
a modified sigmoid function [21] defined by 

( ) ( )( )( )( ),, 1 1 e .c th NI x yCE x y −= +                   (2) 

( ),CE x y  was the enhanced contrast image. c was a contrast factor, whereas 
th was the threshold value. In the modified sigmoid function, it is possible to 
change the amount of lightening and darkening to control the overall contrast 
enhancement by adjusting c and th [21]. Kannan et al. reported that an optimal 
threshold value of th was between 0.3 and 0.5 [21]. In this study, c and th were 
set to 6.5 and 0.4, respectively. 

3.2. Energy Function for Level Set Method 

The input image I (=CE) was considered as a real positive function defined in a 
domain 2RΩ ⊂ . We defined a closed curve ( ) ( ){ }, , , 0C x y x yφ∈Ω =  parti-
tioning the input image I to an inside area ( )inΩ  and an outside area ( )outΩ . 
φ  was the level set function. The inΩ  was represented as the set 
( ) ( ) ( ){ }, | , 0, ,x y x y x yφ > ∈Ω , whereas outΩ  was represented as the set  
( ) ( ) ( ){ }, | , 0, ,x y x y x yφ < ∈Ω . Here, in outΩ Ω = Ω  and in outΩ Ω = Φ . 

Energy function of our proposed method was defined as the following equation. 

( ) ( ) ( ) ( ).R B CE C E C E C E Cα β γ= ⋅ + ⋅ + ⋅            (3) 

Here, the energy terms RE , BE , and CE  were a region-based term, an 
edge-based term, and a regularizing term, respectively. α , β , and γ  were the 
weights for each of the energy terms. The details of those energy terms were de-
scribed in the following sections. An initial contour for the level set method was 
manually determined by a rectangle contour surrounding breast mass. 

3.2.1. Region-Based Term 
By using the probability distributions FP  and BP  of the inside area ( )inΩ  
and the outside area ( )outΩ , the region-based term was defined as 

( ) ( ) ( ){ }log logR F BE C P P= − +                 (4) 

Here, PF and PB were given by 

( )| ,F r in pP P I= Ω                       (5) 

( )| .B r out pP P I= Ω                       (6) 

( )|r in pP IΩ  and ( )|r out pP IΩ  were defined as the following equations. 
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( ) ( ) ( )
( )

|
| r in r p in

r in p
r p

P P I
P I

P I

Ω Ω
Ω =                (7) 

( ) ( ) ( )
( )

|
| r out r p out

r out p
r p

P P I
P I

P I

Ω Ω
Ω =               (8) 

( )r inP Ω  and ( )r outP Ω  were prior probabilities (spatial probabilities), whe-
reas ( )|r p inP I Ω  and ( )|r p outP I Ω  were likelihoods. pI  was pixel value at 
pixel p ( ( ),I x y= ). ( )r inP Ω  and ( )r outP Ω  were derived from the distance 
transform of the initial contour for the level set. The simple shape information 
would be utilized as the prior probability. The distance was normalized from 0.0 
to 1.0. The prior probabilities were defined by the following equations. 

( ) ( ) ( ) ( )if
0.0 otherwise

in in out
r in

d d d
P

 Ω Ω ≤ ΩΩ = 


　

　　　
          (9) 

( ) ( )1r out r inP PΩ = − Ω                   (10) 

Here, ( )ind Ω  and ( )outd Ω  were defined as the normalized distances to the 

inΩ  and the outΩ . The likelihoods ( )|r p inP I Ω  and ( )|r p outP I Ω  were de-
rived from the GMM. To determine ( )|r p inP I Ω  and ( )|r p outP I Ω , we ex-
tracted five features based on the intensities in the input image I. These five fea-
tures were (1) mean value, (2) standard deviation, (3) median value, (4) mini-
mum value, and (5) maximum value. These features were the general stochastics 
used in image analysis. The GMM with the five features was obtained by the fol-
lowing equations. 

( ) ( )
1

| | ,
K

r p i i p i i
i

P I w p I µ
=

⋅ = ∑∑                   (11) 

( ) ( ) ( )
1T 1 2

1| , ln
2i p i i p i i p i ip I I Iµ µ µ−∑ = − ∑ − + ∑           (12) 

K was the number of components in the mixture model. iµ  and i∑  were 
the mean and the covariance of the i-th Gaussian component, whereas iw  was  

the proportion of the i-th normal density in the mixture such that 
1

1
K

i
i

w
=

=∑ . An  

Expectation-Maximization (EM) algorithm [22] [23] [24] was employed to fit 
the GMM. The EM algorithm was used for the estimation of the parameter in 
the GMM. When given a set of feature vectors 1 2, , , nI I I , the maximum like-
lihood estimation of { } 1

, , K
i i i i

θ ω µ
=

= ∑  was defined by 

( ) ( )arg max | arg max log |ML n np I p I
θ θ

θ θ θ= =             (13) 

The EM algorithm was an iterative method to obtain MLθ . When given the 
current estimation of the parameter set θ , each iteration of the EM algorithm 
re-estimated the parameter set according to an expectation step (E-step) and 
maximization step (M-step) [22] [23] [24]. 

3.2.2. Edge-Based Term 
The edge-based term was defined as 



A. Hizukuri et al. 
 

154 

( ) ( ) ( ), d d , d d
in

B C
E C g x y x y g x y x y

Ω
= +∫ ∫             (14) 

g was an edge indicator which was determined by 

( )
1

1
g

PMD I
=

+ ∇
                     (15) 

Here, PMD was the anisotropic diffusion kernel (Perona and Malik Diffusion) 
[25]. The PMD was defined as 

( ) ( )1
, ,

s

t t t t
s s p s ps

ps

PMD I I es I I
η

λ
η

+

∈

= + ∇ ∇∑              (16) 

( ),s x y=  denoted the pixel position, whereas p was neighbor pixel. t
sI  was 

the pixel value at pixel position s and iteration t (time steps). sη , sη , and λ  
represented the spatial neighborhood of pixel position s, the number of neigh-
bors, and a scalar determining the rate of diffusion, respectively. Image gradient 
(magnitude) was determined by 

,
t t t
s p p sI I I∇ = −                        (17) 

An edge stopping function was also given as 

( )
( )2
1

1
es z

z L
=

+
                     (18) 

Here, L was a positive constant. When compared with a Gaussian filter [26], 
the anisotropic diffusion kernel could smooth the image while preserving its 
brightness discontinuities [25] [27]. 

3.2.3. Regularizing Term 
The regularizing term was defined as 

( ) d dC C
E C x y= ∫                       (19) 

This term avoided converging the final contour to small area due to noise 
such as a speckle-pattern. This term could also prevent over-segmentation [28]. 

3.3. Segmentation of Mass 

In order to minimize the energy function E(C) mentioned above, the level set 
function introduced into the energy function E(C). The C was defined by the 
zero level set [28]. 

( )( ) ( )( )
( )( ) ( )( )( )

( ) ( ) ( )( )
( )

1

2

log , d d

log , 1 d d

, d d

d d .

F

B

E P I x y H x y

P I x y H x y

g x y H H x y

H x y

α φ

α φ

β φ φ

γ φ

Ω

Ω

Ω

Ω

= − ⋅ ⋅

− ⋅ ⋅ −

+ ⋅ ∇ +

+ ⋅ ∇

∫∫
∫∫
∫
∫

          (20) 

H was a regularized Heaviside function which was given as 

( ) 1 21 arctan .
2 π

H φφ
ε

  = +   
  

                  (21) 

Here, ε was a tiny positive parameter [15] [16] [17] [18]. ( ) d dH x yφ
Ω
∇∫  

was given as [29] 
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( ) ( )d d d d .H x y x yφ δ φ φ
Ω Ω
∇ = ∇∫ ∫              (22) 

δ  was a dirac delta function [15] [16] [17] [18]. 
The gradient flow was derived as the following equations. 

( ) ( ) ( )( ) ( )( )1 2log logF Bg P I P I g
t
φ δ φ β γ κ α α γ∂  = + ⋅ − + − ∂

     (23) 

( ) ( )0, , 0 , inx y x yφ φ= Ω　                  (24) 

div φκ
φ

 ∇
=   ∇ 

 and 0φ  represented the initial level set function. The initial 

level set function 0φ  was defined by 

( )

( )

0 0 0
0
, 0

0 0

,
0

,
x y

c x y

c x y
φ

− ∈Ω − ∂Ω


= ∈∂Ω
 ∈Ω −Ω

　　　　　

　

                 (25) 

0c  was a constant. 0Ω  was a subset in the image domain Ω , whereas 0∂Ω  
was the boundary of 0Ω . The steps of our proposed method were summarized 
as follows: 
 Initialized the level set function φ  by 0φ . 
 Determined the gradient and probability distribution of the inner and outer 

regions. 
 Updated 1nφ +  from nφ . 
 Checked the convergence of φ ; if it had not reached steady state, continued 

the evolution. 

3.4. Evaluation of Shape Accuracy on Segmented Mass 

To evaluate the segmentation performance of our proposed method, we meas-
ured three error metrics, which were a true positive (TP) ratio, a false positive 
(FP) ratio, and a Jaccard similarity (JS) [30]. The TP ratio, the FP ratio, and the 
JS were determined by 

G S

G

Area Area
TP

Area
=



                    (26) 

G S

S

Area Area
FP

Area
=



                    (27) 

and 

G S

G S

Area AreaJS
Area Area

=




                     (28) 

SArea  was the breast mass region segmented automatically by the algorithm, 
whereas GArea  was the true mass region determined manually as the gold 
standard. The TP ratio was defined as the ratio of the overlapping area between 
the segmented region and the gold standard region to the area of the gold stan-
dard region. On the other hand, the FP ratio was defined as the ratio of the over- 
lapping area between the segmented region and the non-gold standard region to 
the area of the segmented region. The JS was given by the ratio of the overlap-
ping area to the non-overlapping area between the segmented region and the 
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gold standard region. We also measured a Dice similarity coefficient (DSC) [31] 
to evaluate the accuracy of the segmentation method. The DSC was defined as 

2 G S

G S

Area Area
DSC

Area Area
=

+


                  (29) 

The segmentation performance of our proposed method with the parameters 
optimized for the dataset A was evaluated in dataset B, whereas that with para-
meters optimized for dataset B was evaluated in dataset A. The parameters for 
the level set method were 1 2,α α  for the region-based term, β  for the 
edge-based term, γ  for the regularizing term, 0c  for level set function, itera-
tion and L for the anisotropic diffusion kernel. Here, 1 2, , ,α α β γ  were varied 
from 0.5 to 2.0. 0c  was also varied from 1.0 to 3.0. The iteration for the aniso-
tropic diffusion kernel was varied from 5 to 30, whereas the L was varied from 5 
to 10. 

3.5. Results 

Table 1 shows the optimized parameters for each subset. The optimized para-
meters for dataset A were 0.5 for 1α , 1.0 for 2α , 0.5 for β , 1.0 for γ , 1.0 for 

0c , 10 for iteration of anisotropic diffusion kernel, 5 for L, respectively. Those 
for dataset B were also 1.0 for 1α , 1.0 for 2α , 1.0 for β , 0.5 for γ , 1.0 for 0c , 
10 for iteration of anisotropic diffusion kernel, 5 for L, respectively.  

Table 2 shows segmentation accuracies of our proposed method with the op-
timized parameters for another dataset. When applying the proposed method 
optimized for dataset A to dataset B, TP ratio, FP ratio, JS, and DSC were 92.2%, 
8.9%, 84.4%, and 91.5%, respectively. When applying the proposed method op-
timized for dataset B to dataset A, those were 92.1%, 9.4%, 83.9%, and 91.2%, 
respectively. There were not differences substantially in segmentation accuracies 
between dataset A and B. With our proposed method, average TP ratio, average 
FP ratio, average JS, and average DSC for datasets A and B were 92.2%, 9.1%, 
84.2%, and 91.3%, respectively. Figure 2 shows an example of segmented mass 
region by our proposed method. 
 
Table 1. Optimized parameters for each subset. 

Method Optimized parameters for dataset A Optimized parameters for dataset B 

Our proposed 
method 

α1: 0.5, α2: 1.0, β: 0.5, γ: 1.0, 
c0: 1.0, iteration: 10, L: 5 

α1: 1.0, α2: 1.0, β: 1.0, γ: 0.5, 
c0: 1.0, iteration: 10, L: 5 

α1, α2: parameter of region based term, β: parameter of edge-based term, γ: parameter of regularizing term, 
c0: level set function, L: anisotropic diffusion kernel. 

 
Table 2. Segmentation accuracies of our proposed method with the optimized parameters 
for another dataset. 

Test set TP ratio (%) FP ratio (%) JS (%) DSC (%) 

dataset A 92.1 9.4 83.9 91.2 

dataset B 92.2 8.9 84.4 91.5 

Ave. 92.2 9.1 84.2 91.3 
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(a)              (b)             (c)              (d)                 (e) 

Figure 2. Example of segmented mass region by our proposed method: (a) original ul-
trasonographic image; (b) enhanced contrast image; (c) initial contour; (d) segmented 
mass by our proposed method; (e) gold standard region. 

4. Discussion 

To investigate the usefulness of our proposed method, we compared the seg-
mentation performance for our proposed method with those for ACWE model 
[17] and for a level set method based on a signed pressure force function model 
(SPF model) [32] (see Appendix).  

In the same way as our proposed method, the ACWE model and the SPF 
model were optimized for each of datasets A and B. The segmentation perfor-
mances for those models were then evaluated by applying those models to 
another dataset not used for optimization.  

Figure 3 shows the mean values and the standard deviations for average TP 
ratios, average FP ratios, average JSs, and average DSCs in each of our proposed 
method, the ACWE model, and the SPF model. Average TP ratio for our pro-
posed method (92.2%) was significantly greater than that for the ACWE model 
(83.5%, P <0.001). Here, the p value obtained with t-test. Average TP ratio for 
the SPF model (93.4%) was slightly higher than that for our proposed method (P 
= 0.011). However, average FP ratio for our proposed method was 9.1, showing a 
significant improvement when compared with the ACWE model (36.1, P < 0.001) 
and the SPF model (25.0, P < 0.001). Higher average FP ratio means causing 
over-segmentation. Average JS was also greater with our proposed method (84.2) 
than with the ACWE model (55.2, P < 0.001) and the SPF model (71.0, P < 
0.001). Although the SPF model exhibited significantly improved average DSC 
as compared with the ACWE model (65.8 vs. 82.2, P < 0.001), our proposed 
method proved further improvement in average DSC (91.3, P < 0.001 compared 
with the SPF model). These results would imply that our proposed method can 
segment masses more accurately than either the ACWE model or the SPF model. 

Figure 4 shows the results of the segmented mass by our proposed method, 
the ACWE model, and the SPF model with the same initial contour. For a ma-
lignant breast mass with inhomogeneous intensity and an unclear boundary, the 
segmented regions with the ACWE model and the SPF model included a part of 
background tissue incorrectly as mass, as shown in Figure 4(c) and Figure 4(d).  
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 3. Mean values and the standard deviations for average TP ratios, average FP ra-
tios, average JSs, and average DSCs in each of our proposed method, the ACWE model, 
and the SPF model: (a) average True Positive (TP) ratios; (b) average False Positive (FP) 
ratios; (c) average Jaccard Similarities (JS); and (d) average Dice Similarity Coefficients 
(DSC). “*” means a statistical difference with a p-value less than 0.001. 
 

 
(a)                      (b)                      (c) 

 
(d)                      (e)                      (f) 

Figure 4. Results of the segmented mass by our proposed method, the ACWE model, and 
the SPF model with the same initial contour: (a) original ultrasonographic image; (b) ini-
tial contour; (c) segmented image using the active contour without edges model (ACWE); 
(d) segmented image using the signed pressure force function model (SPF); (e) seg-
mented image using our proposed method, and (f) gold standard region. 
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On the other hand, our proposed method could correctly extract the edge of the 
mass with fine shape, as shown in Figure 4(e). 

When compared with the conventional two models, our proposed method 
could accurately segment even breast mass with obscure boundary and inhomo-
geneous internal intensities. Our proposed method used not only local informa-
tion such as edge but also global information such as image statistical informa-
tion to control the closed curve evolution. Therefore, we believe that our pro-
posed method could reduce the influence for noise and inhomogeneous intensi-
ties. The energy function of our proposed method analyzed not only the regula-
rizing term but also the spatial probability ( ( )r inP Ω , ( )r outP Ω ) obtained by 
distance transform (region-based term). We consider that the spatial probability 
prevented inaccurate expansion of segmented region for mass with obscure 
boundary. 

In this study, an initial contour for the level set method was set manually. This 
would be a limitation in clinical practice. It can be boring for clinicians to set in-
itial contour manually. Therefore, we have to develop an automated algorithm 
for detect mass region and set initial contour in further study.  

5. Conclusion 

In this study, we developed a computerized segmentation method for breast 
mass on ultrasonographic image by introducing the concept of statistical model 
to a level set method. In our proposed level set method, the energy function con-
sisted of a region-based term, edge-based term, and regularizing term. By using 
the novel energy function, our proposed method was shown to have higher seg-
mentation accuracy than either of the conventional models. 
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Appendix 

The level set evolution in an active contour without edge model (ACWE) [17] 
was defined as 

( ) ( )( ) ( )( )2 2
1 1 2 2, , ,v I x y c I x y c

t
φ φδ φ µ λ λ

φ

  ∂ ∇
= ∇ − − − + −   ∂ ∇   

     (30) 

where 1 20, 0, 0, 0vµ λ λ> > > >  were fixed parameters, and ( ),I x y  was the 
grey level at pixel ( ),x y . ∇  was the gradient operator and ( )δ φ  was the Di-
rac function. Mean values ( )1 2,c c  for inside and outside curves were defined 
by 
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where ( )H φ  was a Heaviside function. 
The level set evolution in a region based signed pressure force model (SPF) 

[32] also was defined as 
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where α  was the balloon force parameter. 
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