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Abstract 

The Born-rule, which assigns probabilities 
2

2
a

ap
ψ

ψ
=  to measurement out-

comes, is one of the fundamental axioms of quantum physics. It dates back to 
the time of the establishment of the formalism of quantum physics in the first 
half of the 20th century. From the beginning, and particularly in connection 
with the development of different interpretations of the theory, there has been 
a desire/need to better understand the true nature of the Born-probabilities. 
Are they classical/epistemic of origin or are they irreducible and of on tic sta-
ture as a kind of intrinsic propensities of physical systems? We show that, by 
only using the mathematical formalism of the original theory, we find a possi-
ble answer. 
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1. Introduction 

The formalism of quantum physics has been developed during the first decades 
of the 20th century. It describes a physical system as an element ψ  of some 
appropriate Hilbert space H  and physical, observable quantities as eigenvalues 
a∈  in the spectrum Aσ ⊆   of self-adjoint operators ( )A L H∈  on that 
Hilbert space. The eigenvalue-eigenstate postulate says that, whenever a system 
is found to have a value Aa σ∈ , then it is in the corresponding eigenstate ae  
of A . Inversely, if a system ψ  is represented in the eigenbasis, { }

A
a a

e
σ

, of 
A , ,

A a a aa eσψ ψ ψ= ∑   , then the system is experimentally found to have 
eigenvalue a  with probability 

2 2 .a ap ψ ψ=                         (1) 

This is the Born-rule [1]. The Born-rule together with the eigenvalue-eigens- 
tate link constitutes the measurement postulate. No violation of the Born-rule 
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has ever been discovered experimentally. The measurement postulate is incom-
patible with a further postulate of quantum mechanics, namely the unitary evo-
lution of the quantum state. Ever since the establishment of the theory there 
have been different interpretations and extensions of quantum physics in order 
to solve this incompatibility, known as the “measurement problem”. 

There are some questions, which naturally arise with regard to the Born-rule. 
Firstly, why are there probabilities in the first place and secondly, what kind of 
probabilities are they? Both questions are intimately linked to interpretations of 
quantum mechanics and have in this context found various answers. Focusing 
on the second question we find the opinions, starting on the realist side, that the 
probabilities might be objective, irreducible properties of quantum systems, as in 
the GRW interpretations [2] or, passing to the epistemic/instrumentalist side, 
subjective degrees of belief [3] or, yet represent something else, like rational pre-
ferences in the decision-theoretic explanations of the many-worlds interpreta-
tion [4] [5] [6] [7]. Because the formalism of quantum physics shows the kind of 
ontological under determination it does, the Born-rule does as well. In this paper 
we follow the original, basic formalism and will give a possible answer to the 
question of the nature of the probabilities. 

2. Some Formalism 

Given the resolution of a state Hψ   in the eigenbasis ,a Ae a σ , of an op-
erator A , ,

A a a aa eσψ ψ ψ= ∑ 


 , we can form the corresponding density 

matrix :ψ ψ ψ=  with matrix-entries ( ) a aaaψ ψ ψ ∗
′′

= . This matrix is a 
self-adjoint operator, a projection operator in this case, satisfying 2

ψ ψ=  . If 
ψ  is normalized, 1ψ = , then so is the trace of ψ , ( ) 1tr ψ = , and the di-
agonal matrix-elements of ψ  happen to correspond to the numerical values in 
the Born probabilities ( ) 2 2

aaaψ ψ ψ= . By the correspondence, ψψ →  , 
there is an alternative formulation of the postulates of traditional quantum 
physics in terms of density operators. If a density operator satisfies 2

ψ ψ=  , i.e. 
is a projector, we say that ψ  is pure. Density operators can be thought to in-
corporate the known information about a state and this allows a generalization. 
Given a set { }:

A
a a a a

e e
σ

=


  of pure density operators and a set of probabili-
ty weights { }

Aa a
p

σ
, 1

A aa pσ =∑  , we can form a new density operator 

: Σ .
Aa a apσ=                            (2) 

We say that the operator   in (2) is a mixed state. Mixed states   are for-
mally self-adjoint operators with ( ) 1tr =  but no projectors, so 2 ≠  . The 
interpretation of mixed states is entirely classical in the sense that the probabili-
ties { }

Aa a
p

σ
 reflect a lack of knowledge and hence belief in the likelihood of 

elements of a set of possible preparations, done in a lab for instance. There is a 
theorem due to Gleason [8], which basically says that the trace-function  

( )tr A→   is the unique probability measure, which is faithful to the post-
ulates of quantum physics on Hilbert space1. Gleason’s theorem tells us that we 

 

 

1Under condition that the dimension of the Hilbert space is at least three. 
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are looking at the right probabilities. But it is per se not helpful to better under-
stand the nature of the Born-probabilities. 

Measurement 

Assume there is a density matrix   and basis (eigen)-states ,a Ae a σ , cor-
responding to some self-adjoint operator ( )A L H . Assume in addition that 
there is an additional system   with orthonormal basis states { }n N

n
≤

, which 
we assume originally to be in the base state 0 0 0= . A measurement of   
by the probe   is an operation U  on the joint system joint 0 0= ⊗   

( )0 0 ,U U ∗⊗                         (3) 

where U  is unitary IIUU ∗ = 2. A general unitary transformation on a ten-
sor-product, expressed in the respective bases, can be written as a matrix 

,,

,
an a nan a n

nnnn

U u a n a n

A n n
′ ′′ ′

′′

′ ′=

′= ⊗

∑
∑

                  (4) 

where the operators nnA ′  are given by ,nn na n aaa aA u a′ ′ ′′= ′∑ . We denote the 
diagonal sub-block 0nA  simply by nA . Since U  is unitary, we have  

0 0 II.n nnUU A A∗ ∗= =∑                     (5) 

Conversely, we can choose any set of operators nA  satisfying the resolution 
of the identity-condition (5) to define a measurement on an initial joint state 

joint 0 0= ⊗  . We now have the necessary elements in place to give the main 
argument. 

3. The Born-Rule 

Assume there is a quantum system   in a, not necessarily normalized, pure 
state Hψ  with representation ,a a aa M eψ ψ ψ

≤
= ∑  , and corresponding 

density matrix ψ ψ ψ=  with matrix elements  
( ) ( ), ,  1 ,a aa a a a Mψ ψ ∗

′′
′= ≤ ≤ . We further assume all the postulates of tradi-

tional quantum physics as above, except the Born-rule, and ask ourselves where 
the probabilities come from. 

Assume there is a second system   with basis { }n N
n

≦
 and an observer 

who would like to know in what state a a ae e=  the system   is in, by 
making an appropriate measurement U  on the joint system joint 0 0= ⊗  . 
If that is possible in the first place, then, having no additional knowledge, the ob-
server does a priori not know in what state ,n n N≤ , the probe will be after the 
measurement and before observation. 

Let the underlying pure state Hψ   have coefficients  
, ,ai

a a a am e mϕψ ϕ=    3. The probe   can be chosen appropriately coarse- 
grained4 such that aa MN m

≤
= ∑  We now introduce probabilities by Laplace’s 

principle of indifference. The observer is after the measurement and before ob-

 

 

2This follows from the fact that a general interaction evolution ( ) ( )i HtU t e−=  is unitary. 
3Since the rational numbers   are dense in  , the choice of am є  is general enough. 
4This coarse-graining is used first by [6] and then by [7] in the context of many-worlds. 
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servation in a situation where, by lack of further information, she will a priori 
attribute to each outcome ( )0 0n U U n∗⊗  equal probability  

1 ,np N n N= ≤ . This attribution is equivalent to maximizing the entropy func-
tion ( ) 1 logN

n nnH p p p
=

= −∑ . The observer can therefore write down in the spi-
rit of (2) an average of outcomes  

( )( ) ( ): 1 0 0 1 .n nn N n NN n U U n N A A∗ ∗
≤ ≤

= ⊗ =∑ ∑         (6) 

For our purpose we now chose the operators nA  to be the scaled projectors 

( ){ }
,

1:
k

a
a a a

a M k m
P m P

≤ ≤
=  to the basis-states ,ae a M≤ . Note that we have 

replaced the simple-index n  by the double-index ka . This choice is consistent 
with the demands of a measurement, since the 

kaP  satisfy (5) 

II.
k kan n a a a an N a M k m a MP P P P P P∗ ∗ ∗

≤ ≤ ≤ ≤
= = =∑ ∑ ∑ ∑             (7) 

Therefore we can write (6) in the following form 

( ) ( )
( ) ( )

1 1

1 .
k kan n a an N a M k m

a a a aa M a M

N P P N P P

N P P m N

∗ ∗
≤ ≤ ≤

∗
≤ ≤

= =

= =

∑ ∑ ∑
∑ ∑

   

  

 
        (8) 

Comparing Equation (8) with Equation (2), we see that   can be viewed as a 
mixed state with probabilities  

2 2 ,a a ap m N ψ ψ= =                  (9) 
which is the Born-rule. 

4. Conclusions 

We have in the above derivation not made use of any specific interpretation of 
quantum mechanics, but relied on two basic assumptions only. The first one is 
the formalism of density operators and generalized measurement with classical 
or epistemic probabilities arising in mixed states (2). The second one is Laplace’s 
principle of indifference in order to introduce the concept of probabilities and to 
assign concrete probability-values 1 ,np N n N= ≤ , to the mixed state in (6). 
This is the important step, which helps to avoid the kind of tautological argu-
ment based on the reduced density matrix and Gleason’s theorem. It bases on a 
kind of symmetry of the probe states ,n n N≤ , due to a lack of knowledge be-
fore observation. 

We have found that, given any not necessarily normalized pure state, it is 
possible to define an observer with an appropriately coarse-grained probe-system5 
who, by lack of further knowledge, will assign exactly the Born-probabilities, as 
classical probabilities in the sense of (2), to finding the system in one of the ba-
sis-states, after the measurement and before observation. In other words, there is 
the possibility to interpret the normalized amplitudes of an arbitrary state Hψ  
as epistemic probabilities for different possible measurement outcomes. 

If a quantum state ψ  is given to us a priori, then it seems that the Born- 
probabilities are objectively given with it and there might be a reluctance to em-
brace Laplace’s principle as fundamental [9]. It seems to us that we can accept 

 

 

5The environment could serve as a probe-system for instance. 
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the principle as deeply rooted in our intuition and therefore to be a first prin-
ciple. Authors, concerned with the many worlds interpretation in [6] [7] for in-
stance, try to give more objective physical justifications for Laplace’s principle, 
mainly by describing the symmetry, which it bases on, in more physical terms. 
We are not sure that these ideas are really more fundamental or whether they are 
not the same intuition vested in different garments. We should in all this always 
remember that quantum states are practically given to us by making prepara-
tions, i.e. by correlating them with other systems in laboratories. It is a wonder-
ful fact, however, that the Born-probabilities are confirmed by the correspond-
ing frequencies, if repeated experiments are being done. This would probably 
not be further impressive, if quantum states would just be results of gathering 
measurement information. But they can also arise from an initial state by 
Schrödinger evolution. We at least can say that nature seems to “play the game”. 
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