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Abstract 
The Wigner-Seitz unit cell (rhombus) for a honeycomb lattice fails to establish 
a k -vector in the 2D space, which is required for the Bloch electron dynam-
ics. Phonon motion cannot be discussed in the triangular coordinates, either. 
In this paper, we propose a rectangular 4-atom unit cell model, which allows 
us to discuss the electron and phonon (wave packets) motion in the k -space. 
The present paper discusses the band structure of graphene based on the rec-
tangular 4-atom unit cell model to establish an appropriate k -vector k  for 
the Bloch electron dynamics. To obtain the band energy of a Bloch electron in 
graphene, we extend the tight-binding calculations for the Wigner-Seitz (2- 
atom unit cell) model of Reich et al. (Physical Review B, 66, Article ID: 035412 
(2002)) to the rectangular 4-atom unit cell model. It is shown that the gra-
phene band structure based on the rectangular 4-atom unit cell model reveals 
the same band structure of the graphene based on the Wigner-Seitz 2-atom 
unit cell model; the π -band energy holds a linear dispersion ( kε − ) relations 
near the Fermi energy (crossing points of the valence and the conduction 
bands) in the first Brillouin zone of the rectangular reciprocal lattice. We then 
confirm the suitability of the proposed rectangular (orthogonal) unit cell 
model for graphene in order to establish a 2D k -vector responsible for the 
Bloch electron (wave packet) dynamics in graphene. 
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1. Introduction 

The electronic band structure of graphene plays an important role for under- 
standing its unique properties [1] [2] [3] [4]. Graphene is a perfect two- 
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dimensional crystal consisting of a single layer of carbon atoms arranged in a 
honeycomb lattice. A carbon atom contains four valence electrons, one 2s - 
electron, and three 2 p -electrons. They are 2sp -hybridized, that is, one 2s - 
electron and two 2 p -electrons form strong σ -bonds between carbon atoms 
leading to the honeycomb structure with the carbon-carbon distance of 0.142 
nm. The remaining 2 p -electron occurs as a 2 zp -orbital, which is oriented 
perpendicularly to the planar structure, and forms a π -bond with the neigh- 
bouring carbon atoms. The σ -bonds are completely filled and form a deep 
valence band [2]. The smallest gap between the bonding and the anti-bonding 
σ -bands is approximately 11 eV. Therefore, the majority of low-energy physical 
effects is determined by the π -bands. Since the overlap with other orbitals 
( 2 ,2 ,2x ys p p ) is strictly zero by symmetry, 2 zp -electrons forming the π
-bonds can be treated independently from other valence electrons [5]. 

Indeed, the band structure of graphene can be seen as a triangular lattice with 
a basis of two atoms per unit cell. This 2-atom unit cell (Wigner-Seitz (WS) cell) 
model has customarily been used to obtain the graphene band structure for the 
2 zp -electrons. The band structure provides useful information about the energy 
dispersion relation of electrons at zero temperature. At finite temperatures those 
thermally excited “electrons” and “holes” play an essential role for carrier 
transport properties. Following Ashcroft and Mermin (AM) [6], if we adopt the 
semiclassical model of electron dynamics in solids, it is necessary to introduce a 
k -vector:  

ˆ ˆ ˆ ,x x y y z zk k k= + +k e e e                    (1) 

where ( )ˆ  ,  ,  j j x y z=e  are the Cartesian orthogonal unit vectors since the k
-vector, k , is involved in the semiclassical equation of (wave packet) motion: 

( )d ,
d

q
t

≡ = + ×�� �
kk E v B                   (2) 

where E  and B  are the electric and magnetic fields, respectively, and the 
vector v   

1 ε∂
=

∂�kv
k

                        (3) 

is the electron velocity where ε  is the electron energy. In the semiclassical 
theory electrons are treated as a wave packet. The 2D crystals such as graphene 
can also be treated similarly, only the z -component being dropped. Graphene 
forms a 2D honeycomb lattice. The WS unit cell is a rhombus (dotted lines) as 
shown in Figure 1(a).  

The potential energy ( )V r  is lattice-periodic: 

( ) ( ),mnV V+ =r R r                     (4) 

where 1 2mn m n= +� �R a a  are Bravais vectors with the primitive non-orthogonal 
vectors ( )1 2,a a  and integers ( ),m n . In the field theoretical formulation, the 
field point r  is given by mn′= +r r R , where ′r  is the point defined within the 
standard WS unit cell. Equation (4) describes the 2D lattice periodicity but  
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(a)                                       (b) 

Figure 1. (a) Lattice structure of graphene. Carbon atoms at vertices. Each honeycomb 
lattice consists of equivalent carbon (C+) ions labeled by A and B. The Wigner-Seitz 
2-atom unit cell (dotted lines) spanned by the basis (lattice unit) vectors 1�a  and 2�a ; (b) 
Reciprocal lattice showing the first Brillouin zone (BZ) of graphene including the 
high-symmetry points Γ , K, and M. The BZ is spanned by two reciprocal lattice vectors 

1b  and 2b  constructed from the basis vectors 1�a  and 2�a . 

 
does not establish the k -space for the Bloch electrons in graphene, which will 
be explained in Section 4, and this fact has motivated us to study the band 
structure for a Bloch electron based on the rectangular 4-atom unit cell model 
for graphene (see Figure 2(a)), which defines the k -vectors playing an 
important roll for a Bloch electron dynamics. 

Our purpose of this paper is to explore the suitability of the rectangular 
(orthogonal) unit cell model for the Bloch electron band structure and to discuss 
the k -vector defined in the 2D space for Bloch electrons in graphene. Based on 
the rectangular 4-atom unit cell model of graphene, we obtain the band structure 
for the 2 zp -electrons of graphene by extending the prevalent tight-binding 
calculations for the Wigner-Seitz (WS) 2-atom unit cell model to the rectangular 
(orthogonal) 4-atom unit cell model introduced by the present authors [7]. 

In Section 2, the rectangular 4-atom unit cell of graphene is introduced. 
Section 3 presents our tight-binding calculations of the energy band of a Bloch 
electron in graphene, based on the rectangular 4-atom unit cell model described 
in Section 2. Section 4 illustrates why we have to utilize the rectangular 
(orthogonal) unit cell rather than the WS unit cell when considering the electron 
dynamics of graphene. Results and discussion are given in Section 5. Finally 
conclusions and some remarks are given in Section 6. 

2. The Rectangular 4-Atom Unit Cell Model for Graphene 

Graphene is made out of honeycomb lattice (carbon atoms arranged in 
hexagonal structure) and the 2D honeycomb lattice has a reflection symmetry 
relative to the x - and y -axis (cp. Figure 2(a)). Then the band structure for a 
Bloch electron in graphene can be constructed from a rectangular lattice with a 
basis of four atoms per unit cell, which we call the rectangular 4-atom unit cell.  
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(a)                                       (b) 

Figure 2. (a) Lattice structure of graphene, made out of the rectangular 4-atom unit cell 
(a square dotted line) spanned by the basis vectors 1a  and 2a . The ( )1,2,3i i =τ  are 

the nearest-neighbor vectors with the constant carbon-carbon distance of  
3 0.142 nmi = =τ a ; (b) The first Brillouin zone of the rectangular 4-atom unit cell. 

The 1b  and 2b  are the reciprocal lattice vectors corresponding to the lattice unit 
vectors. The high-symmetric points within the rectangular unit cell are indicated by Γ , 
X, Y, and W within the reciprocal lattice plane. 
 
The reason why we choose a rectangular (orthogonal) unit cell rather than a 
triangular (WS) unit cell for graphene will be explained later. 

The lattice basis (unit) vectors ( )1,2i i =a  of graphene (cp. Figure 2(a)) are 
defined as  

( ) ( )1 21,0 , 0, 3 .a a= =a a                   (5) 

The lattice constants for the rectangular (orthogonal) unit cell in the Cartesian 
coordinates are 1 03a a≡ =a  and 2 03 3a a= =a , respectively, where 0a  
is the nearest-neighbor distance between two carbon atoms. The rectangular 
4-atom unit cell of graphene contains four carbon atoms, say A, B, C, and D, as 
shown in Figure 2(a). The three nearest-neighbor vectors ( )1,2,3i i =τ  in real 
space are defined (cp. Figure 2(a)) by  

( ) ( ) ( )1 2 30, 1 3 , 1 2,1 2 3 , 1 2,1 2 3 .a a a= − = = −τ τ τ    (6) 

The reciprocal-lattice vectors for the rectangular unit cell are given (from 
Equation (5)) by  

( ) ( )1 2
2π 2π1,0 , 0,1 3 .
a a

= =b b                  (7) 

The first Brillouin zone is a rectangle as shown in Figure 2(b) with sides of 
length, BZ

1 2πxb a= =b  and BZ
2 2π 3yb a= =b , and area equal to 2 24π 3a . 

There are four key locations of high symmetry in the first Brillouin zone (FBZ) 
of the rectangular 4-atom unit cell. In Figure 2(b), these locations are identified 
as the Γ -point, the X-point, the Y-point, and the W-point. The Γ -point is at 
the center of the Brillouin zone. The locations of these points in the 2D 
reciprocal space are:  
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( ) ( ) ( ) ( )π π π0,0 , X 1,0 , Y 0,1 3 , W 1,1 3 .
a a a

Γ = = = =       (8) 

3. Tight-Binding Approach 

The single-particle band structure of graphene can be analytically calculated 
within the tight-binding approximation assuming that electrons are tightly 
bound to their C+ ion [8] [9] [10] [11]. In order to obtain the band structure of 
graphene based on the 4-atom rectangular unit cell model [7] for graphene, we 
follow the tight-binding approach employed by Reich et al. [8]. 

The Schrödinger equation for a single electron in the lattice potential field 
( )V r  is expressed by  

( ) ( ) ,εΨ = Ψr r                     (9) 

where the Hamiltonian   is given by  

( )
2

2 ,
2

V
m

= − ∇ +
� r                    (10) 

and the lattice potential ( ) ( )jV V= −r r R  has a lattice periodicity characteristic 
for graphene. The total wave function Ψ  for the electron in the 2 zp -orbital 
(Bloch electron) may be obtained from the linear combination of the Bloch wave 

jΦ  of the form:  

( ) ( )1 ,j

j

i
j j je

N
φ⋅Φ ≡ Φ = −∑ k R

R
r r r R           (11) 

where N  is the number of unit lattices and the index j  refers to the 
respective carbon atoms. In the above expressions, the phase ( )exp ji ⋅k R  are 
introduced in order to satisfy the Bloch theorem in each conduction channel. 
Thus the wave function for a Bloch electron in graphene is then expressed by the 
linear combinations of these Bloch wave functions:  

( )
( ) ( ) ( ) ,j j j j

j j
λ λ

Ψ ≡ Ψ

= Φ = Φ∑ ∑
r r

k r k r          (12) 

where jΦr ’s are given by Equation (11) and the wave function φr  for 
the 2 zp -orbital is normalized. The energy eigenvalues of Equation (9) for the 
2 zp -electron can be obtained in a usual manner by using the graphene Hamil- 
tonian (10) and the graphene wave function (12) along with Equation (11): 
Inserting Equation (12) into Equation (9) and multiplying iΦ  from the left to 
Equation (9), we obtain four separate equations, which are simply expressed in 
the matrix form as  

( ) ( ) ( ) ( ); ,ij j ij jSε λ ε λ= =λ k Sλ k k k           (13) 

where the matrices,  , S  and ( )λ k , are respectively expressed by 

AA AB AC AD

BA BB BC BD

CA CB CC CD

DA DB DC DD

 
 
 =
 
 
 

   
   
   
   

               (14) 
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AA AB AC AD

BA BB BC BD

CA CB CC CD

DA DB DC DD

S S S S
S S S S
S S S S
S S S S

 
 
 =
 
 
 

S                (15) 

( )

( )
( )
( )
( )

A

B

C

D

.

λ
λ
λ
λ

 
 
 =  
  
 

k
k

λ k
k
k

                     (16) 

Here ij i j≡ Φ Φ   are the matrix elements of the Hamiltonian  , which 
we call hopping (or transfer) integral, and are the units of energy. ij i jS ≡ Φ Φ  
are the overlap matrix elements, which are given by the overlap integral between 
Bloch functions, and are unitless. Equation (13) expresses the simultaneous 
equations for ( )Aλ k , ( )Bλ k , ( )Cλ k  and ( )Dλ k . In order to obtain the 
nontrivial solutions for ( ) ( ) A,B,C,Dj jλ =k , the secular equation determi- 
nant ε− S  of their simultaneous equations must be zero:  

0.ε− =S                        (17) 

Since the atomic wave functions are well localized around the carbon atoms, 
only the nearest-neighbor hopping of Bloch electrons are taken into considera- 
tion of the following calculations. In other words, as for the electron in atom A 
orbital, it can hop to a nearest orbital of atom B or atom D. Similarly, the 
electron in the orbital of atom B can hop to the nearest orbital of atom A or 
atom C, the electron in the orbital of atom C to the nearest orbital of atom B or 
atom D, and the electron in the orbital of atom D to the nearest orbital of atom 
A or atom C. 

Let us consider the nearest-neighbor hopping between the orbital of atom A 
and atom B. The matrix elements AB  is expressed by the hopping integral:  

( ) ( ) ( )B A

A B

AB A B

A B
1 .ie
N

φ φ⋅ −

= Φ Φ

= − −∑∑ k R R

R R
r R r R

 


       (18) 

Here we only take into account the nearest-neighbor hopping between carbon 
atoms. From the symmetry of the lattice stracture of graphene, the adjacent 
hoppings are all the same. We introduce the parametric parameter 1t  for the 
adjacent hopping between the orbital of atom A and B:  

( ) ( ) 1.A B tφ φ− − ≡r R r R                  (19) 

Since the nearest-neighbor vector B A−R R  is given by 2τ  and 3τ  (cp. 
Equation (6)), Equation (18) can be expressed by  

( ) ( ) ( )

( )

B A

A B

32

AB A B

2 3
1 1

1

2 cos .
2

y

i

ai k
ii

x

e
N

at e e t e k

φ φ⋅ −

− ⋅− ⋅

= − −

 ≈ + =  
 

∑∑ k R R

R R

k τk τ

r R r R 

         (20) 

Similarly, the nearest-neighbor hopping integrals are given by  
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3 3
AC AD 1 BC 1

2 3
BD CD 1

0, , ,

0, 2 cos .
2

y y

y

a ai k i k

ai k

x

t e t e

at e k

−
= = =

 = =  
 

  

 
           (21) 

We note that the hopping parameter 1t  is the nearest-neighbor hopping energy 
(hopping between adjacent carbon atoms). 

The matrix element AA  (on-site hopping) is evaluated as  

( ) ( ) ( )

( ) ( )

A A

A A

A

AA A A

A A

A A

0

1

1

,

ie
N

N
t

φ φ

φ φ

′

′

⋅ −
′

= Φ Φ

= − −

≈ − −

≡

∑∑

∑

k R R

R R

R

r R r R

r R r R









         (22) 

where N  is the number of the basic unit cells, and 0t  is the parametric 
parameter for ( ) ( )A Aφ φ− −r R r R . Similar evaluation leads to  

BB CC DD 0t= = =   . 
Next we evaluate the matrix elements ( ), A,B,C,DijS i j = , which are given by 

the overlap integral i jΦ Φ . Thus the matrix element ABS  is evaluated from  

( ) ( ) ( )B A

A B

AB A B

A B
1 .i

S

e
N

φ φ⋅ −

= Φ Φ

= − −∑∑ k R R

R R
r R r R

         (23) 

Introducing the parametric parameter 1s  for the overlap integral:  

( ) ( )A B 1,sφ φ− − ≡r R r R                   (24) 

the matrix element ABS  is given by  

2 3
AB 12 cos .

2
y

ai k

x
aS s e k =  

 
                  (25) 

Similarly we obtain  

3 3
AC AD 1 BC 1

2 3
BD CD 1

0,   ,   ,

0,   2 cos .
2

y y

y

a ai k i k

ai k

x

S S s e S s e

aS S s e k

−
= = =

 = =  
 

              (26) 

We note that the matrix element AAS  is evaluated as  

( ) ( ) ( )

( ) ( )

A A

A A

A

AA A A

A A

A A

1

1

1.

ik

S

e
N

N

φ φ

φ φ

′

′

⋅ −
′

= Φ Φ

= − −

≈ − −

=

∑∑

∑

R R

R R

R

r R r R

r R r R
          (27) 

In a similar manner, we obtain  

BB CC DD 1.S S S= = =                      (28) 
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We can solve Equation (17) for ε  by using Equations (18)-(28) for the 
matrix elements, and obtain the four energy eigenvalues of Equation (9) for the 
graphene π -electron bands:  

2
0 1

c

2
1

31 4 4cos coscos 2 2 2
,

31 1 4 4cos coscos 2 2 2

x y x

x y x

a a at t k k k

a a as k k k

ε

    − + ±          =
    − + ±          

       (29) 

2
0 1

v

2
1

31 4 4cos coscos 2 2 2
,

31 1 4 4cos coscos 2 2 2

x y x

x y x

a a at t k k k

a a as k k k

ε

    + + ±          =
    + + ±          

       (30) 

where cε  and vε  are the conduction-and the valence-band energies, respec- 
tively. 

4. Electron Dynamics of Graphene 

In semiclassical (wave packet) theory for electron dynamics, it is necessary to 
introduce a wave vector k  (namely, k -vector) [6] [12] since the k -vectors 
are involved in the semiclassical equation of motion (see Equation (2)). Here, we 
explain why we employed the rectangular (orthogonal) unit cell for graphene in 
order to calculate one electron energy band for graphene. 

Graphene forms a 2D honeycomb lattice. Let us first consider the Wigner- 
Seitz (WS) unit cell (rhombus, dotted lines shown in Figure 1(a)). The potential 
energy ( )V r  is lattice-periodic:  

( ) ( ),V V+ =r R r                     (31) 

where the position vector R  in the potential field V  can be represented by 
Bravais vectors with the primitive (non-orthogonal) basis vectors ( )1 2,� �a a  and 
integers ( ),m n :  

1 2 .mn m n≡ = +� �R R a a                   (32) 

In the field theoretical formulation, the field point r  is given by  
,mn′= +r r R                       (33) 

where ′r  is the point defined within the standard WS unit cell. Equation (31) 
describes the (2D) lattice periodicity but does not establish the 2D k -vector of a 
Bloch electron in graphene if we choose the non-Cartesian coordinates system. 
Thus the WS unit cell is not appropriate when one deals with graphene transport 
problem, which is explained below. 

We assume that the wave packet is composed of superposable plane-waves 
characterized by the k -vectors. The superposability is the basic property of the 
Schrödinger wave equation. The Schrödinger wave equation for a Bloch electron 
(wave packet) is  

( ) ( ) ( ) ( )
2

2
* ,

2
i V

t m
ψ ψ ψ∂

= − ∇ +
∂

�
� r r r r        (34) 

where *m  is the effective electron mass. The Bravais vectors for the rhombic 
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lattice, mnR , are given by Equation (32) and the system is lattice-periodic, cp. 
Equation (31). The Bloch theorem can be expressed in the form:  

( ) ( ), ieψ ψ ψ⋅= = −k R
k kr r k r R           (35) 

for all R  in the Bravais lattice. The theorem in 1D can be proved elementarily 
[6]. If an oblique lattice is considered and a set of nonorthogonal basis vectors 
( )1 2,� �a a  are introduced for a 2D Bravais vector, cp. Equation (32), there are no 
2D Fourier transform available since there is no 2D k -vector to satisfy the 
periodicity condition for the Bloch wave, which must be of the form (35). Thus, 
the WS unit cell model for graphene is not suitable when one considers the 
electron dynamics in graphene. 

The wave function must be Fourier-analyzable. In the rhombic system, 
however, if we choose the x -axis, say along 1�a , then the potential energy field 
( )V r  is periodic in the x -direction, but it is aperiodic in the y -direction (cp. 

Figure 1(a)) since these basis vectors ( )1 2,� �a a  are not orthogonal each other. 
Thus, if we choose the rhombic unit cell for graphene, we cannot express k - 
vectors satisfying the condition for the Bloch wave (35). Then, there is no 2D k
space spanned by 2D k -vectors of Bloch waves if we choose the rhombic unit 
cell. If we omit the kinetic energy term, then we can still use Equation (31) and 
obtain the ground state energy (except the zero-point energy). 

Ashcroft and Mermin (AM) [6] introduced a translation operator R  such 
that acting on any field ( )f r  it shifts its argument by R :  

( ) ( ).f f= +R r r R                    (36) 

They used  

=R R                         (37) 

to establish Equation (35). The translation operator X  can be expressed in 
terms of a differential operator: 

expX X
x
∂ =  ∂ 

                     (38) 

as seen from ( ) ( )exp X f x f x X
x
∂  = + ∂ 

. If the Bravais vector R  is given in  

terms of the orthogonal basis vectors ( )1 2,a a  in the Cartesian coordinates and 
choose the rectangular unit cell (cp. Figure 2(a)) as in Equation (34), then 
Equation (37) is satisfied, meaning that the Bloch wave for a rectangular unit cell 
can be expressed in terms of the Bloch wave (35). 

If R  is written in terms of nonorthogonal ( )1 2,� �a a , then R  is a product 

of differential operators exp X
x
∂ 

 ∂ 
 and exp Y

y
 ∂
 ∂ 

, which does not 

commute with the Laplacian 
2 2

2
2 2x y

 ∂ ∂
∇ = + ∂ ∂ 

 in the Hamiltonian operator 

 . Hence, we can not establish Fourier-analyzable 2D k -vectors when we 
choose the rhombic unit cell for graphene. In actual calculations, Equation (37) 
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is valid for the Bloch wave (35), where the Bravais vectors are expressed by the 
orthogonal basis vectors in the Cartesian coordinates. It should be noted that for 
an infinite lattice the periodic boundary is the only acceptable boundary 
condition for the Fourier transformation. AM’s second proof [6] also fails in 2D 
if the Bravais vector R  is expressed in nonorthogonal base vectors. This is so 
because Laplacian terms cannot be handled in non-Cartesian (oblique) 
coordinates. AM's Equation (8.36) does not hold. We must choose the 
rectangular unit cell in order to establish the Bloch plane waves [13] [14] for the 
“electron” in 2D. 

We assume that the “electron” (“hole”') (wave packet) has the charge 
( ) e e− +  and a size of the rectangular unit cell, generated above (below) the 

Fermi energy Fε . It was shown [7] [15] that (a) the “electron” and the “hole” 
have different charge distribution and different effective masses, (b) that the 
“electron” and “hole” move in different easy channels, (c) that the “electrons” 
and “holes” are thermally excited with different activation energies, and (d) that 
the “electron” activation energy 1ε  is smaller than the “hole” activation energy 

2ε :  

1 2ε ε<                             (39) 

Thus, “electrons” are the majority carriers in graphene. The thermally activated 
electron densities are then given by  

( ) ( ) ( )exp , constant ,i i i B in T n k T nε= − =           (40) 

where 1i =  and 2 represent the “electron” and “hole”, respectively. The pre- 
factor in  is the density at the high-temperature limit. Magnetotransport ex- 
periments by Zhang et al. [16] indicate that the “electrons” are the majority 
carriers in graphene. Thus, our theory based on the rectangular unit cell model 
is agreement with experiments. 

At finite temperature phonons are present in the system. The excitation of 
phonons can be discussed based on the same rectangular unit cell introduced for 
the conduction electrons. We note that phonons can be discussed naturally 
based on the orthogonal unit cells. It is difficult to describe phonons in the WS 
cell model. 

5. Results and Discussion 

Based on the rectangular 4-atom unit cell model, we obtained the band disper- 
sion of graphene by applying the tight-binding theory of Reich et al. [8]. The 
obtained ( π -) band structure based on the rectangular 4-atom unit cell model 
for graphene computed from Equations (29) and (30) is shown in Figure 3, 
where the nearest-neighbor hopping parameters 1t  and 1s  are taken from the 
values obtained by the ab initio calculation [8] [17]: 0 0 eVt = , 1 3.033 eVt = − , 

1 0.129s = . This 3D figure illustrates the conduction and the valence band 
within the first Brillouin zone. The two crossing points P and Q indicated in the 
figure are of particular importance for the physics of graphene.  

Figure 4 shows the energy band profile along the high symmetric points 
(indicated by Γ , X, Y, and W) of the rectangular 4-atom unit cell in reciprocal  
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Figure 3. (Color online) Band structure of graphene based on the rectangular 4-atom 
unit cell model. The energy is maximal at the Γ -point in the conduction band, while 
there is a saddle-point at the Γ -point in the valence band in the first BZ. The display 
shows the linear dispersion structure around the crossing-points P and Q, at which 

( ) 0ε ± =k . 

 

 
Figure 4. (Color online) Band profile along the symmetric points of graphene for the 
rectangular 4-atom unit cell model. One of the cross in points (so-called Dirac points) is 
indicated by P. Inset is the 1st Brillouin zone of the rectangular unit cell model. 
Conduction bands (red and blue) are computed from Equation (29) while valence bands 
(black and green) are computed from Equation (30). Note that the band profile is plotted 
within the one quarter of the first Brillouin zone. 
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space. There are two crossing points P and Q in the first BZ (cp. Figure 3), at 
which the band energy is crossing (i.e., ( ) ( )P Q 0ε ε± ±= = ), suggesting that 
graphene is a zero gap semiconductor. 

Let us take a close look at the behavior of the band energy close to the crossing 
points, at which the band energy equals to zero. The conduction and valence 
bands are degenerate at this point. The dispersion relation for small momenta 
k  near the crossing points ( )P 2π 3 ,0a  and ( )Q 2π 3 ,0a−  is given by Taylor 
expanding the band energy around the points P and Q, resulting in a unique 
linear energy dispersion:  

( ) 2 2
F F F ,x yv v k k v kε ± = ± = ± + = ±� � �k k            (41) 

where ( )k = k  is now in spherical coordinates (their origin is now at the points 

P and Q), Fv  the Fermi velocity given by ( ) 6 1
F 13 2 0.98 10 m sv at −≈ = × ⋅   

with 1 0.246 nma = =a , 1 3.033 eVt = − . This particular band structure re- 
sembles the physics of massless Dirac fermions with a velocity approximately 
300 times smaller than the speed of light. Near the crossing point P in the first 
Brillouin zone, the linear dispersion (Equation (41)) is clearly seen in the plot in 
Figure 5 for the rectangular 4-atom unit cell model for graphene. The linear 
dispersion for small k  also holds for the crossing point Q as well.  

The second BZ of the reciprocal lattice for the rectangular 4-atom unit cell is 
shown by the shaded area in Figure 6. The high symmetric points in the 
reciprocal lattice of the rectangular 4-atom unit cell are indicated by Γ , X, Y,  
 

 
Figure 5. (Color online) The linear dispersion near the point P in the first BZ of the 
rectangular 4-atom unit cell, where the two bands (valence and conduction) cross each 
other. The energy is maximal at the Γ -point, while there is a saddle point at the Γ - 
point of the first BZ. The linear dispersion relation (red lines) holds for the small k  near 
the so-called Dirac point, while the actual bands (black lines) deviate from the linearity 
near 2 eVε ≈ ± . 
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Figure 6. The first Brillouin zone (rectangular) and the second Brillouin (shaded) zone of 
the rectangular 4-atom unit cell. The region of the first and second BZ’s (i.e., the 
hexagonal region) of the rectangular 4-atom unit cell is identical to the first BZ of the 
Wigner-Seitz 2-atom unit cell. 
 
and W, while those in the reciprocal lattice of the 2-atom unit cell are indicated 
by Γ , M and K. The Dirac points of the Wigner-Seitz 2-atom unit cell are 
indicated by K and K’ in Figure 6, while the crossing (so-called Dirac) points of 
the first BZ of the 4-atom unit cell are located at the points P, Q in the first BZ of 
the 4-atom unit cell. Note that the first Brillouin zone of the Wigner-Seitz 
2-atom unit cell is identical to the region of the first and second Brillouin zone of 
the rectangular 4-atom unit cell (hexagon. cp. Figure 6). The crossing points, P 
and Q, in the first Brillouin zone of the rectangular 4-atom unit cell correspond 
to the Dirac points, K and K’ of the Wigner-Seitz 2-atom unit cell since the 
energy band structure of the rectangular 4-atom unit cell model is identical to 
the folded band structure of the 2-atom unit cell model along the boundary of 
the first BZ of the 4-atom unit cell model. 

The approximate results ( π -bands) obtained in this paper are based on the 
rectangular 4-atom unit cell model for graphene by using tight-binding 
calculations, where only the nearest-neighbor hopping is taken into account for 
the transport of Bloch electrons. The horizontal ( ) 0ε =k  line shows the 
chemical potential. Below the chemical potential, the states are all occupied and 
the conduction states are above it. The chemical potential is at the points labeled 
P and Q in the first BZ, where the valence and conduction bands are crossing. 
The bands with the lowest energy are from the σ -bands in the planes between 
the carbon atoms. Electrons in the σ -bands are tightly bound. The energy 
bands near the chemical potential are from the π -bands. They are formed from 
the carbon orbital zp , which projects above and below the plane of graphene. 
These π -bands are well described by a nearest-neighbor tight-binding calcula- 
tions based on the 4-atom unit cell model.  

6. Conclusions and Some Remarks 

The current authors proposed a rectangular 4-atom unit cell model for graphene 
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[7]. Based on this model, we obtained the band energy by applying the tight- 
binding approach employed by Reich et al. [8]. We proved the band structure 
based on the rectangular 4-atom unit cell model for graphene gives the same 
band structure of graphene based on the prevalent graphene model based on the 
Wigner-Seitz 2-atom unit cell model. 

The rectangular 4-atom unit cell for graphene has the sides perpendicular to 
each other (see Figure 2). The k -vector k  is defined as in Equation (1) but 
with the orthogonal unit vector, and the k  is obtained as the Fourier conjugate 
of the position vector r . 

The transport electrons in graphene originating from the π -band can be 
described by the 2D Bloch k -vector defined in the proposed rectangular unit 
cell. We showed that the energy dispersion relation near the Dirac points (small 
k ) shows the linear dependence of k  (see Equation (41)). 

A material (density) wave such as a phonon wave can be presented by a 
traveling wave function of the form: ( )expC i t iω− + ⋅k r  with C = material 
density, ω  = angular frequency, and k=k -vector. The direction of k  
points to the direction of the traveling plane wave. 

In the currently prevailing theory [2] [3] [4] [5] [8] [9] [10] [11] [17] the solid 
state theory dealing with a hexagonal crystal starts with a primitive non- 
orthogonal unit cell, the 2-atom unit cell. This theoretical model has difficulties 
in particular for a superconductor. The ground state of a superconductor must 
be condensed in a single particle-state in accordance with Nernst’s theorem (the 
third law of thermodynamics). Many fermions have a distribution in energy and 
hence a many-fermion system cannot be a superconductor. Only many-boson 
system can be a superconductor. 

In the prevailing theory [2] [3] [4] [5] [8] [9] [10] [11] [17] a 2-atom unit cell 
model is used to set up k -vectors with non-orthogonal unit vectors 1�a  and 

2�a . A Bloch k -vector is 1 1 2 2k k= +� �k a a  constructed with the Born-von 
Karman boundary condition [6]. But this vector is not useful in dealing with a 
superconducting intercalation graphite compound. 

In the present work we have shown that the non-orthogonal 2-atom and 
orthogonal 4-atom models give the same band energies in the mean field appro- 
ximation. In separate publication we report the superconductivity in graphite 
intercalation compounds C8K, C6Ca and in compound MgB2. 
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