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Abstract

This paper studies the existence and uniqueness of solutions for a class of
boundary value problems of nonlinear fractional order differential equations
involving the Caputo fractional derivative by employing the Banach’s contrac-

tion principle and the Schauder’s fixed point theorem. In addition, an exam-
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ple is given to demonstrate the application of our main results.
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1. Introduction

This paper considers the following boundary value problems of fractional order

differential equations
“DIx(t) = f(t,x(t)), for teJ=[ab], n-l1<a<n,

(1.1)
x¥(a)=x%, k=0,1,2--n-2; x"Y(b)=x,

‘Dy f:JxR >R is continuous

where is the Caputo fractional derivative,

function and Xy, X;,:**, X, ,, X, are real constants.

n-21

Fractional order Differential equations have recently proved to be valuable
tools in the modeling of many phenomena in various fields of science and engi-
neering. Applications can be found in fields of control, porous media, eletro-
magnetic, etc. (see [1] [2] [3] [4] [5]). There has been a significant progress in
the investigation of fractional differential equations in recent years, The readers

are referred to the monographs of Oldham and Spanier [1], Miller and Ross [2],
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Podlubny [3], Hilfer [5] and the papers of Agarwal et al [6], El-Sayed [7] [8] [9]
[10], Benchohra ef al [11] [12], Yu and Gao [13] [14], Zhang [15], He [4] and
the others references therein [16]-[23].

Recently some basic theory for the initial value problems of fractional diffe-
rential equations involving Riemann-Liouville differential operator (0 <o <1)
has been discussed by Lakshmikantham et al. [24] [25] [26]. In a series of papers
(see [6] [11]), the authors considered some classes of boundary value problems
for differential equations involving Riemann-Liouville and Caputo fractional de-
rivatives of order O0<a <1 and 2<a <3.

This paper generalizes the results of the papers above [6] and presents some
existence theorems for the boundary value problems (BVP) (1.1). Two theorems
are based on the Banach fixed point theorem, and the others are based on Schau-
der’s fixed point theorem and Leray-Schauder type nonlinear alternative. An

example is given to demonstrate the application of our main results.

2. Preliminaries

Some notions and Lemmas are important in order to state our results. Denote by
C (J , R) the Banach space of all continuous functions from Jinto R with the

], :=sup{|x(t)} 9 =[a.b].

Definition 2.1 ([6] [11]) The fractional order integral of the function
h (t) ell ([a, b], R+) is defined by

|;h(t):L)L(t_s)“‘1h(s)ds (2.1)

where I' isthe gamma function.
Definition 2.2 ([6] [11]) For a function A given on the interval [a,b], the « -
th Caputo fractional-order derivative of h is defined by

(Deh)(t) :ﬁ [(t=s)" " h" (s)ds (2.2)

where n= [0!] +1 and [a] denotes the integer part of « .

A solution of the problem (1.1) is defined as follows.

Definition 2.3 A function X(t) ec™? (J , R) that satisfies (1.1) is called a
solution of (1.1).

Lemma 2.1 ([15]) Let « >0, then the differential equation
“Dh(t)=0
has solutions
h(t)=c, +c (t-a)+c,(t—a) ++c,,(t-a)"",
¢ eR, i=012-,n-Ln=[a]+l
Lemma 2.2 Let o >0, then

12°DZh(t)=h(t)+¢, +¢ (t-a)+c, (t—a)" +---+c, , (t-a)"".
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In particular, when a=0,
1“°D*h(t) =h(t)+cy +ct+c,t> +---+c,,t",

forsome C €R, i=012,---,n-1n =[a]+1.
Proof. By (2.1), (2.2),

R S — It h" (z)dz ((::;)) f:(t —s) 7 (s—7)""ds
(a-1)(a—2)---2x1

:;t(“)r - Ys— V" %ds
e O g )

1 t n-1 n-1
—mja(t—r) dh! )(T)
N @) e M) e 1 e
oy Y T +r(n—z)L(t—T) ") (r)dr
1) (3 o1 23 n-2 ‘(a a
_h ( )(t—a) _h ( )(t—a) —..._M(t—a)—y+h(t)

r'(n-1)

=h(t)+c, +c (t-a)+c, (t-a) +--+c,, (t-a)

h(')(a) )
where ¢ =—— ,1=0,1,2,---,n-1.
r(i+1)

Lemma 2.3 ([27]) The relation

DI IZh(t)=h(t), 1Z12h(t) = 17/h(t) (2.3)

' Taa
is valid in following case

Re >0, Re >0, h(t)el(ab).

As a consequence of Lemmas 2.1, Lemmas 2.2 and Lemmas 2.3, the following
result is useful in what follows.

Lemma 2.4 Let n—-1<a<n, N =[a]+1, and let h:J —» R Dbe continuous.
A function X(t) is a solution of the fractional BVP

{°D§‘x(t):h(t), ted,

(2.4)
X(k)(a):Xk, k:oy]_,zl’n_zy X(n’l)(b)sz,

ifand only if X(t) is a solution of the fractional integral equation

<3
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(t_a)nil )I:(b—S)a_nh(S)dS-f—i%(t—a)k .

(=) (a—n+1

Proof. Assume X(t) satisfies (2.4), then Lemma 2.2 implies that

x(t)=c, +¢ (t-a)+c,(t-a)’ +--~+Cn1(t—a)nl+ﬁ£(t_5)alh(s)ds'

And the following simple calculation can be obtained by (2.4)

Xb (a b a)a—n+l

) n1
e T o T e L U

(=) )jb(b_s)*" h(s)ds.

(n=1)I(e—n+1)"2

Hence Equation (2.5). Conversely, it is clear that if X(t) satisfies Equation
(2.5), then Equations (2.4) hold.

3. Existence and Uniqueness of Solutions

In this section, Our first result is based on the Banach fixed point theorem (see

[28]).
Theorem 3.1 Assume that
(H1) There exists a function /1('{)

(S
|f(tu (tv(1))

Vtel = [ab] u(t), v(t)eR

( ) such that

<AO(O-v(),

If

9:|m(t)+(n_(2)_”a_)(;’1_(:)+2)+(t(’n__‘?;! 1™ (b) <l (3.1)

Then the BVP (1.1) has a unique solution on /.
Proof. Transform the problem (1.1) into a fixed point problem. Consider the

operator
T:C"(J,R)>C"*(J,R)
defined by
Tx(t)_ﬁj (t-s)"" f(s,x(s))ds

W Hax@)b-a) "

(n-1)1 (n—2)IT(a-n+2) (t-a)" (32)

(t-a) )J.:(b—S)afn f (S,X(S))ds+zzz%(t—a)k :

C(n=)Ir (a—n+1
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0:{5: Scientific Research Publishing

315



Y.F.Sunetal.

The Banach contraction principle is used to prove that 7'has afixed point.
Let X(t),y(t)eC"*(J,R).Then Vteld,

[Tx(0)-Ty (1) sﬁ [{(t=s)""|f (s.x(s))~ T (s.y(s))|ds

+ ((tn—_az))!‘r((t; —_agtz) |t (a.x(a))- T (ay(a))
+(n—1()t!1:8—n+1) .[:(b—s)“’" f(s.x(s))-f (s,y(s))|ds

=yl gy (b-2)""" 2(a)[x-y],

S PR LS AL ey e e oy

L (b= x-y], [
(n-)Ir(a—n+1)
(b-a)” i(a)  (b—a)""

=[Ial(t)+(n—2)!r(a—n+2)+ (-1 I“”*%(b)]"x—y"m.

(b—s)"" A(s)ds

a

Thus

fre-Ty. < [I%(t) e R '“”“ﬂ(b)} k-t

Consequently, by (3.1) Tis a contraction operator. As a consequence of the

Banach Fixed point theorem, 7 has a fixed point which is the unique solution of
the problem (1.1). The proof is completed.

In Theorem 3.1, if the function i(t) is replaced by a constant L > 0, the
second result follows.

Theorem 3.2 Assume that

(H2) There exists a constant L > 0 (Ze. /1('[) =L>0), such that

|f(tu(t)- f (tv(t) < Lju(t)-v(t),
vteld=[ab]; u(t),v(t)eR.
If

P 1 n
6=L(b-a) (F(a+1)+(n—1)!l“(a—n+2)j<l' G3)

Then the BVP (1.1) has a unique solution on /.

The third result is based on Schauder’s Fixed point theorem.
Theorem 3.3 Assume that

(H3) The function f :JxR — R iscontinuous.

(H4) There exists a constant A7 > 0, such that

|f(t,u(t))| <M foreach teJ=[ab] and Vu(t)eR. (3.4)

Then the BVP (1.1) has at least one solution on /.

Proof. Schauder’s Fixed point theorem is used to prove that 7"defined by (3.2)
has a fixed point. The proof will be given in several steps.

Step 1: 7 is continuous.

Let {X,} beasequencesuchthat x, —x in C(J,R).Then foreach teJ

3
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. S S

"-2)(a-n+2) (n-1)(a—n+1

(0% (+))= T (x(+))

<|

Since fis a continuous function, it can be shown that

[T, -], s(b—a)“[r( _t (n_l)!r(”a_n+2)J||f<-,xm ()1 (xO),

And hence

||Txm —Tx||w -0, Mmoo

Step 2: 7" maps the bounded sets into the bounded setsin C (J , R) .
For any 7" >0, it can be shown that there exists a positive constant ¢ such
= : : <
that VxeB. ={xeC(J,R):[x], <n’}, [Tx], <¢.
In fact, VteJ,by(3.2) and (/4)

oy ) X, f(a,x(a))(b—a a-n+l n-1
|Tx(t)|S§)%(b_a) +[(n|_|1)!+| ((r1—2()!l)“)(|it—n12) ](b_a)

f (s, x(s))| ds

1

+Ta)_|'a(t -s)"

L b-a)
(- (a-n+1

)J-:(b—s)‘H | f (s,x(s))|ds

2l [%l(b-a)
<y —(b- LT
g k!( a) +

(n-1)!

M (b—a)“(r(;l) " (n—1)!rFa—n+2)]'

K2
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Thus
x|, <¢
where
. nzu ) )+|xb|(b—a)”‘l
2 (n-1)!

M (b-a)” (r(aln) " (n—l)!FFa—n+2)J'

Step 3: Tmaps the bounded sets into the equicontinuous sets of C (J , R) .
Let t,t,eJ,t <t,, an be abounded set of C(J,R) asabove, and

xeB..
n

|Tx(t2)—Tx(t1)| <

- 1 (J:z (t,—s) " f (s, x(s))ds—j:(t1 —s) 7 f (s,x(s))ds)

J{ %, fax@)b- )a_n+1\]((t2_a)n—l_(ti_a)n—l)
(

(-1 (n=2)iF(a=n+2)
a) ( );'[a( -s)"" f(s,x(s))ds

Then
M (4 a-1 a-1 Y/ a-1
[Tx Tx(t1)|sr(a)_[a((t2—s) ~(t,-s) )ds+r( )L(tz_) ds

X, M(b-a i n-1 n-1
[ R o) )](az—a) (-a)")

(n-1)! (n-2)I(a-n+2
M((t-a)"" (. -a)"")
(n=1)'IT(a—-n+1)

J'b(b -s)""ds

a

%] N nM (b—a)" " ((tz_a)n—l_(ti_a)n—l)l

(n-1)! (n-)!Ir'(e-n+2)

As t, - t,, the right-hand side of the aboveinequality tends to zero. As a con-
sequence of Steps 1 to 3 together with the Arzeld-Ascolitheorem,
T:C(J,R)>C(J,R) iscompletely continuous.

Step 4: A priori bounds.
Let £={xeC(J,R):x=ATx for some 0<A<1}, it shall be shown that

318 ‘0’ Scientific Research Publishing
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the set is bounded.
Let Xeeg,then Xx=ATXx forsome O0<A<1.Thus Vteld,

X =ATX
) s x(s))ds

a)'[
o tax(@)boar

A e e |

At-a)” )j:(b_s)“‘” (s, x(s))ds+/1:2(2)%(t—a)k .

(=T (a—n+1

By the condition (/#4) and Step 2,

|x(t)| < —(b—a)k +

a 1 n
M (b— :
+M(b-a) [F(a+1)+(n—1)!l“(a—n+2)]
Thus for every VtelJ,

STAPAICR
—b i =)
I, <350 o-a)' +

k! (n-1)!

*M(o-ay (F(cj+l) +(n—1)!1“(na—n+2)J:= R

This shows that the set ¢ is bounded. As a consequence of Schauder’s fixed
point theorem, 7'has a fixed point which is a solution of the problem (1.1).

In Theorem 3.3, if the condition (H4) is weakened, the fourth result can be ob-
tained, which is a more general existence result (see [6]).

Theorem 3.4 Assume that (/3) and the following conditionshold.

(H5) There exist a functional y, € Ll(J , R*) and a continuous and nonde-

creasing ¢ :[0,0)— (0, ), such that

| (tx(1)| vy (t)e(|x (1))

foreachte J =[a, b]and Vx(t)eR.

(H6) There exists a number K> 0, such that

f=K™ go(K) “

A(b_a)n_l (K) a—n+l ”2| |

Toa TR
35

L PR a)o(|x(a))) el

(n—l)!(b ) (n—2)!F(a—n+2)(b ) |<1.

Then the BVP (1.1) has at least one solution on /.
Proof. Consider the operator 7 defined by (3.2), VA€ [0,1], teld= [a, b] , let
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1

((X)J:(t—s)a’l f(s,x(s))ds
.

- T (n—2)r(a-n+2)

\_/’1

v @e(x(@))b-a)

(n—l)!(b_ ) (n—2)IT (@ -n+2)

o(¥.)b-a)" o 2led
rET e A A ds+kzok

[%| i vi(a )¢(|X(a)|)(b—a)“
+m(b—a) +

<o)

+‘P(”X"(mn)£t;-;a) | @+l ( ) :z'k_|( _ )

By (H6), there exists K such that ||X||w #K.Let D= {X eC(J,R):|x|, < K} ,
the operator T:D —C (J , R) is completely continuous. Through proper selec-
tion of D, there exists no X(t) € 0D such that X(t) = /I(TX)('[) for some
2€(01).

Therefore, 7'is Leray-Schauder type operator (see [6]), so that it has a fixed
point X(t) in U , which is a solution of the BVP (1.1).

4. An Example

For the boundary value problem

e Ix(t)]t _ ~
Dy x () 1+X(t)' teJ—[O,l], n-l<a<n, @

x¥(0)=0, k=0,12,--,n-2; x"V(1)=1.

Take

f(t,u(t)):ﬂ . (tu(t))e Ix[0, ).

1+u(t)

Let x(t),y(t) €[0,), teJ. Then

|f(t,x(t))—f(t,y(t))|:t| x) oy |

(4.2)

320
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Hence the condition (/A1) holds with l(t) =te C(J , R). It can be checked

that condition (3.2) is satisfied with b =1. In fact,

2(0) 1

0=1 l(t)+(n—2)!F(a—n+2)+(n—1)!| (1) .
1 a+l 1 _ '
_r(a+2)t +(n—1)!r(a—n+3)<l’ (t<1 4(0)=0)
only if
1 1
F(a+2)+(n_1)!r(a_n+3)<l' (4.4)
For example, 0!=§,then n:[a]+1:3, F(a+2):l"(gj:105\/;,
2 2)" 16
r<a—n+3)=r<a>=r(§j:¥, (n-1)1=21=2.Then
1 1
< +
I(a+2) (n-1)IT'(a-n+3)
1 1 16 2)1
_F(a+2)+21—‘((z)_(ﬁ+§jﬁ (4.5)
=0.4621<1.

Then by Theorem 3.1 the boundary value problem (4.1) has a uniquesolution

on J=[0,1] for the valuesof a€(2,3].
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