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Abstract 
Our research focuses on the development of two cooperative approaches for 
resolution of the multi-item capacitated lot-sizing problems with time win-
dows and setup times (MICLSP-TW-ST). In this paper we combine variable 
neighborhood search and accurate mixed integer programming (VNS-MIP) 
to solve MICLSP-TW-ST. It concerns so a particularly important and difficult 
problem in production planning. This problem is NP-hard in the strong sense. 
Moreover, it is very difficult to solve with an exact method; it is for that reason 
we have made use of the approximate methods. We improved the variable 
neighborhood search (VNS) algorithm, which is efficient for solving hard com-
binatorial optimization problems. This problem can be viewed as an optimi-
zation problem with mixed variables (binary variables and real variables). The 
new VNS algorithm was tested against 540 benchmark problems. The perfor-
mance of most of our approaches was satisfactory and performed better than 
the algorithms already proposed in the literature. 
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1. Introduction and Motivations 

The multi-item capacitated lot-sizing problem with time windows and setup 
times (MICLSP-TW-ST) has been an important part of material requirement 
planning (MRP) system. This problem is both complex and very important. 
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Wherein, we seek to minimize the total cost of production, preparation and in-
ventory. It comes to determine a production plan of a set of N products, for a 
time horizon consisting of T periods. This plan is finite capacity and must con-
sider a set of additional constraints. Indeed, the manufacture of a unit of product 
i to the period t engenders a production cost pit and requires a manufacture time 
of itf  units of the capacity of the resource ( tC ). The cost of preparation cprit  
is generated at each period. A storage cost of a unit of the product i  at the end 
of period t is ith . All these costs are deterministic. Each request must be pro-
duced before a deadline iD  and of the same it becomes even available at a pe-
riod ir  “availability period” before which she cannot be produced. 

The decision variables are itX  which represents the product quantity i  
manufactured in the period t  and itY , the preparation variable that is equals 1 
if 0itX > . We need also to define Yit as a binary variable equal to 1 if item i is 
produced at period t and 0 otherwise (i.e. if Xit > 0 only if Yit = 1). 
• For this problem we dispose a set of command during a time horizons con-

sisting of T periods in seek to satisfy the customer following delays taking into 
account the capacity constraint and fixed charge and variable launch of each 
product. Several extensions have been presented for this problem. We can there-
fore, classify those problems of the lot sizing at a level by Kuik and Solmon [1] 
and several production levels by Brahimi et al. [2]. Similarly, for the problem at a 
single level, they can be classified into problems to several products or to a single 
product. Several extensions have been proposed, and one finds the problem of 
several products with the re-fabrication (Richter and Sonbrutzki [3]), preparation 
time (Trigeiro et al. [4]), and with common preparations (Suerie and Stadtler 
[5]). One finds these same extensions with the problems to a single product, in 
particular the case without capacity (Wagner and Whitin [6]), and the products of 
re-fabrication (Golany, Yan, and Yu [7]). One also finds the case with time win-
dows on the demand (Lee, Cetinkaya, and Wagelmans [8]). It has always been 
considered that the requests can be prepared early in the planning horizon. 

However, there are several constraints that do than this hypothesis is not true. 
This is the case, for example, when the raw material is supplied to us at different pe-
riods. That is why we made recourse to the time window constraint and its impor-
tance in modeling and solving production planning problems, and in this case one 
should consider for each request an availability date in addition to her delivery date. 

In the particular case with time windows for non-specific customers, products 
arriving at a period s  are used to satisfy the demands for which the due period 
expired is t ( s t≤ ) and which are not yet covered by products arriving before 
(First-In-First-Out). 

The time window constraint signifies that there is a time interval where the 
customer demand can be satisfied without inventory and backlogging costs. 
Under this constraint, two cases may be presented: The specific customer case 
means that each specific demand should be satisfied within a given time interval. 
Therefore, the production between two periods’ 1t  and 2t  can only satisfy the 
specific demand available before 2t . On the other hand, the non-specific cus-
tomer case means that time windows are not inclusive, i.e. for any pair of time 
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windows ( 1 1;s t ) and ( 2 2;s t ), it holds that 1 2s s≤  and 1 2t t≤ . 
In the literature, Dauzère-Pérès et al. [9] are the first ones who presented the 

production time windows constraint in the LSP context. They have treated the 
customer specific case with single item. Wosley [10] considered the LSP with 
time windows under non-specific customer case. The LSP with non customer 
specific model is equivalent to the single item problem with stock upper bounds 
by Wosley [10], whereas, in other study, Van den Heuvel and Wagelmans [11] 
have showed that this model is equivalent to the lot-sizing model with a rema-
nufacturing option and the lot-sizing model with cumulative capacities.  

In the literature, the first exact algorithm was presented by Wagner & Whitin 
[6] denoted (WW), is polynomial (initially resolved in O (T2)). It’s of a dynamic 
programming algorithm which explores the solution space of a problem for find 
the optimum. Recently, the complexity of dynamic algorithm of the lot sizing prob-
lem at a product and without capacity constraints has been improved at O (TlogT).  

Pochet & Wolsey [12], there are also several variations of the basic problem: 
the stock shortage, the preparation time and refabrication. For states of the re-
cent art on the problem (see Brahimi & Nordli [2]). Karimi et al. [13] and 
Dauzère-Pérès & Nordli [9] have proven that the algorithmic complexity for the 
lot sizing problem to a product as well as without capacity constraint with non- 
customer specific is NP-complete. 

Lee & Wagelmans [8] imposed some assumptions on costs and have studied 
two cases: with and without the out of stock. For the case, with no stock shortage, 
an algorithm in O (T2) time has been proposed. When stock shortage is permit-
ted the problem is solved in O (T3) time. 

Our particular contribution relative to this subject is the introduction of a new 
model with constraints of time window. For which, we have developed two algo-
rithm based mainly on two new formulations mathematical and analysis of me-
thods of solving several classes of problems. 

The choice of this problematic has relied on the reasons following: First of all 
we will exploit nature of the problem for propose a new resolution approach 
based on decomposition. In the second place, this algorithm of metaheuristic has 
proven its performance in solving of mixed-variable optimization problems.  

Finally, this algorithm has never been applied to resolve the problems of mul-
ti-item capacitated lot-sizing problems with time windows and setup times.  

In our study, we have focused on the problems at one level but at several 
products under capacity constraint with time windows and setup times. Let LSP 
denotes the lot sizing problem, as is shown in Figure 1. 

The remaining of the paper is organized as follows: Section 2 describes an MIP 
formulation of the MICLSP-TW-ST problem, computational experiments are 
described in Section 3, and the conclusions and future researches are presented 
in Section 4. 

2. Mathematical Formulation and Resolution 

I will pass now to describe the mathematical model from lot sizing problem at 
several products that consists of determining a production plan for a set of N  
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Figure 1. Classification of lot sizing models (Based on illustrations by Brahimi et al. [17]). 
 
products over a time horizon consisted of T periods. The objective is determined 
the periods of productions and the quantities to produce, in order to minimize 
the total production, setup and holding costs to satisfy all requests.  

In this model, N and T stand for the number of items and the number of pe-
riods in the planning horizon respectively. The following notations are used in 
order to describe the mathematical model of the MICLSP-TW-ST problem: 

Parameters for the MICLSP-TW-ST 
 

T Number of time periods. 

N Number of products. 

t Index of time periods. Where 1t T= 
. 

i  
Index of products. Where 0i =  corresponds to the raw material 
and 1i N= 

 to the finished products. 

itd  Demand for item i  at period t . 

itp  Unit production cost of finished product i  in period t . 

its  Setup cost of finished product i  in period t . 

ith  Unit holding cost of finished product i  in period t . 

tC  Available capacity at period t. 

iktd  External demand for item i  available at period k that should be 
produced before period t. 

0iI  Initial inventory of item i . 

ir  Launching production of item i in period t requires a setup time i 
from the joint resource. 

iσ  Requires units of the joint resource. 

itD  
represents the aggregate demand in period t, i.e. 

1

t

it ikt
k

D d
=

= ∑ . 

Without loss of generality we assume that each of the items 
1, ,i N=   has a distinct time window. 
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Single-
level

Multi-
level

single
product

Multi-
products

Setup times

Perishable 
products

Capacitated

Re-fabrication

Inventory 
shortages

Demand Time 
Windows

Richter et Sonbrutzki (2000)

Millar et Yang (1993)

Lee, Cetinkaya, 
Wagelmans (2001)

Trigeiro et al. (1989)

Friedman et Hoch (1978)

Manne (1958) 

Kuik et Salomon (1990)
Salomon et al. (1993)

Multi-
products



R. Erromdhani, A. Rebaï 
 

87 

The decision variables are as follows: 
 

itX  is the quantity of product i  prepared at period t. 

itI  is the inventory level i  at the end of period t and 

itY  
a binary variable. Which takes the value 1 if there is a setup of i  in 
t and 0 otherwise ( 0itX >  only if 1itY = ). 

 
• Model MICLSP-TW-ST 

( )
1 1
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N T

it it it it it it
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= =
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}{0,1       ,itY i t∈ ∀                         (7) 

, 0     ,it itX I i t≥ ∀                         (8) 

The objective (1) is to minimize total setup, production and holding costs. 
Constraints (2) are the inventory balance equations. Constraints (3) state that 
the cumulative production in the first t periods does not exceed the cumulative 
quantity available from periods 1 to t. Constraints (4) guarantees that the con-
straints of time windows are satisfied. This constraints warrant that the produc-
tion which is to be performed between two periods 1t  and 2t . 

The capacity constraints are represented by (5). Constraints (6) relate the bi-
nary setup variables itY  to the continuous variables itX . Finally, the integrality 
and non-negativity constraints are Constraints (7) and (8). 

This problem may be seen as an optimization problem with variables mixed 
combined with binary variables and variable real. 

2.1. Solving Multi-Item Capacitated Lot-Sizing Problems 

Our idea for the approach proposed consists in decomposing the problem in-
to two subproblems. The first one is composed of binary variables that will be 
resolved by an approximated method for the determination of days of pro-
duction for each product during the time horizon. The second includes con-
tinuous variables that will be resolved by an exact method based on mathemati-
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cal programming to determine the amounts of production and storage for 
each item during each period. 

The general principle is to isolate the difficult part of the easy part of the 
problem and subsequently resolve the difficult part by an approached method 
and the easy part by an exact algorithm. We have developed two based algo-
rithm principally on two new mathematical formulations to satisfy the capac-
ity constraints. 

We propose a procedure approached based on local search for the improve-
ment of that solution. After creating an initial solution (shown in Figure 2), a 
phase of improvement is introduced by performing movements in the prepa-
ration sequence, because any changes in this sequence leads to a new solution 
(Y is a binary matrix). The vicinity of such a solution can be defined by the 
solution obtained in changing one or more components same time. 

2.2. A Local Search Algorithm Based on Mathematical  
Programming (Algorithm 1) 

For the first algorithm we proposed solve the problem with binary variables 
using a local search algorithm that will allow us to generate solutions in two 
neighboring structures. 

The first is to be introduced or reviewed eliminate one day of production 
whereas second will allow us to change a day of production by another. 

Whenever a new solution is generated, a new mathematical program will 
take place taking into account the partial solution obtained by the local search 
method, which going to make being an exact resolution for the definition of 
quantities to be produced for each product during each period. 
• A new mathematical formulation of the first algorithm 

A new formulation of the MICLSP-TW-ST may be presented by a linear mixed 
integer program as follows: 

Let iE  denotes the set of periods where ity  takes the value of 1. ( i∀ )  
 

 
Figure 2. Construction of the feasible solution. 
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and let Ft denotes the set of items produced in period t ( t∀ ). 

( )
1 1 1

Min  
i

N N T

it it it it it it
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= ∈ = =
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( )        
t

N
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i F

X st Y C tτ
∈
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, , 0     ,it it itX I Z i t≥ ∀                       (14) 

In this new formulation, we introduced a new decision variable denoted 

itZ  who means the quantity demand breaking than one item i  at period t 
and itγ  is the cost associated with this variable. The new variable itZ , is 
used to create a feasible solution of the problem in order to calculate the value 
of the objective function. In addition, this new decision variable itZ  meas-
ures the distance between region admissible and inadmissible of the search 
space. Indeed, the acceptance of a non-feasible solution will be penalized by a 
very high cost itγ . 

According to basic math, this problem is a problem in whole numbers, in-
cluding binary variables such as the configuration of each item for each pe-
riod and continuous variables such as production quantities and stocks. 

The complexity of the problem increases according to the numbers of items. 
In addition the size of the neighborhood is very wide which leads excessive 
execution times. We propose a procedure approach based on local search for 
improving this solution. 

After you create an initial solution, a phase of improvement is introduced 
by performing movements in the preparation sequence, because any changes 
in this sequence led to a new solution. 

First of all, all the elements of the matrix itY  are initialized to 1 for all 
items and all periods and the mathematical program will be resolved. In the 
solution obtained, the quantities produced are determined. On the basis of 
this modification within the matrix Y, the problem will be reformulated and 
solved.  

These stages will be repeated until there is no quantity 0itX =  which cor-
responds to a preparation itY  different from zero. We used two structures of 
neighborhood to guide the local search to converge less rapidly to a local op-
timum. 

The first structure of used neighborhood is based on a single movement i.e. 
a single component of Y will be changed with every movement, as is shown in 
Figure 3. This structure consists in introducing or in eliminating a day of 
production. This stage will be repeated until the absence of the possible im-
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provements, if a local optimum was found, the second structure of neighbor-
hood will be realized, as is shown in Figure 4. 

In this structure, the movement to base to two-segment is used. Two com-
ponents will be changed. For each item i , for each period t, all possible move-
ments of permutation are used. A permutation movement consists in permute 
the values of two distinct periods for only one items i in the matrix Y. This 
step will be repeated up the absence of possible improvements. The choice of 
the change of the structure of a single item instead of two items is based on an 
extensive experiment. This second neighborhood structure will allow us to 
change a day of production by another. 

An every time a new solution is generated, a new mathematical program 
will take place by taking into account the partial solution obtained by the me-
thod of local search. The algorithm will stop when the local optimum of the 
second procedure and the first procedure is the same. 

2.3. Variable Neighborhood Search Based on a Local Search  
Algorithm (AL2) 

In order to reduce the computing time engendered by the resolution of the ma-
thematical program, we have developed a second algorithm based on a decom-
position scheme which consists in transforming the problem of a problem mul-
ti-produced in a mono-produced problem; this procedure consists in consider-
ing the production item by item. Every time one seeks to optimize the days of 
production of one item, we consider that the quantities to produce other prod-
ucts during the horizon of time are fixed to the values of the best solution al-
ready obtained. 
• New mathematical formulation of the second algorithm 

 

 
Figure 3. The first procedure of local search (a single movement). 

 

 
Figure 4. The second local search procedure (Two 
components will be changed). 
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Based on the results of AL1, it is shown that the phase of the resolution of the 
mathematical programming is relatively slow. Therefore, we have proposed a 
decomposition scheme of the problem for reducing its size i.e. the number of 
constraints and the number of variables. 

For each item; after performing the move, we evaluate this move according to 
the single item LSP by considering the remaining items as fixed. So, the mul-
ti-item LSP is transformed to the single-item LSP by performing the moves to 
the setup sequence of an item *i  and assuming that the setup sequence for all 
remaining items are known. Therefore, in each iteration, a new mathematical 
formulation of the problem is developed and solved: 

( ) ( ) ( )
* 1

Min , ,
i

T

i i t i t i t i t i t
t E t

X I Z p X h I Zγ∗ ∗ ∗ ∗ ∗ ∗
∈ =

= + +∑ ∑            (15) 
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i k i kl i
K k l k
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i t i l i
l t

X D t E
=

 ≤ ∈ 
 
∑                       (20) 

* * *, , 0     1, ,t t i t i tI X Z t T≥ =                      (21) 

where *iE  the set of periods whose 1     * 1,2, , ,   itY i N= ∀ =   
The objective function (15) minimizes the total cost induced by the produc-

tion plan that is production costs, inventory costs and penalty for the demand 
shortage costs for the item   *i . 

The constraints capacity (19) is modified while taking into account the known 
production of the items other than   *i .  

The evaluation of each move is computed according to the resolution of the 
mathematical programming presented above. 

Indeed, if one reduces our mathematical program we will accelerate the reso-
lution of the problem, it’s going to enable us to use a decomposition scheme 
which permutes from moving a local optimum and explore a larger region of the 
space search. The evaluation of motions with AL2 seems faster than that of AL1 
since the reduction in the size of the mathematical program. 

This second algorithm based on a decomposition scheme which consists in 
transforms the lot sizing problem multi products to a lot sizing problem to a fi-
nite capacity to single product. Our idea is to propose a new procedure for im-
provement using local search algorithm to variable neighborhood see Hansen 
[14] and Mladenović [15]. 

The initialization of this algorithm follows the same way as in the algorithm 1. 
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Our idea is to propose a new improvement procedure by using the Iterated Local 
Search algorithm (ILS) proposed by Lourenço et al. [16].  

This algorithm consists of two main steps: local search and perturbation. The 
first step leads to perform some moves to the current solution. The local optima 
found will be subject to the perturbation by applying random moves. These steps 
will be repeated until reaching a given stopping criterion.  

The ILS algorithm has the advantage to explore regions far from the current 
region of the search space. So, once the best solution is found in a large region, it 
is necessary to go quite far to get better solutions. Therefore, this algorithm em-
ploys the concept of perturbation to move from one region to another which can 
be more profitable.  

In our application, the neighbourhood structures used here are also the same 
used in algorithm1. However, within the local search, the way of solution’s 
evaluation of each move is based on the decomposition scheme described 
above. 

3. Computational Experiments 

This section reports computational experiments that evaluate the effectiveness of 
our algorithms and evaluate the performances against the proposed algorithms 
in the literature of the CLSP with time windows and set up times.  

Our algorithms are implemented in the C++ programming language. We use 
the callable Cplex 9.0 library to solve the MILP problems. Computational expe-
riments were performed on an Intel Core 2 CPU 2.67 GHz PC with 3.25 GB 
RAM. 

The data sets used in our experiments are generated by Brahimi et al. [17]. 
These instance problems are based on the data sets of Trigeiro et al. [4] and ex-
tended by adding the time windows. More detailed information about these test 
problems is available in Brahimi et al. [17]. 

3.1. Data Sets 

The data sets used in our experiments are generated by Brahimi et al. [17]. These 
instance problems are based on the data sets of Trigeiro et al. [4] and extended 
by adding the time windows. More detailed information about these test prob-
lems is available in Brahimi et al. [18].  

The comparison was conducted after classifying the instances into 13 classes. 
For a time horizon will fixed at T = 20 periods and three values are used for the 
number of products N: 10, 20 and 30 products. We compared our approaches to 
resolution and we proposed several policies research local and procedures for 
improvement.  

This extensive experimental study performed on 540 instances. For each 
product, the demand is uniformly randomly generated with a mean of 100 and a 
Coefficient of Variation (CV) is used to define the range of the uniform proba-
bility distribution. CV of the demand is set to 0.35 and 0.59 Moreover. 25% of 
the demands in each of the first four periods were randomly chosen and set to 
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zero.  
The utilization rate of total capacity is 75%, 85% and 95%. The time between 

two successive orders (TBO) is 1, 2 and 4. The average value of setup times over 
all products is 11 and 43 capacity unit. Finally, the production cost pit is set to 0 
for all products and all periods. 

3.2. Experimental Results 

The Competing approaches used in our comparative study are the approaches 
developed by Brahimi et al. [17]. The first approach designated by (LR) is a la-
grangian relaxation based heuristic.  

The second one is an exact mixed integer programming approach based on a 
new reformulation of the problem and solved with a commercial software and 
denoted (MIPX). The last one is a mixed integer approach based on the original 
formulation of the problem and denoted by (MIPB). 

To perform different quality measures by calculating the distances between 
lower and upper bounds of the same solution approach and between upper bounds 
(lower bounds) of different approaches. The distance or gap between two values 
a  and b , where a  ≥ b , is calculated as follows: 

( )Gap , 200 a ba b
a b
−

= ×
+

                     (22) 

The formula ( )Gap , 200 a ba b
a b
−

= ×
+

 is used instead of  

( ( )Gap , 100 a ba b
a
−

= × ) which overestimates the gap and  

( ( )Gap , 100 a ba b
b
−

= × ) which underestimates it. This approach was used. For  

example, by Millar and Yang [19] and Brahimi et al. [18]. 
In order to evaluate our results depending of the competing approaches of li-

terature. We began our analysis by counting the number of feasible solutions 
found on the 540 tested problems. 

Our first experiment, reported in Tables 1-4, involves running the Variable 
Neighborhood Search based on a local search algorithm approach for at most 
500 iterations, stopping earlier if optimality is proven. The CPU time given to 
Lagrangian relaxation was at least 1 s longer than that required by AL2 (see 
columns 10 - 12 of Table 2). 

As shown on Table 1. It can be seen that AL1 and AL2 are able to find 535 
feasible solutions i.e. five instances remains unsolved as in LR algorithm.  
 
Table 1. Number and percentage of problems for which feasible solutions were found 
(out of 540 problems). 

 MIPB MIPX LR AL1 AL2 

Number of feasible solutions 466 529 535 535 535 

Percentage (%) 86.3 98 99.1 99.1 99.1 
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Table 2. Average gaps and CPU times of the five solution approaches. 

Parametre Value 
Gap (UB.LB) CPU (s) 

MIPB MIPX LR AL1 AL2 MIPB MIPX LR AL1 AL2 

 10 16.58 2.92 2.76 3.79 2.02 3.32 3.33 2.0 3.38 2.05 

N 20 24.01 1.32 1.02 1.37 1.08 5.79 5.81 4.14 5.14 4.66 

 30 25.64 1.26 0.58 1.64 0.50 7.84 7.95 5.92 5.09 5.36 

 75% 20.74 0.33 0.33 0.33 0.33 4.73 4.05 3.09 3.73 3.09 

Capacity 85% 21.69 1.20 1.02 1.71 0.72 5.48 5.38 3.94 4.05 3.98 

 95% 23.89 4.14 3.15 4.16 2.68 6.73 7.66 5.12 7.64 5.34 

 1 2.32 0.60 0.70 0.84 0.73 4.16 3.36 2.69 4.16 3.14 

TBO 2 21.39 1.01 0.90 172 0.95 6.25 6.09 4.55 5.48 4.26 

 4 52.15 4.06 2.88 3.96 1.94 6.54 7.64 4.90 5.36 4.90 

CV 0.35 25.82 2.10 1.50 2.14 0.85 5.67 5.81 3.94 5.62 4.14 

 0.59 18.22 1.59 1.43 1.65 0.89 5.63 5.59 4.16 5.67 4.28 

 11 26.68 1.80 1.52 2.74 1.27 5.64 5.66 4.03 5.66 4.33 

 43 15.83 1.89 1.41 1.69 1.24 5.66 5.73 4.07 5.59 3.96 

Global average 21.94 1.84 1.46 2.13 1.17 5.70 5.65 4.05 5.12 4.11 

 
Table 3. Computational experiments of the proposed approaches. 

Parameter Value 

GAP UB (AL1. AL2) 

AL1 is better AL2 is better 

gap gap 

N 

10 0.34 2.19 

20 0.24 1.48 

30 0.08 1.87 

Capacity 

75% 0.19 0.98 

85% 0.31 1.37 

95% 0.39 2.91 

TBO 

1 0.28 1.72 

2 0.20 1.52 

4 0.34 2.11 

CV 
0.35 0.32 1.96 

0.59 0.25 1.49 

STC 
11 0.27 1.81 

43 0.19 1.47 

Global average 0.26 1.76 

Number of better UBs 31 (0.06%) 451 (84%) 
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Table 4. Gaps among UB (AL2), UB (MIPX) and UB (LR). 

parameter Value 

GAP UB (AL2. MIPX) GAP UB (AL2. LR) 

AL2 is better 
MIPX is 

better 
AL2 is better LR is better 

gap gap gap gap 

N 

10 2.32 0.47 1.57 0.81 

20 1.81 0.75 0.81 0.77 

30 2.14 0.16 0.26 0.24 

Capacity 

75% 0.71 0.29 0.53 0.35 

85% 2.11 0.38 1.11 0.47 

95% 2.85 1.11 1.62 1.18 

TBO 

1 0.23 0.70 0.27 0.87 

2 0.96 0.59 0.53 0.73 

4 3.28 0.43 1.56 0.41 

CV 
0.35 2.64 0.56 0.69 0.72 

0.59 1.69 0.53 0.61 0.58 

STC 
11 1.88 0.51 0.53 0.63 

43 2.41 0.52 0.75 0.69 

Average 1.93 0.54 0.83 0.65 

Number of better UBs 219 (41%) 158 (31%) 172 (33%) 181 (34%) 

 
The Lagrangian heuristic finds feasible solutions for most problems (99.1%). 

i.e. 5 problems were unsolved. In addition, to these 5 problems, the MIPX ap-
proach didn’t solve 6 more problems (feasible solutions were found for 98% of 
problems). Finally, the MIPB approach found feasible solutions for only 86.3% 
of the problems. 

Table 2 summarizes the average gaps between upper bounds and lower 
bounds of each solution approach (columns 3 - 7) and the corresponding CPU 
times (columns 8 - 12). We note that these gaps are computed according to the 
feasible solutions provided by each approach. The best gaps are shown in bold-
face.  

The first observation is that the MIPB approach always generates larger gaps 
(21.94% on average) than the four other approaches. It can be seen that the AL2 
have provided the best gaps in average for 10 classes of instances among 13 
whereas the LR algorithm have provided 2 best gaps. 

The last line of Table 2 also shows that the average gaps of MIPX, LR, AL1 
and AL2 are 1.84%, 1.46%, 2.13% and 1.17%, respectively. AL2 outperforms all 
the other approaches with 1. 17%. Concerning our proposed approaches, we no-
tice that AL2 is the best algorithm. 

Gaps increase with tighter capacities, and setup times and increasing TBO; 
and decrease with increasing demand variability and with number of products. 
Though the gaps of AL2 are better than those of LR, we notice that all lower 
bounds from LR are at least as good as those from AL2 and in most cases are 
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better (larger). 
From Table 2, we can notice that the CPU time for the approaches in each 

class of instances. We can see that AL2 has the smallest CPU time (4.11) ac-
cording to AL1, MIPB and MIPX. This is due to the decomposion scheme used 
in this algorithm, where, at each iteration, a single item problem is solved. On 
the other hand, the AL1 algorithm appears to be the slowest algorithm. Besides, 
the CPU time and the gaps of the proposed algorithms increase when the num-
ber of items and TBO increase, and when the capacity is tightly constrained. In 
comparison with Brahimi et al. [17] approaches, the average CPU time values of 
our algorithms are relatively higher. 

Table 3 shows the comparative study between the two proposed approaches 
in our paper. We compare the gap between the upper bound values provided by 
AL1 and AL2 according to Equation (22). It can be seen that AL2 is better than 
AL1 both in terms of average percentage deviations (0.26% in favour of AL1 and 
1.76% in favour of AL2) and the number of better values of upper bounds. When 
AL2 is better than AL1, we find that the number of better upper bounds is large 
than the opposite case (31 upper bounds in favour of AL1 and 451 in favour of 
AL2). This is proving the contribution of the decomposition scheme introduced 
in AL2 for improving the results. However, in some cases AL1 is better than AL2 
because AL1 explores more the depth of the space search. 

Table 4 provides a comparative study between the upper bounds of AL2, 
MIPX and LR. It is shown that the proposed algorithm outperforms the two 
compared approaches. In average, for all classes, the percentage gap between 
AL2 and MIPX is equal 1.93% where AL2 is better than MIPX and is equal to 
0.54% in the opposite case. The number of better upper bounds in favour of AL2 
according to MIPX algorithm is 219. Regarding the LR algorithm, we see that 
AL2 is better in terms of average percentage deviations whereas the former is 
better in terms of number of improved upper bounds. However, as shown on 
Table 4, the LR upper bounds were better than those of AL2 in 34% of the prob-
lems and the bounds UB (AL2) were better for 33% of the test problems. 

4. Conclusions 

In our work, two cooperative approaches were proposed for solving multi-item 
capacitated lot-sizing problem with time windows and setup times where the 
non-customer specific demand is considered.  

The problem is decomposed into two sub-problems: binary variables problem 
and continuous variables problem. Based on the complexity of each one of them, 
an exact approach using the mathematical programming is proposed for solving 
the problem with binary variables. On the other hand, the variable neighbor-
hood search based on a local search algorithm, when applied to our efficient re-
formulations quickly finds good lower bounds and takes longer time to find and 
improve feasible solutions. However, its steady state is reached after almost 2 h 
thus yielding better results if it is given “enough” time. 

The numerical results showed that the variable neighborhood search based on 
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a local search algorithm quickly finds good feasible solutions. The comparative 
study is performed according to the representative approaches of the literature. 
The results have shown the efficiency of the proposed approaches. 
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