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Abstract 
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear 
programming (GAINLP) problem solving approach has been proposed for 
solving non-linear programming optimization problems with inexact informa-
tion (inexact non-linear operation programming). GAINLP was developed 
based on a GA-based inexact quadratic solving method. The Genetic Algo-
rithm Solver of the Global Optimization Toolbox (GASGOT) developed by 
MATLABTM was adopted as the implementation environment of this study. 
GAINLP was applied to a municipality solid waste management case. The re-
sults from different scenarios indicated that the proposed GA-based heuristic 
optimization approach was able to generate a solution for a complicated non-
linear problem, which also involved uncertainty. 
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1. Introduction 

Municipal solid waste management involves activities such as waste collection, 
transportation, treatment, reutilization, and disposal. Economic optimization in 
the operation programming of solid waste management was first proposed in the 
1960s [1]. Different models of waste planning have been researched and applied in 
various engineering fields in the following decades. The primary considerations 
involved are cost control, environmental sustainability and waste reutilization. The 
techniques employed include linear programming [2] [3] [4] [5], mixed integer 
linear programming [6], multi-objective programming [7] [8] [9], nonlinear pro-
gramming [10] [11], as well as their hybrids, which involve probability, fuzzy set 
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and inexact analysis [12] [13] [14] [15] [16]. Due to complexity of the problem, 
research reports on nonlinear programming problems for solid waste management 
are scarce; some exceptions are [17] [18]. In some of the works such as [10] [11], 
the nonlinear objective functions are converted into linear functions or simplified 
into quadratic functions under some adopted conditions and assumptions. 

The approach of operational programming with inexact analysis often treats the 
uncertain parameters as intervals with known lower and upper bounds and un-
clear distributions. A major advantage of inexact programming is that the varia-
tion in system performance and decision variables can be investigated by solving 
relatively simple sub-models. In real-life problems, while the available information 
is often inadequate and the distribution functions are often unknown, it is gener-
ally possible to represent the obtained data with inexact numbers that can be rea-
dily used in the inexact programming models. For decision makers, it is usually 
more feasible to represent uncertain information as inexact data than to specify 
distributions of fuzzy sets or probability functions. Hence, various kinds of inexact 
programmings such as inexact linear programming (ILP), inexact quadratic pro-
gramming (IQP), inexact integer programming (IIP), inexact dynamic program-
ming (IDP) and inexact multi-objective programming (IMOP) have been devel-
oped and are well discussed [10] [11] [19] [20] [21] [22]. It can be observed from 
these studies that applications of inexact models to practical solid waste planning 
systems are effective. 

In [23], the approach of GA for ILP and IQP is discussed; the comparisons of 
traditional binary analysis solving methods [8] [21] [22] [24] with GA-based 
methods indicate that for ILP and IQP, GA can generate better results with less 
computational complexity.  

In the literature, much work on traditional binary analysis for IQP has been 
done, for example, see [10] [11] [21] [22]. However, traditional binary analysis 
methods for ILP and IQP involve unavoidable simplifications and assumptions, 
which often increased the chance for error in the problem solving process and 
adversely affected the quality of the results. Moreover, a more complex model 
often increases error in the solution. However, it has been observed that more 
complex models often produce less optimal results, and studies that focus on in-
exact nonlinear programming problems are scarce. For example, in [19], the me- 
thodology is mainly focused on combining endpoint values of the inexact para-
meters to form a set of deterministic problems, which will only work for partic-
ular monotone functions within a small scale model. Therefore, a more flexible 
problem solving method for the general INLP is desired.  

In this paper, we propose to use GA as the optimization technique for solving 
complex and non-linear problems in operations research, industrial engineering 
and management science. The GA method is a suitable optimization approach 
especially for solving problems that involve non-smooth and multi-modal search 
spaces. The innovative GA-based inexact non-linear programming (GAINLP) 
solving approach is useful for solving non-linear programming problems with 
inexact information, or inexact non-linear operation programming problems. 
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This paper is organized as follows. Section 2 presents the background of the 
research, which includes an introduction to the problem of Solid Waste Man-
agement (SWM), the concept of economies of scale in SWM, and the concept of 
GA, and the Genetic Algorithm Non-Linear Solver Engine (GANLP) that is used 
for implementing the proposed method. Section 3 discusses the methodology of 
the proposed GA-based methods for solving inexact non-liner problems. Section 
4 presents a case study in which the solutions for different scenarios of the INLP 
problem of solid waste disposal planning are generated. 

2. Background 
2.1. Solid Waste Management and the Concept of Economy of  

Scale in Solid Waste Management Planning 

Solid waste management is the process of removing waste materials from the su- 
rrounding environment, which involves the collection, separation, storage, pro- 
cessing, treatment, transport, recovery and disposal of solid waste. Landfill and 
incineration are two of the most commonly used solid waste disposal methods. 
The objective of a solid waste management process is to dispose of discarded 
materials in a timely manner so as to prevent the spread of disease, minimize the 
likelihood of contamination, and reduce their effects on human health and the 
environment. 

The economy of scale (ES) is a microeconomics term, and it refers to the ad-
vantages that enterprises obtain due to their size or scale of operation, with the 
cost per unit of output generally decreasing as the scale increases and fixed costs 
are distributed over more units of output. In a solid waste management system, 
ES exists within the transportation process [25] and it can be expressed as a siz-
ing model with a power law [11]. 

( )1 m
t re t reC C X X +=                         (1) 

where ( )t dtX  is a waste flow decision variable; ( )t dreX  is a reference 
waste flow; ( )$ ttC  is the transportation unit cost due to the ES of waste flow 

( )t dtX ; ( )$ treC  is a coefficient reflecting the significance of the economy of 
scale to the unit cost of waste transportation for reference waste flow ( )t dreX , 

0reC < ; and m is an economy of scale exponent which reflects the unit cost de-
cline with respect to the waste flow, 1 0.m− < <  

Thus the cost function for waste transportation can be expressed as, 

( )t tC X A C= +                            (2) 

where ( )$C  is the transportation cost due to the variable tX , ( )$ tA  is a 
fixed unit charge, and tA C+  is the unit transportation cost. The unit trans-
portation cost affected by ES is shown in Figure 1. 

By introducing ES into a large-scale solid waste management model, the tran- 
sportation procedure can be simulated more accurately. At the same time, the in-
corporation of ES adds a nonlinear factor into the objective function, and hence, 
more computational effort for problem solving will be required. Within this con- 
text, we propose GA as a good problem solving method for this type of problems. 
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Figure 1. Unit transportation cost affected by ES. 
 
In the next section, the concept of GA is introduced.  

2.2. GA for Solving Non-Linear Problems (GANLP) 
2.2.1. GA for Deterministic Optimization Problems 
A generic procedure of GA can be summarized as follows: 

1) Initialization: The initialization step involves establishing the mapping mode 
between the genotype and phenotype; this can be done by determining the cod-
ing and decoding functions, creating the fitness function according to the objec-
tive of the problem domain, and generating the initial population 0Pop  with a 
size of N . In GA, the term genotype refers to a candidate solution for a prob-
lem, which is often encoded as a bit string, while the phenotype is a domain so-
lution itself and is encoded to be a genotype [26]. This process can be carried out 
randomly or can be guided by domain information. 

2) Evaluation: This step involves calculating the fitness value of each individu-
al in the population tPop . 

3) Selection: This step involves applying a selection operator to the population 

tPop . 
4) Elitism: This step involves selecting and preserving the elitist individual in 

the population. 
5) Crossover: This step involves applying a crossover operator to the popula-

tion tPop . 
6) Mutation: This step involves applying a mutation operator to the population 

tPop  and creating the next generation’s population 1tPop + . 
7) Termination test: This step involves checking whether a satisfactory solu-

tion has been found, or the preset termination condition is met; if one of the con-
dition is true, the algorithm is terminated. Otherwise, the procedure loops back 
to step (2). 

This generic procedure of GA is illustrated as a flowchart in Figure 2. 
A variety of implementations of GA have been researched and developed 

during the past few decades, and many of them are recognized as applicable and 
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Figure 2. Flowchart of procedure of GA. 

 
efficient for engineering applications. Among these implementations, the Ge-
netic Algorithm Solver of the Global Optimization Toolbox (GASGOT) imple-
ments a simulated evolution in the MatlabTM (Trademark of MathWord) envi-
ronment by using both binary and floating-point representations. GASGOT was 
developed by the Department of Industrial Engineering of North Carolina State 
University. This implementation provides a flexible platform of genetic operators, 
selection functions, termination functions, and the evaluation [27]. GASGOT runs 
in the MatlabTM workspace and can be easily invoked by other programs. 

GASGOT supports both binary and floating-point representations, and the cor-
responding genetic operators have been developed. This study adopts GASGOT as 
the implementation tool of GA, and the applications and numeric examples were 
calculated in MatlabTM based on the GA non-linear program (GANLP) solver 
engine of GASGOT. 

2.2.2. GA for Problem Solving of Non-Linear Problems (GANLP) 
A general non-linear programming problem (NLP) can be expressed as follows 
[28]: 

( )1 2Max , , , nz f x x x= 
                     (3) 
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≤ =
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





 

[28] indicated that some specially formed non-linear programming problems 
can be solved by calculus-based algorithms, which assume that the objective 
function ( )f x  and all non-linear constraints are twice continuously differen-
tiable functions of x . Most calculus-based methods aim to transform the non- 
linear problem into a sequence of solvable sub-problems. The methods generally 
require explicit or implicit second derivative calculations of the objective func-
tion, which in some of the methods can be ill-conditioned and can cause the al-
gorithm to fail [29]. This weakness in the calculus-based method has prompted 
many researchers to propose GA, which is a random search method, for solving 
non-linear programming problems [30] [31]. 

The following example is taken from [28]: 

( ) ( ) 2 2
1 1 2 2 1 2Max 30 35 2z x x x x x x= − + − − −              (4) 

2 2
1 2

1 2

1 2

s.t.  2 250
         20
            , 0.

x x
x x

x x

+ ≤
+ ≤

≥

 

This problem, similar to many NLPs, can be formulated as follows: 

( )1Max n
j jjz f x

=
= ∑                       (5) 

( ) ( )s.t.  1, 2, , .
n

ij j i
j i

g x b i m
=

≤ =∑   

Since the decision variables appear separate in terms of the objective function 
and the constraints, NLPs of this form are called separable programming problems. 
This kind of NLP can be solved by approximating each ( )j jf x  and ( )ij jg x  
using a piecewise linear function [28]. 

The approximating problem for the above example Equation (4) gives the re-
sult 1 25,  5,  200x x z= = = , while the actual optimal solution is  

1 27.5,  5.83,  214.58.x x z= = =  
A GA program for the above example has been constructed with the parame-

ters specified in Table 1. 
The result given by the GA program is: 1 7.499x = , 2 5.8352x = , 214.58z = . 

The evolution curve is shown as Figure 3. Compared to the results generated 
using the calculus-based method of [28], the GA generated results are closer to 
the actual optimal solution. 

In Figure 3, it can be seen that at approximately the 15th generation, the optim-
al solution was generated. Although the fitness of the initial population shown in 
Figure 4 is not excellent, compared to the separable programming technique de-
scribed in [28], the methods implemented in the GA non-linear problem solution 
engine of GASGOT are demonstrated to be straightforward, universal, efficient, 
and are feasible approaches for solving non-linear programming problems. 
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Table 1. Parameters of genetic algorithms. 

Representation scheme Floating-point representation 

Selection operator 
Normalized geometric ranking  

selection with rate 0.08, Elitism strategy 

Crossover operator Heuristic crossover, arithmetic crossover 

Population size 100 

Termination condition Maximum generations 50 

 

 
Figure 3. Evolution curve. 

 

 
Figure 4. Fitness of initial population. 
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3. GA for Problem Solving of Inexact Non-Linear Problems  
(GAINLP) 

Quadratic programming problems are specific cases of non-linear programming 
problems [23]. Due to the lack of generally applicable algorithms for handling the 
non-linear structure, and the inexact information embedded in the structure, most 
non-linear programming problems are difficult to solve. The engine for solving 
interactive binary analysis based inexact linear problems proposed in [21] [22] is 
not intended for dealing with generic non-linear problems. By contrast, GA can 
be used as a general problem solver for this type of problems because there is not 
much difference for GA between treating the term of 2

ix  in quadratic program-
ming problems and the terms i jx x  or 0.28

ix  in generic non-linear program-
ming problems.  

[23] has proposed a method for solving the IQP problem, which can be mod-
ified to solve generic inexact non-linear programming problems. The GA-based 
inexact non-linear programming method GAINLP involves three stages of prob-
lem solving. In the following, a computation experiment will be conducted to il-
lustrate how the GAINLP method can handle complicated inexact non-linear 
problems Equation (6). 

( ) ( )0.3

1 1 2 1 1 2 2 1 2Max f c x c x d x d x x± ± ± ± ± ± ± ± ± ±= − − +             (6) 

( )0.5

11 1 12 2 1

1 2 2 2

s.t.  

                   

                    0, 1, 2j

a x a x b

x a x b

x j

± ± ± ± ±

± ± ± ±

±

+ ≤

+ ≤

≥ =

 

where , , ,ij i j ja b c d± ± ± ±  are inexact parameters and jx±  is an inexact variable, for 
an inexact number ,g g g± − + ∈   , g +  and g −  are the upper and lower 
bounds, respectively. In this experiment,  

[ ] [ ] [ ]1 1 2 2 1 1, 16,18 ; , 12,14 ; , 4,5 ;c c c c d d− + − + − +     = = =       

[ ] [ ] [ ]2 2 11 11 12 12, 14,15 ; , 4.5,5.5 ; , 1.8, 2.2 ;d d a a a a− + − + − +     = = =       

[ ] [ ] [ ]1 1 2 2 2 2, 1.8, 2.1 ; , 1.8, 2.2 ; , 0.9,1.1 .b b a a b b− + − + − +     = = =       

GAINLP has been designed to include three stages of problem solving.  
In stage one, to obtain the initial suboptimal s

jx , the random numbers of 
, , ,r r r r

ij i j ja b c d  were selected to transfer this INLP problem to a NLP problem, such 
that , , ,r r r r

ij i j ja b c d  satisfy the continuous uniform distribution in the intervals of 
, , , , ,ij ij i i j ja a b b c c− + − + − +            and ,j jd d− +   .  

( ) ( )0.3

1 1 2 1 1 2 2 1 2Max s r s r s r s r s sf c x c x d x d x x= − − +              (7) 

( )0.5

11 1 12 2 1

1 2 2 2

s.t.  

                 

                           0, 1, 2.

r s r s r

s r s r

s
j

a x a x b

x a x b

x j

+ ≤

+ ≤

≥ =
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Then, the heuristic search algorithm of the GANLP solver engine, presented 
in Section 2.2, can be used to identify a suboptimal solution sf , and the cor-
responding decision variable s

jx . The objective function in Equation (7) was 
used as the positive term of the fitness function and the constraints of Equation 
(6) adopted as the negative punishment terms. The result is: 

1 20.346,  0.171,  2.296.s s sx x f= = = −  

In stage two, by substituting 1 2,s sx x  into Equation (6), the inexact coefficients 
of , , ,ij i j ja b c d± ± ± ±  will be determined. There are two kinds of decision schemes 
for inexact programming problems, the conservative scheme and optimistic 
scheme [20]. The former assumes less risk than the latter, so that for a maximi-
zation objective function, planning for the lower bound of an objective value 
f −  represents the conservative scheme, and planning for the upper bound of an 

objective value f +  represents the optimistic scheme [20]. In terms of constraints, 
the conservative scheme involves more rigorous or stringent constraints, and the 
optimistic scheme adopts more tolerant ones.  

The 1 2,s sx x  obtained in stage one are used to construct two optimization pro- 
blems in order to determine the coefficients of , , ,ij i j ja b c d±+ ±+ ±+ ±+  and  

, , ,ij i j ja b c d±− ±− ±− ±−  respectively. The coefficients from the first group are consi-
dered to be corresponding to the optimistic scheme f + , while the second group 
correspond to the conservative scheme f − . Considering ,j jc d± ±  are variables, 
the following two functions can be constructed: 

( ) ( )0.3

1 1 2 1 1 2 2 1 2Max s s s s sf c x c x d x d x x+ ±+ ±+ ±+ ±+= − − +            (8) 

[ ]
[ ]
[ ]
[ ]

1

2

1

2

s.t. 16,18
12,14
4,5
14,15

c
c
d
d

±+

±+

±+

±+

∈
∈
∈
∈

 

and 

( ) ( )0.3

1 1 2 1 1 2 2 1 2Min s s s s sf c x c x d x d x x±− ±− ±− ±−− = − − +            (9) 

[ ]
[ ]
[ ]
[ ]

1

2

1

2

s.t. 16,18
12,14

.
4,5
14,15

c
c
d
d

±−

±−

±−

±−

∈
∈
∈
∈

 

To determine ,ij ia b
+ +± ±  of the optimistic scheme in correspondence with the 

upper limit of the objective value f + , the objective function can be constructed 
as follows: 

( )( )0.5

11 1 12 2 1Max s sabs a x a x b± ± ±+ −                  (10) 

( )0.5

11 1 12 2 1s.t. s sa x a x b± ± ±+ ≤  

and 
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( )1 2 2 2

1 2 2 2

Max 

s.t. ,

s s

s s

abs x a x b

x a x b

± ±

± ±

+ −

+ ≤
 

The objective functions to get ,ij ia b
− −± ±  of the conservative scheme are:   

( )( )0.5

11 1 12 2 1Min s sabs a x a x b± ± ±+ −                  (11) 

( )0.5

11 1 12 2 1s.t. s sa x a x b± ± ±+ ≤  

and 

( )1 2 2 2

1 2 2 2

Min 

s.t. .

s s

s s

abs x a x b

x a x b

± ±

± ±

+ −

+ ≤
 

By solving the above functions Equations (8)-(11), the values of all the inexact 
coefficients are obtained, such that, 

11 12 1 2 24.5, 1.8, 2.1, 1.8, 1.1a a b a b
+ + − + +± ± ± ± ±= = = = =  

11 12 1 2 25.5, 2.2, 1.8, 2.2, 0.9a a b a b
− − − − −± ± ± ± ±= = = = =  

1 2 1 218, 12, 4, 15c c d d±+ ±+ ±+ ±+= = = = ; 

1 2 1 216, 14, 5, 14c c d d±− ±− ±− ±−= = = = . 

In stage three, the objective function presented in Equation (7) is converted 
into the following two sub-problems: 

( ) ( )
( )

0.3

1 1 2 1 2

0.5

1 2

1 2

1 2

Max 18 12 4 15 ,

s.t.  4.5 1.8 2.1,

                 1.8 1.1,

                   0, 0,

f x x x x x

x x

x x

x x

+ ± ± ± ± ±

± ±

± ±

± ±

= − − +

+ ≤

+ ≤

≥ ≥

 

and 

( ) ( )
( )

0.3

1 1 2 1 2

0.5

1 2

1 2

1 2

Max 16 14 5 14 ,

s.t. 5.5 2.2 1.8,

                 2.2 0.9,

                   0, 0.

f x x x x x

x x

x x

x x

− ± ± ± ± ±

± ±

± ±

± ±

= − − +

+ ≤

+ ≤

≥ ≥

 

In this stage, the inexact parameters in Equation (7) have been eliminated, and 
two typical non-linear optimization problems have been generated instead. 
Solving the above two objective functions by GANLP, the solution of the exam-
ple Equation (6) is: 

[ ]5.5575, 1.72f ± = − − , [ ]1 0.24727,0.38496x± = , and [ ]2 0.1989,0.2053 .x± =  

As demonstrated above, it can be seen that the GAINLP method can generate 
the optimal result without any simplification or assumption, and it can be 
adapted for applications of optimization problems with uncertainty. In the next 
section, this method will be applied on a real world regional waste management 
problem.  
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4. Case Study 

The study region includes three municipalities, a waste-to-energy (WTE) facility 
and a landfill, as shown in Figure 5. Three time periods are considered; each has 
an interval of five years. Over the 15 year planning horizon, an existing landfill and 
WTE facilities are available to serve the municipal solid waste (MSW) disposal 
needs in the region. The landfill has an existing capacity of [ ] 62.05,2.30 10 , t×  
and the WTE facility has a capacity of [ ]500,600  t d.  The WTE facility gene-
rates residues of approximately 30%  (on a mass basis) of the incoming waste 
streams, and its revenue from energy sale is [ ]15,25  $ t  combusted. 

Table 2 shows the waste generation rates of the three municipalities and the 
operating costs of the two facilities in the three periods. 

Taking into consideration the effects of the ES, the inexact non-linear (INLP) 
model can be formulated as follows: 

( ) ( )

( )( ){
( ) ( )}

2 3 3 1

3 3
21 1

13 3 3
2 1 21 1 1

1 1 1
Min 

 *

 *
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reWTE LFk

reWTE LF kk

m

k ijk re re ijk re ik

k jkk j

m

jk reWTE LF k jk kj j

j k

k

i
f L x A C x X OP

L FE x A

C FE x X OP x RE

−

−

+
± ± ± ± ± ± ±

±
= =

+
± ± ± ± ±

−= = =

= = =

 
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=

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+

+ + −

∑∑∑

∑ ∑

∑ ∑ ∑

 (12) 

3 3

1 2

3

2

1 1

1

1
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, ,
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k jk jk
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L x x FE TL
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x WG j k

X i j k

± ± ±

±

= =

=
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±

=
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 + ≤ 

≤ ∀

= ∀

≥ ∀

∑∑

∑

∑

 
 

 
Figure 5. Case study of municipalities and waste management facilities. 
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Table 2. Data for the waste generation and treatment/disposal. 

  Time Period  

 1k =  2k =  3k =  

Waste generation ( )t djkWG±  

Municipality ( )1 1j =  [260, 340] [310, 390] [360, 440] 

Municipality ( )2 2j =  [160, 240] [185, 265] [210, 290] 

Municipality ( )3 3j =  [260, 340] [260, 340] [310, 390] 

Operation cost ( )$ tikOP±  

Landfill ( 1i = ) [30, 45] [40, 60] [50, 80] 

WTE Facility ( 2i = ) [55, 75] [60, 85] [65, 95] 

 

where, i is the type of waste management facility ( 1,2i = , where 1i =  for land-
fill, 2 for WTE); j  is the city, 1,2,3j = ; k  is the time period, 1,2,3k = ; Lk  
is the length of period k , 1 2 3 365*5L L L= = =  (day); ikOP±  is the operating 
cost of facility iduring period ( )$ tk ; kRE±  is the revenue from WTE during 
period k  ($/t), [ ]1 2 3 15,25RE RE RE± ± ±= = = ; TE±  is the capacity of WTE 
(t/d); TL±  is the capacity of the landfill (t); jkWG±  is the waste disposal demand 
in city j  during period ( )t dk ; ijkx±  is the waste flow from city j  to facility 
i  during period ( )t dk . 

In this objective function Equation (12), the first term on the right side reflects 
the transportation costs in each management period (k = 1 to 3) from each city 
to each waste treatment unit, and the related operation costs. The second term 
reflects the cost incurred in transporting the products from the WTE facility to 
the landfill, and the operation cost at the landfill. The third term is the revenue 
generated from the WTE facility. 

The MSW generation rates generally vary between different municipalities 
and for different periods, and the costs for the waste transportation and treat-
ment also vary temporally and spatially. Furthermore, interactions exist between 
the waste flows and their transportation costs due to the effects of the ES. Tables 
3-5 show the parameters related to the economy of scale, which include the fixed 
unit transportation cost Are, the reference waste flow reX  and the coefficient 
Crecorresponding to reX . 

Hence, it can be observed that the traditional methods of binary analysis can-
not solve this problem without additional assumptions or simplifications. The 
following discussion will explain how traditional methods solve this problem by 
simplifying the non-linear effects of the ES. 

Scenario (i) Letting 1,m = −  the effects of the ES are totally ignored. This 
converts the inexact non-linear programming (INLP) problem to an inexact li-
near programming (ILP) problem, and the GAILP method presented in [23] can 
solve the problem. 

Scenario (ii) Assuming 0.2 0.1m− < < − , it is indicated that the non-linear 
relationships in Equation (12) can be approximated by grey quadratic functions 
within a predetermined degree of error. Thus, the non-linear programming 
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Table 3. Fixed unit transportation costs. 

City-to-landfill fixed unit transportation cost ( )
1

$ t
jkreA±  

11kreA±  [14.58, 19.40] [16.04, 21.34] [17.64, 23.48] 

12 kreA±  [12.65, 16.87] [13.92, 18.56] [15.31, 20.41] 

13kreA±  [15.30, 20.49] [16.83, 22.53] [18.52, 24.79] 

City-to-WTE fixed unit transportation cost ( )
2

$ t
jkreA±  

21kreA±  [11.57, 15.42] [12.73, 16.97] [14.00, 18.66] 

22 kreA±  [12.17, 16.15] [13.39, 17.76] [14.73, 19.54] 

23kreA±  [10.60, 14.10] [11.67, 15.51] [12.83, 17.06] 

WTE-to-landfill fixed unit transportation cost ( )$ t
reWTE LFk

A
−

±  

 [5.71, 7.62] [6.28, 8.38] [6.91, 9.33] 

 
Table 4. Reference waste flow. 

City-to-landfill reference waste flow ( )
1

t d
jkreX ±  

11kreX ±  [220, 250] [240, 280] [260, 320] 

12 kreX ±  [160, 200] [180, 220] [220, 260] 

13kreX ±  [160, 200] [180, 240] [200, 240] 

City-to-WTEreference waste flow ( )
2

t d
jkreX ±  

21kreX ±  [200, 240] [240, 280] [280, 320] 

22 kreX ±  [120, 170] [150, 190] [180, 220] 

23kreX ±  [220, 270] [220, 270] [240, 270] 

WTE-to-landfill reference waste flow ( )t d
kreWTE LFX ±

−  

 [170, 200] [200, 260] [240, 270] 

 
Table 5. ( )$ treC  The coefficient representing the economy of scale corresponding to 

reference waste flow reX . 

 1k =  2k =  3k =   1k =  2k =  3k =  

11kreC −  −2.7 −3.4 −3.8 
21kreC −  −1.9 −2.6 −3.3 

11kreC +  −4.1 −5.0 −6.3 
21kreC +  −3.1 −4.0 −5.0 

12 kreC −  −1.7 −2.1 −2.8 
22 kreC −  −1.2 −1.7 −2.2 

12 kreC +  −2.8 −3.4 −4.5 
22 kreC +  −2.3 −2.8 −3.6 

13kreC −  −2.1 −2.5 −3.1 
23kreC −  −2.0 −2.2 −2.6 

13kreC +  −3.4 −4.5 −5.0 
23kreC +  −3.2 −3.5 −3.9 

reWTE LFk
C

−

−  −0.8 −1.1 −1.4     

reWTE LFk
C

−

+  −1.3 −1.8 −2.1     

Note: The + and –superscript sign of reC  represents the value of reC  relevant to the upper and lower 
bound of reX  only. 

 
problem is converted into an inexact quadratic programming problem. 

Table 6 lists the solutions of the objective function Equation (12) for above 
two scenarios (i) and (ii). 

Both of the above simplifications introduced inaccuracy and limitations. When 
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the value of m deviates away from the predetermined value, this inaccuracy will 
increase dramatically. 

Applying the GAINLP model on the inexact non-linear programming prob-
lem, the optimization problem represented in Equation (12) can be solved di-
rectly without additional assumptions for the effects of the ES. By adopting this 
approach, the solution can be found even when the ES exponent m is not within 
the interval of [ ]0.2, 0.1− − . 

Three different scenarios, 0.1,  0.3,  0.5m m m= − = − = −  have been tested, 
and the solutions given by the GAINLP model are shown in Table 7. 
The above scenarios assume that the economy of scale exponent is universal in 
the whole region during the entire period. However, this is not always necessari-
ly true for practical engineering problems. More common situations may involve 
different scale exponents for various combinations of municipalities and facilities 
in different periods. Thus, Table 8 illustrates the solutions for the fourth scenario, 
which involves different scale exponents. 

In the objective function of the inexact non-linear programming model Equa-
tion (12), the weight of the transportation cost in the system operation cost va-
ries according to different tC  values. The effect becomes significant when waste  

 
Table 6. Solutions obtained by applying the ILP model ( 1m = − ) and IQP model 
( 0.2 0.1m− < < − ). 

Decision 
Variable 

Facility Municipality Period 
ILP Solution (t/d) 

1,m = −  
IQP Solution (t/d) 

0.2 0.1m− < < −  

111x±  1 1 1 [210, 290] [250, 290] 

112x±  1 1 2 0 [310, 350] 

113x±  1 1 3 [0, 30] [360, 440] 

121x±  1 2 1 0 [0, 30] 

122x±  1 2 2 [0, 65] [185, 225] 

123x±  1 2 3 [210, 290] [50, 80] 

131x±  1 3 1 [0, 30] 0 

132x±  1 3 2 [260, 330] 0 

133x±  1 3 3 [170, 200] 0 

211x±  2 1 1 50 [10, 50] 

212x±  2 1 2 [310, 390] [0, 40] 

213x±  2 1 3 [360, 410] 0 

221x±  2 2 1 [160, 240] [160, 210] 

222x±  2 2 2 [185, 200] [0, 40] 

223x±  2 2 3 0 [160, 210] 

231x±  2 3 1 [260, 310] [260, 340] 

232x±  2 3 2 [0, 10] [260, 340] 

233x±  2 3 3 [140, 190] [310, 390] 

System cost ( 6$10 ) f ±  [220.2, 507.4] [239.5, 514.1] 

Note: Facility: 1 = landfill, 2 = WTC Facility. 
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Table 7. Solutions when 0.1m = − , 0.3 and 0.5. 

Decision 
Variable 

Facility Munici-pality Period Solution 

(t/d) 0.1m = −  0.3m = −  0.5m = −  

111x±  1 1 1 [203, 292] [100, 221] [35, 88] 

112x±  1 1 2 [1, 36] [1, 44] [1, 36] 

113x±  1 1 3 [1, 44] [126, 190] [240, 300] 

121x±  1 2 1 [1, 43] [60, 141] [144, 240] 

122x±  1 2 2 [1, 73] [20, 103] [75, 148] 

123x±  1 2 3 [200, 290] [200, 259] [197, 260] 

131x±  1 3 1 [1, 37] [90, 190] [225, 312] 

132x±  1 3 2 [247, 332] [189, 270] [120, 200] 

133x±  1 3 3 [154, 209] [139, 210] [143, 192] 

211x±  2 1 1 [35, 58] [120, 167] [220, 307] 

212x±  2 1 2 [295, 390] [299, 385] [295, 390] 

213x±  2 1 3 [329, 426] [202, 323] [120, 161] 

221x±  2 2 1 [147, 240] [55, 145] [1, 30] 

222x±  2 2 2 [165, 222] [142, 200] [80, 154] 

223x±  2 2 3 [1, 25] [1, 40] [1, 43] 

231x±  2 3 1 [230, 320] [122, 164] [12, 40] 

232x±  2 3 2 [1, 28] [30, 100] [108, 167] 

233x±  2 3 3 [125, 200] [125, 194] [120, 214] 

System cost ( 6$10 ) f ±

 = [209.8, 522.3] [200.5, 519.6] [197.6, 516.8] 

Note: Facility: 1 = landfill, 2 = WTC Facility. 

 
flow becomes lower and the hauling distances are substantial. This effect is a non- 
linear function of the waste flow ijkx , in which the reference waste flow rex  and 
the economy of scale exponent m are the parameters. Thus, the problem is a 
complicated non-linear programming problem, and the GA-based search ap-
proach has been shown to be adequate for solving this kind of economy optimi-
zation problems. 
It is also reasonable to assume that between different locations  
( 1,2;  1, 2,3i j= = ), for different time periods ( 1,2,3k = ), the economy of scale 
exponent ( ijkm  and kmWTE LF− ) may be different, since m is the parameter 
used to describe the characteristics and attributes of a particular transportation 
scenario. Under these considerations, scenario 4 was designed with different op-
eration costs and transportation strategies. On the other hand, the traditional 
inexact linear and inexact quadratic programming methods will not be able to 
handle situations like scenario 4 without additional assumptions and simplifica-
tion. 

The results also show that when the value of the economy of scale exponent m  
becomes smaller, from −0.1, −0.3 to −0.5, for both f  positive scheme and f  
negative scheme, the value of the minimized objective function also becomes 
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Table 8. Solutions when m  is different for each municipality and each period. 

Symbol Facility Municipality Period Solution m 

Decision Variable (t/d)   

111x±  landfill 1 1 [100, 192] −0.15 

112x±  landfill 1 2 [0, 40] −0.2 

113x±  landfill 1 3 [112, 178] −0.35 

121x±  landfill 2 1 [65, 139] −0.2 

122x±  landfill 2 2 [40, 78] −0.3 

123x±  landfill 2 3 [199, 279] −0.3 

131x±  landfill 3 1 [90, 189] −0.25 

132x±  landfill 3 2 [135, 280] −0.25 

133x±  landfill 3 3 [127, 218] −0.3 

211x±  WTC Facility 1 1 [125, 189] −0.1 

212x±  WTC Facility 1 2 [300, 390] −0.15 

213x±  WTC Facility 1 3 [205, 312] −0.15 

221x±  WTC Facility 2 1 [42, 142] −0.45 

222x±  WTC Facility 2 2 [129, 192] −0.3 

223x±  WTC Facility 2 3 [0, 40] −0.1 

231x±  WTC Facility 3 1 [100, 198] −0.3 

232x±  WTC Facility 3 2 [44, 113] −0.45 

233x±  WTC Facility 3 3 [99, 219] −0.4 

System cost ( 6$10 ) f ± = [194.7, 500.1]  

Note: for transportation from WTE facility to landfill, m = −0.5. 
 
smaller. At the same time, the range of the intervals of the minimized objective 
function also decreases. This reflects how the economy of scale exponent affects 
the overall cost for the entire period. A comparison of the results for the four 
scenarios is given in Figure 6. 

5. Conclusion 

This paper has proposed an innovative GA-based inexact non-linear program-
ming problem solving approach (GAINLP). The GAINLP was applied to a solid 
waste management optimization problem, under different scenarios, and the re-
sults from the GAINLP, GAILP, and GAIQP methods were compared. The com- 
parison illustrates the practicality and flexibility of the proposed GAINLP me-
thod for solving more complex inexact non-linear problems. Similar to other all- 
purpose heuristic search methods, this problem solving approach is widely adap- 
table for different problem scenarios that involve non-linear optimization and 
inexact information. The GAINLP method was implemented in Matlab, and it can 
be integrated with other operation programming software packages. The imple-
mentation of GAINLP can also be easily extended to include other non-linear pro- 
gramming solvers so as to enhance the flexibility and efficiency of the problem 
solving process. 
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Figure 6. System cost comparisons. 
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