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Abstract 
Modern manufacturing systems are expected to undertake multiple tasks, 
flexible for extensive customization, and that trends make production systems 
become more and more complicated. The advantage of a complex production 
system is a capability to fulfill more intensive goods production and to adapt 
to various parameters in different conditions. The disadvantage of a complex 
system, on the other hand, with the pace of the increase of complexity, lies in 
the control difficulties rising dramatically. Moreover, classical methods are 
reluctant to control a complex system, and searching for the appropriate con-
trol policy tends to become more complicated. Thanks to the development of 
machine learning technology, this problem is provided with more possibilities 
for the solutions. In this paper, a hybrid machine learning algorithm, inte-
grating genetic algorithm and reinforcement learning algorithm, is proposed 
to cope with the accuracy of a control policy and system optimization issue in 
the simulation of a complex manufacturing system. The objective of this pa-
per is to cut down the makespan and the due date in the manufacturing sys-
tem. Three use cases, based on the different recipe of the product, are em-
ployed to validate the algorithm, and the results prove the applicability of the 
hybrid algorithm. Besides that, some additionally obtained results are benefi-
cial to find out a solution for the complex system optimization and manufac-
turing system structure transformation.  
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1. Introduction 

Over the past few years, industrial manufacturing is confronted with extensive 
changes. From local economy towards a globalized and fully competitive econ-
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omy, markets require highly qualified and customized products at lower costs 
and with shorter life cycles [1]. To dispose of these challenges, the performance 
of their production system has to be improved by the manufacturing enterprises. 
Since last decades, new concepts for manufacturing system have been developed. 
An agile manufacturing system brings to production much greater concurrency 
and integration of activities [2]. Sustainable manufacturing requires a holistic 
view spanning, not only a product, and production processes involved in its 
manufacturing, but also the whole supply chain, including the manufacturing 
systems across multiple product life cycles [3]. Furthermore, a coupled cyber- 
physical system scheme of predictive manufacturing system is developed to in-
tegrate, manage and analyse machinery or process data to operate more effi-
ciently during life cycle by Lee et al. [4]. 

Among all these concepts, production process tends to be characterized by 
modularity, decentralization, autonomy, scalability, reusability, adaptability and 
reconfigurability. Moreover, a critical issue in production is the system control 
approach. For a complex system, traditional control methods are reluctant to the 
adaptation of more input variables, state parameters, and more flexible produc-
tion requirements. 

One regular practice is a job shop scheduling or a job shop problem (JSP). The 
objective of that is to minimize the makespan with the given n jobs and m iden-
tical machines in a factory. It is recognized as an NP-hard problem in the 
mathematical domain [5]. With classical control policy and present program-
mable logic controller (PLC), it is hardly possible when the topological structure 
of a manufacturing system is quite complicated. Due to the rapid development 
of artificial intelligence (AI), significant results have been obtained with ad-
vanced algorithms such as simulated annealing [6], evolutionary algorithm [7], 
and hybrid AI algorithm [8]. These kinds of probability-based or evolution- 
based local search algorithms make it possible to obtain the optimal solution, 
although the solution space is quite large. However, one disadvantage of the 
heuristic algorithm and the evolutionary algorithm is that too many parameters 
influence the convergent speed of a training model based on manufacturing 
process effects. If to be more precise, they are not convergent at all, e.g. the con-
vergent rate of a genetic algorithm (GA) subjects to the encoding of chromo-
somes, selection of initial population, etc. Jimenez et al. employed GA on the 
Pollux architecture in a job shop problem to improve total job makespan, how-
ever, the complementary statistical studies needed to be generalized [9]. More-
over, owing to the specific system structure, there is no suboptimal solution in-
terval in the global solution space. Under some circumstances, the GA cannot 
dispose control policies for a complex system. However, integration with an-
other algorithm may improve the convergent situation. That will be discussed in 
Section 3 and Section 4 of this paper. 

An inferior encoding method generates an enormous amount of invalid solu-
tions and enlarges searching space, so a reasonable method for encoding is the 
precondition for GA. Binary encoding and Gray encoding are suitable for a se-
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ries of real parameters e.g. five DeJong test functions [10]. With weighted cod-
ing, the knapsack problem has been solved successfully [11]. Ordinal representa-
tion [12] meets requirements of the Traveling Salesman Problem (TSP) that a 
salesperson must pass through every city once and only once. Matrix encoding 
can cope with the JSP scheduling and present better results [13]. Nevertheless, 
for a particular practical problem, researchers cannot always find an encoding 
plan easily, e.g. Grefenstette et al. came up with an ordinal representation [14], 
compared with the GA that was described in the 1960s, and the TSP that was 
formulated in 1930s. Initial parents of the population are selected after encoding 
for a practical problem. During selection of offspring generations, elitist selec-
tion [15] and gradient acceleration [16] are introduced to speed up the crossover 
process. If the gradient of solution space or some elite chromosomes is found, 
then evolution direction is known. Correspondingly, initial efforts turn to how 
to allocate the gradient. In a specific engineering practice, the gradient of solu-
tion space is usually obtained from accumulated experience after years of a 
manufacturing system analysis. 

Another part of the hybrid algorithm is reinforcement learning. Reinforcement 
learning (RL) is another sound algorithm based on studies of a system’s structure. 
RL algorithms are a series of learning policies that make programs improve their 
performance by receiving rewards or punishments from the environment [17]. It 
is learning of a mapping from situations by actions to maximize a scalar reward or 
reinforcement signal [18]. After establishing initial state-ac- tion pairs and system 
dynamics, solution space is defined. Then the system calculates Bellman optimiza-
tion function based on a trial and error process with reward or penalty. Since a 
reward function affects the convergence speed or even makes values of Bellman 
function diverge, the reward function searching procedure must be prior to a sys-
tem design process or decided in advance according to some previous experience. 
The RL algorithms are rarely implemented in engineering practice mainly because 
of the difficulty in determining a sound reward function. 

In this paper, a hybrid machine learning algorithm is represented to improve 
a flexible manufacturing system. An approach based on both system analyses 
and the results from messy GA is proposed. It presents a way to making a deci-
sion on a better reward function for RL algorithm. All this work is executed in 
the simulation environment of CoDeSys under IEC 61131-3. Based on obtained 
experience, an idea to optimize flexible system structure is discussed. 

The rest of the paper is organized as follows. Section 2 introduces the flexible 
manufacturing system and formulates the problem. The control policy is dis-
cussed in Section 3. Simulated results are present and discussed in Section 4. 
Then some additional beneficial results are presented in Section 5. Section 6 
concludes the paper and proposes avenues for future work. 

2. Problem Formulation 

Nowadays, a flexible manufacturing system becomes more and more completed 
and flexible for massive customization. It is designed with more branches be-
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tween workstations, which means it can provide more options for products to be 
transport and flexibility for manufacturing different kinds of goods. A demon-
strator of such a system in the laboratory of the chair of Automation and Infor-
mation Systems, Technical University of Munich, is shown in Figure 1. 

Some fundamental properties of the manufacturing system can be concluded 
as follows: 
• There are two filling machines mounted on a workstation respectively at the 

left side of the system, each with two kinds of pellets, which means it can 
provide different recipes. So it is a flexible manufacturing system, and it can 
be used to produce various types of products. 

• There are ten conveyor switches which connect workstations and inventory, 
and each of them leads to the different directions in the system. That means 
that there are several routes for the production process for one kind of a 
product. 

• The inventory for raw product and inventory for final product are located 
next to each other and share one robot. 

There are five materials in the experiment, namely red pellets, green pellets, 
blue pellets, black pellets, and water. Among them, the racks of red pellets and 
green pellets are mounted on workstation 1; the racks of blue pellets and black 
pellets are installed on workstation 2. Referring to water, it is a dependent vari-
able. Thus we just consider the pellets. It is easy to find out that there are at most 
24 − 1 = 15 products. Here, we use { }, , ,R G B S  to represent red, green, blue and 
blackpellets, w  to represent workstations, z to count the number of either 
productor workstation, pr  to represent the recipes of the products, and ,w pit  
to present the processing time of one product by i th−  workstation. 
 

 
Figure 1. A demonstrator for complex manufacturing system in the chair of Automation 
and Information Systems, Technical University of Munich. 
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According to the position of raw materials on workstations, we will check the 
recipe of a product and define sub use cases. 

2.1. Use Case 1 

If the recipes of products are following: 

{ }, ,pr R G R G= ∪                         (1) 

That means a raw product must go by the workstation 1, but not the workstation 
2. That is defined as a use case 1. Based on the above recipes, the use case 1 con-
sists of 3 sub-scenarios. 

2.2. Use Case 2 

If the recipes of products are following: 

{ }, ,pr B S B S= ∪                         (2) 

That means a raw product must go by the workstation 2, but not the workstation 
1. That is defined as a use case 2. Based on the above recipes, the use case 2 con-
sists of 3 sub-scenarios. 

2.3. Use Case 3 

If the recipes of products are following: 

{ } { }{ }1 2pr R G w B S w= ∪ ∪ ∪                   (3) 

That means a raw product must go by the workstation 2, but not the workstation 
1. That is defined as a use case 3. According to the above recipes, the use case 3 
consists of 9 sub-scenarios. 

Here, we need some further discussion on the mentioned use cases. 
1) iw W∀ ∈ , ( ) ( )11 2 , , 2p p w p w pr r t t∩ ∪ ∩ =∅ , e.g. { }1pr R B= ∪ , { }2pr S= , 

that means a filling process of one product does not interfere the other. It is de-
fined as the use cases 1 and 2.  

2) iw W∃ ∈ , ( ) ( )11 2 , , 2p p w p w pr r t t∩ ∪ ∩ ≠∅ , e.g. { }1pr R S= ∪ , { }2pr G= , 
that means a filling process of one product will interfere the other one. It is de-
fined as the use case 3. 

3) If there are more than two products, that means iz w> , with iw  de-
noting the number of available workstations, a filling process will interfere oth-
ers. It is also defined as the use case 3. 

Besides, we have to consider the following two scenes: 
1) When a raw product is a feed by the entrance of the system, it has several 

routes to a workstation, and after the filling process, it has random ways to the 
exit. Different route plan consumes different makespan, and it may interrupt the 
following product and generates “traffic jam.” 

2) When a final product appears by the exit of the manufacturing system, the 
robot has two options, to feed a raw product to the system first or to pelletize the 
completed product. Different choices result in different tardiness time and com-
pletion time. 
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These two scenarios are referred to the behavior of the feeding/palletizing ro-
bot, but one selection of the robot has a global influence on a manufacturing 
system. So they are viewed as a part of the three use cases defined above. Due to 
the random characteristics of the process, e.g. the various completion time by 
different routes, the whole manufacturing process is a stochastic process. Thus, 
the goal of this paper is to find out how to plan a reasonable route for the global 
process and to determine the potential relationship between feeding interval and 
completion time with the application of a hybrid machine learning algorithm. 

3. Methodology of Control Policy for a Manufacturing  
System 

After illustrating and formulating the target system, the next step is to find a 
reasonable control method to implement. Figure 1 shows that the flexible 
manufacturing system can be used for different products and can provide more 
than one option for the product, which will make the control process more dif-
ficult or even conflict. However, on the other hand, its property has also trans-
formed the working process from a deterministic process to a stochastic process, 
so the machine learning algorithms can be employed to cope with it. 

3.1. System Structure Analyses 

Before the introduction of the algorithm implementation, we need to have an 
overview of a representative complex manufacturing system. Essential elements 
of the system consist of the robot, workstations, and conveyor belts (CB) and 
conveyor switches (CS). Conveyor belts transport products to the targeted work-
station and conveyor switches change routes for the process and make it possible 
for one product to bypass an unnecessary workstation. Under the normal cir-
cumstance, one conveyor switch cannot work independently but must cooperate 
with conveyor belts. It connects three belts in the manufacturing system so that 
the system can decide not only which product will be delivered first, but also the 
coordination of a process when several belts are taking one product to the con-
veyor switch simultaneously. So the fundamental research unit consisting of one 
conveyor switch and three conveyor belts is defined as a trident node. In other 
words, transporting tasks in the flexible manufacturing system are undertaken 
by Trident nodes. The decomposition of the fabrication system to Trident nodes 
is shown in Figure 2. Furthermore, the details of the system analyses and dy-
namics can be seen in the previous work of the author in [19]. 

One important target of the system is to decide a better transport order and to 
coordinate behaviors of conveyor belts. So the key component in the node is the 
conveyor switch. Since one node consists of four elements, all the conveyor 
switches are numbered by 4n. On the global level, a product will go from the 
feeding part to the palletizing part. According to the system structure in Figure 
2, for the n-th node, the product comes from the right side in most of the cases. 
So a conveyor belt on the right side in the node will be numbered by 4n + 1. 
Further, vertical conveyor belts are numbered by 4n + 2, and a conveyor belt on  
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Figure 2. The node definition of the manufacturing system. 

 
the left end of one conveyor switch will be counted by 4n + 3. Besides that, a 
public conveyor belt in adjacent nodes has two identifiers. 

The control system tries to find the time-efficient option for one product; then 
it attempts to find the time-efficient option for the whole manufacturing proc-
ess. On the other hand, algorithm recognizes the influence of each option or 
each node simultaneously. The flowchart of the hybrid algorithm is displayed in 
Figure 3. 

3.2. Implementation of GA 

According to the above analyses, a messy GA constitutes the basis of this hybrid 
algorithm. A standard procedure for the implementation process of GA includes 
encoding, operation, and selection. 

3.2.1. Encoding 
In this paper, the system is encoded by the sequence of the nodes’ number with 
genetic algorithms. A raw product may pass the different amount of nodes, so 
the gene code is a messy digital number. It was first mentioned by D. Goldberg 
[20], but the messy encoding method in this paper differs from it. 

A “tour” is defined as a product traveling from the feeding entrance to the 
palletizing exit. A “legal tour” means a pathway that passes by the corresponding 
filling machine according to the recipes. On the contrary, an “illegal tour” 
doesn’t pass by the corresponding filling machine. For example, 1243690 is a le-
gal tour for the recipe “red pellets”, and 1236780 is an illegal tour for the recipe 
“black pellets”. In the coded number, “0” represents node 10 to avoid conflict 
with node 1. 

3.2.2. Gene Length 
Since an encoding number implies the passing order of nodes, the gene length is  
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Figure 3. The flowchart of the hybrid algorithm, system behaviour and algorithm target 
in parallel. 

 
naturally more than 6. That means a product must pass through at least six 
nodes from the feeding point to the palletizing point via some filling station. In-
tuitively, the gene length can be a relatively huge number because a product may 
go around some cycles e.g. “3243”, “345783”. If a solution is a very long string, it 
will consume more time. Thus it can be considered as not an optimal solution. 
On the other hand, because of constraints of a crossover operator and mutation 
operator, the gene length cannot be set too short either. In this paper, the gene 
length shall be fixed to no more than 16. 

3.2.3. Crossover Operator 
During the crossover operation, the same node(s) except node 10, node 1, node 
involved in a filling process and the adjacent node to 10 and 1 in common be-
tween two parents is searched at first. For instance, the following two parents are 
legal tours for the use case 1.  

Parent 1:  
Parent 2:  
This means two parental solutions pass through common node 1, 2, 3, 4, 6, 8, 

10. Node 3 is involved in a filling process for the use case 1 and node 8 is the ad-
jacent node to 1 in common. In that way, node 2, 4, 6 are potential crossover 
points. The system will choose one of them randomly and then will build up an 
offspring. If one child represents an illegal tour, the system will select another 
rest crossover point to generate new offspring. Suppose node 6, which is under-
lined in parents, is a crossover point, in this case, we get offspring like following, 

Offspring 1’:  
Offspring 2:  
The route of offspring one does not include the filling station. Using node□; 

4, as a crossover point, the system keeps offspring2 and then generates a new 
random child, 

Offspring 1:  
The crossover rate is set as 1 in this paper. 
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3.2.4. Mutation Operator 
The mutation is necessary for helping this algorithm to jump out of a premature 
searching space. Inspired by cycles in the system mentioned in 3.2.2, we employ 
them to execute a mutation operator. They increase the gene length, but not al-
ways increase time consumption. So a cycle is applied here as modifications to 
help the system to get rid of a pseudo-optimal solution space. One of the node 3, 
4, 5, 7 will be selected to add a cycle. Suppose a parent as following: 

Parent:  
One possible mutation might be, 
Offspring:  
Node 4 which is underlined in the parent’s chromosome is randomly chosen 

as a mutation point in the instance. The mutation rate is set based on the parent. 
If chromosomes of offspring are identical to two parents, then the mutation rate 
is set as 1. Else, if potential chromosomes of offspring are different from parents, 
the mutation rate is set as 0.05 at the global level. 

3.2.5. Selection of the Initial Parents 
In the mutation process, an extra circle is added. Similarly, a circle in a parent 
can be also subtracted. However, that will make an intergenerational transmis-
sion of a mess. To avoid that kind of confusion, non-repeat chromosome routes 
are provided with higher priority. However, it does not mean that non-repeat 
chromosome routes are elite routes. This is another necessity of the mutation 
process. 15 initial parents in the whole population are chosen to generate and it-
erate the later population. 
• If the non-repeat chromosome population in a use case is more than 15, then 

choose 15 of them randomly. 
• If the non-repeat chromosome population in a use case is less than 10, the 

system will accept all of them first and then substitute the vacancy with re-
peating chromosome randomly. 

Based on the analysis in the previous section, a repeating chromosome off-
spring can be generated by the non-repeat parents. It is essential because the op-
timal solution may exit in repeat chromosome routes. 

4. Simulation Results 

Because control units on real plants are PLC-mounted, the simulation is exe-
cuted on CoDeSysV3.5 SP5 Patch 3. CoDesys is a developing environment based 
on the IEC-61131 standard. Physical parameters are following, 
• Speed of conveyor belt -vb = 300 mm/s; 
• The robot transporting time -trt = 2 s; 
• The moving speed of robot -vrm = 300 mm/s; 
• The filling time at each workstation -tf = 2 s. 

Another fundamental property should be pointed that one product can pass a 
workstation several times, but it can pick up pellets by one workstation only 
once in the simulation. The behaviors of the system in this paper are simulated 
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with the proposed hybrid algorithm. Owing to the characteristic of a stochastic 
process, one node in the system can decide the transporting sequence and direc-
tion, and the robot can decide to feed a raw product first or to palletize a fin-
ished product. The goal of the simulation is to recreate the decision and learning 
process of the system to find out whether the hybrid algorithm fits the circum-
stance. It is evident that the production effectivity is decided by robot transport-
ing time, moving time on the slide way of the robot, and time-consuming within 
the manufacturing system. On the other hand, the makespan in the production 
system is denoted by one selected route in the stochastic process. Because of its 
own characteristics of the system, there is no intervention process in the use case 
1 and the use case 2. So targets of the use case 1 and the use case 2 are to find the 
optimal routes. The simulation results are displayed in Figure 4 and Figure 5 
respectively. 

From Figure 4 and Figure 5, it is evident that optimal solutions are non-re- 
peat chromosome sequence. The optimal solution for the use case 3 is displayed 
in Figure 6. 

4.1. Lessons Learned 

Figure 6 shows that the optimal solution found by the GA for the use case 3 is a 
repeat chromosome. This means that a product may hinder another product. 
The optimal solution for the entire process is not a simple superposition of the 
optimal solution, but a combination of a set of simpler solutions. Thus, this ge-
netic algorithm cannot dispose of the use case 3 with present parameters and 
operators. Here, we use one reinforcement learning algorithm to cope with this 
use case. From the implementation of GA in the use case 1 and the use case 2, it 
can be found that the weight of each node is different. For example, in the use 
case 1, there are three kinds of nodes. A product with the corresponding recipe 
must pass through node 1, 2, 4, 10, which means they are essential nodes and if  
 

 
Figure 4. The optimal solution for the use case 1: (G2-2): 1243690. 
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Figure 5. The optimal solution for the use case 2 (G2-4): 1967580. 
 

 
Figure 6. The optimal solution for the use case 3. 

 
those four nodes appear in one solution, it does not affect the performance of a 
solution. On the other hand, rest nodes are non-essential nodes. Nonetheless, 
they will affect the performance. The influence of these nodes may be beneficial, 
or harmful. In fact, a raw product needs only red pellets or green pellets in use 
case 2, which means it is time-saving to avoid node 5, 7, 8 in the route plan. 
Thus, node 5, 7, 8 are defined as the negative nodes or negative chromosomes. 
Finally, we cannot judge rest nodes 2, 3, 6, 9 on the surface. So they are defined 
as neutral nodes or chromosomes. 

There are also some other facts we need to consider. For example, there are 
several routes for a product to go through node 8 to node 10. One is from node 8 
to node 10; another might be from node eight via node 7, 6, 9 to node 10. That 
means adjacent nodes are not independent. 
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Based on experience gained before, there ward function can be set as follows: 

( ) ( ) ( ) ( )0 0 0 02 Pn 0 Nn Hnn n n n
i jr Z Z Z Z n n= ∗ + ∗ − −∑ ∑ ∑ ∑        (4) 

Here, Pn represents the potential positive nodes; Hn represents the harmful 
nodes; Nn represents the neutral nodes, and Z( ) counts the passing number of 
nodes. 

There are 63 raw products waiting in line in total based on the physical struc-
ture displayed on the right side in Figure 1. The process from the first raw 
product is moving to the entrance conveyor belt to the 63rd product getting off 
the exit conveyor belt, is defined as one episode. 

4.2. Implementation of the Reinforcement Learning Algorithm 

After the reward function is determined, the reinforcement learning algorithms 
need to be introduced briefly. A typical decision starts at time t0, with the initial 
state given by s0. At any time, possible actions are based on the current state, and 
it is depicted as ( )Γt ta s∈  [21]. The value of the state-action pair ( ),s a  under 
the policy π, denoted by ( ),V s aπ , represents the expected return when starting 
in state s, taking action a and following policy π thereafter: 

( ) { }, ,V s a F E s aπ π=                       (5) 

where {}Fπ ⋅  denotes time consumption under the stochastic dynamics f, given 
that the controller applies policy π. The optimal action value function *V  is de-
fined as the maximum Bellman equation among all potential policies: 

( ) ( )* , max ,V s a V s aπ=                      (6) 

Once *V  is obtained, an optimal policy (i.e. one that minimizes time con-
sumption) can be decided by an optimization over the action argument: 

( ) ( )* *arg max ,s V s aπ = .                    (7) 

The Q-learning algorithm estimates Q* from the interaction between actua-
tors and environment, depending on both the previous state and the selected ac-
tion. Thus Q is updated. The foundation of the algorithm is a simple value itera-
tion update proposed in [22]. Moreover, it updates the following equation to 
search the optimal action: 

( ) ( ) ( ) ( )1 1 1, , max , ,t t t t t t t t t t t t tQ s a Q s a r Q s a Q s aα γ+ + + = + + −        (8) 

Here, 1tr +  represents reward values obtained by one controller during inter-
acting with environment; γ represents the discount rate and α is the learning 
rate. In this experiment, they are both set to 0.9. 

Obviously, the system transporters fulfill the following conditions, and then it 
has been proved that the control policy converges to *Q  when t →∞  [23]. 
• Explicit, distinctive values of the Q-function are stored and updated for each 

state-action pair 
• The sum of the squares of α is finite, whereas the sum of α is infinite. 
• The controller keeps trying all actions in all states with nonzero probability. 

The completion time of 50 episodes is shown in Figure 7. 
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Figure 7. Time consumption for 50 tests in the simulation. 

 
From the simulated 50 trials, the completion time tends to decrease. At the 

very beginning, it shrinks quickly, and then slows down. The curve is not 
smooth because the range of the tour time is discontinuous. Furthermore, the 
curve fluctuates a lot because of the system structure and the relationship be-
tween nodes and routes. The control system will traverse as many initial popula-
tions as possible at the very beginning. The influence of a local decision is com-
prehensive and in-depth. One previous decision affects the tours of several fol-
lowing products, thus affects the total completion time. Once an option of a pre-
vious product is selected, the tour range of the following product shrinks. The 
sharp time decline occurs when the algorithm recognizes one crucial node, while 
the subsequent rise is always tiny because the algorithm tries to promote the 
system performance in the neighborhood. After 30 tests, the curve tends to be 
mild. Therefore, it can be convinced that the system has completed the training 
process. 

5. Further Discussion 
5.1. The Influence of Transporting Robot on the System  

Performance 

There is another part of the system, i.e. the feeding and palletizing robot. 
Though it is defined as a subsidiary device, it will also influence the performance 
of the system. For example, if it chooses to continue to feed a raw product to the 
system when a finished product appears on the exit conveyor belt, the palletizing 
process must be delayed, and vice versa. The mean tardiness time is employed as 
an indicator to elaborate that influence. The tardiness time is defined as the time 
delay from the appearance of a raw product at the head of the scheduling list to 
its first appearance at the entrance conveyor belt. The average tardiness time is 
displayed in Figure 8. 

It is obvious that test 23 has a significant shorter completion time than test 3 
by the evaluation of completion time. Synthesizing the results from Figure 7 and  
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Figure 8. A comparison example of average tardiness time in the 3rd test and 23rd test. 

 
Figure 8, we can find the flatter the curve of average tardiness, the shorter the 
time consumption. For the manufacturing system, it needs to find the best way 
(use case 1 and use case 2), and arrange the combination of routes (use case 3). 
And for the feeding and palletising subsystem, it needs to decline average tardi-
ness time. When these two points are completed, the system can execute with 
the optimal performance. 

Figure 8 indicates the inherent direction of the system optimization. The os-
cillation of average tardiness time in the early stage of the test, e.g. the transpor-
tation process of the first 15 product, is ascribed to choices of the robot to fetch a 
raw product first or a completed product. The more number of oscillations sig-
nifies the more alternatives between feeding and palletising selection of the ro-
bot. If we have more positions for both raw product and finished product in the 
inventory, we will get a smoother curve of average tardiness time. 
Comparison of test 3 and test 23 shows that if the average tardiness time is 
viewed as a sequence, the limit of the sequence is decided by the physical struc-
ture of the system, but not the number of the product. 

5.2. System Structure 

Based on the analysis and simulation results of different nodes in the system, it is 
found that the topological structure has a significant influence. A flexible manu-
facturing system can be controlled and improved more conveniently by a corre-
sponding machine learning algorithm due to the more reasonable nodes topo-
logical structure in the design process. In return, an intelligent machine learning 
algorithm can enhance the design of a flexible manufacturing system. 

It is evident that the best position for a unique workstation is by node nine if 
there is only one kind of a product. At that moment, the complexity of the sys-
tem is reduced to a simple manufacturing system. Even though work station one 
is fixed by the conveyor belt between node 2 and node 4, the system behaviour 
(e.g. completion time, average tardiness time) will be totally changed. 
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6. Conclusions 

In this paper, the model of a multi-branches complex manufacturing system is 
elaborated and formulated. Then a hybrid algorithm integrating messy GA and 
RL algorithm is proposed to control the fabrication process based on system 
structural analyses and recipe specification. Messy GA is employed to represent 
route options, and RL algorithm is used to evaluate and to improve system per-
formance. Next, implementation of the hybrid control algorithm is simulated on 
IEC 61131 environment. Results of the simulation prove that the algorithm can 
significantly cut down the time consumption.  

Besides that, the result can be beneficial for the system design in the topologi-
cal structure level. The position of workstations and nodes can be better planned 
to cut down the time consumption on the route planning or to avoid conflicts 
between two or more products when they need to pass through one node. 

Further research should focus on two prospects. First, it is necessary to simu-
late more complicated scenarios in a production session which can put forward 
the control policy for the complex manufacturing system. For instance, some 
products only pass workstation 1, and some products pass both workstations in 
one process. Besides, the production order is uncertain, and needs to be sched-
uled by the control system. Second, it will be beneficial to find the optimal posi-
tion of a workstation without changing the structure of a system. 
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