
Journal of Software Engineering and Applications, 2017, 10, 257-272
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.103015 March 13, 2017

Improve the Performance of a Complex FMS
with a Hybrid Machine Learning Algorithm

Hang Li

Institute of Automation and Information System, Technische Universität München, Garching near Munich, Germany

Abstract
Modern manufacturing systems are expected to undertake multiple tasks,
flexible for extensive customization, and that trends make production systems
become more and more complicated. The advantage of a complex production
system is a capability to fulfill more intensive goods production and to adapt
to various parameters in different conditions. The disadvantage of a complex
system, on the other hand, with the pace of the increase of complexity, lies in
the control difficulties rising dramatically. Moreover, classical methods are
reluctant to control a complex system, and searching for the appropriate con-
trol policy tends to become more complicated. Thanks to the development of
machine learning technology, this problem is provided with more possibilities
for the solutions. In this paper, a hybrid machine learning algorithm, inte-
grating genetic algorithm and reinforcement learning algorithm, is proposed
to cope with the accuracy of a control policy and system optimization issue in
the simulation of a complex manufacturing system. The objective of this pa-
per is to cut down the makespan and the due date in the manufacturing sys-
tem. Three use cases, based on the different recipe of the product, are em-
ployed to validate the algorithm, and the results prove the applicability of the
hybrid algorithm. Besides that, some additionally obtained results are benefi-
cial to find out a solution for the complex system optimization and manufac-
turing system structure transformation.

Keywords
Complex System, Flexible Manufacturing System (FMS), Machine Learning,
System Optimization

1. Introduction

Over the past few years, industrial manufacturing is confronted with extensive
changes. From local economy towards a globalized and fully competitive econ-

How to cite this paper: Li, H. (2017) Im-
prove the Performance of a Complex FMS
with a Hybrid Machine Learning Algo-
rithm. Journal of Software Engineering and
Applications, 10, 257-272.
https://doi.org/10.4236/jsea.2017.103015

Received: January 26, 2017
Accepted: March 10, 2017
Published: March 13, 2017

Copyright © 2017 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.103015
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.103015
http://creativecommons.org/licenses/by/4.0/

H. Li

258

omy, markets require highly qualified and customized products at lower costs
and with shorter life cycles [1]. To dispose of these challenges, the performance
of their production system has to be improved by the manufacturing enterprises.
Since last decades, new concepts for manufacturing system have been developed.
An agile manufacturing system brings to production much greater concurrency
and integration of activities [2]. Sustainable manufacturing requires a holistic
view spanning, not only a product, and production processes involved in its
manufacturing, but also the whole supply chain, including the manufacturing
systems across multiple product life cycles [3]. Furthermore, a coupled cyber-
physical system scheme of predictive manufacturing system is developed to in-
tegrate, manage and analyse machinery or process data to operate more effi-
ciently during life cycle by Lee et al. [4].

Among all these concepts, production process tends to be characterized by
modularity, decentralization, autonomy, scalability, reusability, adaptability and
reconfigurability. Moreover, a critical issue in production is the system control
approach. For a complex system, traditional control methods are reluctant to the
adaptation of more input variables, state parameters, and more flexible produc-
tion requirements.

One regular practice is a job shop scheduling or a job shop problem (JSP). The
objective of that is to minimize the makespan with the given n jobs and m iden-
tical machines in a factory. It is recognized as an NP-hard problem in the
mathematical domain [5]. With classical control policy and present program-
mable logic controller (PLC), it is hardly possible when the topological structure
of a manufacturing system is quite complicated. Due to the rapid development
of artificial intelligence (AI), significant results have been obtained with ad-
vanced algorithms such as simulated annealing [6], evolutionary algorithm [7],
and hybrid AI algorithm [8]. These kinds of probability-based or evolution-
based local search algorithms make it possible to obtain the optimal solution,
although the solution space is quite large. However, one disadvantage of the
heuristic algorithm and the evolutionary algorithm is that too many parameters
influence the convergent speed of a training model based on manufacturing
process effects. If to be more precise, they are not convergent at all, e.g. the con-
vergent rate of a genetic algorithm (GA) subjects to the encoding of chromo-
somes, selection of initial population, etc. Jimenez et al. employed GA on the
Pollux architecture in a job shop problem to improve total job makespan, how-
ever, the complementary statistical studies needed to be generalized [9]. More-
over, owing to the specific system structure, there is no suboptimal solution in-
terval in the global solution space. Under some circumstances, the GA cannot
dispose control policies for a complex system. However, integration with an-
other algorithm may improve the convergent situation. That will be discussed in
Section 3 and Section 4 of this paper.

An inferior encoding method generates an enormous amount of invalid solu-
tions and enlarges searching space, so a reasonable method for encoding is the
precondition for GA. Binary encoding and Gray encoding are suitable for a se-

H. Li

259

ries of real parameters e.g. five DeJong test functions [10]. With weighted cod-
ing, the knapsack problem has been solved successfully [11]. Ordinal representa-
tion [12] meets requirements of the Traveling Salesman Problem (TSP) that a
salesperson must pass through every city once and only once. Matrix encoding
can cope with the JSP scheduling and present better results [13]. Nevertheless,
for a particular practical problem, researchers cannot always find an encoding
plan easily, e.g. Grefenstette et al. came up with an ordinal representation [14],
compared with the GA that was described in the 1960s, and the TSP that was
formulated in 1930s. Initial parents of the population are selected after encoding
for a practical problem. During selection of offspring generations, elitist selec-
tion [15] and gradient acceleration [16] are introduced to speed up the crossover
process. If the gradient of solution space or some elite chromosomes is found,
then evolution direction is known. Correspondingly, initial efforts turn to how
to allocate the gradient. In a specific engineering practice, the gradient of solu-
tion space is usually obtained from accumulated experience after years of a
manufacturing system analysis.

Another part of the hybrid algorithm is reinforcement learning. Reinforcement
learning (RL) is another sound algorithm based on studies of a system’s structure.
RL algorithms are a series of learning policies that make programs improve their
performance by receiving rewards or punishments from the environment [17]. It
is learning of a mapping from situations by actions to maximize a scalar reward or
reinforcement signal [18]. After establishing initial state-ac- tion pairs and system
dynamics, solution space is defined. Then the system calculates Bellman optimiza-
tion function based on a trial and error process with reward or penalty. Since a
reward function affects the convergence speed or even makes values of Bellman
function diverge, the reward function searching procedure must be prior to a sys-
tem design process or decided in advance according to some previous experience.
The RL algorithms are rarely implemented in engineering practice mainly because
of the difficulty in determining a sound reward function.

In this paper, a hybrid machine learning algorithm is represented to improve
a flexible manufacturing system. An approach based on both system analyses
and the results from messy GA is proposed. It presents a way to making a deci-
sion on a better reward function for RL algorithm. All this work is executed in
the simulation environment of CoDeSys under IEC 61131-3. Based on obtained
experience, an idea to optimize flexible system structure is discussed.

The rest of the paper is organized as follows. Section 2 introduces the flexible
manufacturing system and formulates the problem. The control policy is dis-
cussed in Section 3. Simulated results are present and discussed in Section 4.
Then some additional beneficial results are presented in Section 5. Section 6
concludes the paper and proposes avenues for future work.

2. Problem Formulation

Nowadays, a flexible manufacturing system becomes more and more completed
and flexible for massive customization. It is designed with more branches be-

H. Li

260

tween workstations, which means it can provide more options for products to be
transport and flexibility for manufacturing different kinds of goods. A demon-
strator of such a system in the laboratory of the chair of Automation and Infor-
mation Systems, Technical University of Munich, is shown in Figure 1.

Some fundamental properties of the manufacturing system can be concluded
as follows:
• There are two filling machines mounted on a workstation respectively at the

left side of the system, each with two kinds of pellets, which means it can
provide different recipes. So it is a flexible manufacturing system, and it can
be used to produce various types of products.

• There are ten conveyor switches which connect workstations and inventory,
and each of them leads to the different directions in the system. That means
that there are several routes for the production process for one kind of a
product.

• The inventory for raw product and inventory for final product are located
next to each other and share one robot.

There are five materials in the experiment, namely red pellets, green pellets,
blue pellets, black pellets, and water. Among them, the racks of red pellets and
green pellets are mounted on workstation 1; the racks of blue pellets and black
pellets are installed on workstation 2. Referring to water, it is a dependent vari-
able. Thus we just consider the pellets. It is easy to find out that there are at most
24 − 1 = 15 products. Here, we use { }, , ,R G B S to represent red, green, blue and
blackpellets, w to represent workstations, z to count the number of either
productor workstation, pr to represent the recipes of the products, and ,w pit
to present the processing time of one product by i th− workstation.

Figure 1. A demonstrator for complex manufacturing system in the chair of Automation
and Information Systems, Technical University of Munich.

H. Li

261

According to the position of raw materials on workstations, we will check the
recipe of a product and define sub use cases.

2.1. Use Case 1

If the recipes of products are following:

{ }, ,pr R G R G= ∪ (1)

That means a raw product must go by the workstation 1, but not the workstation
2. That is defined as a use case 1. Based on the above recipes, the use case 1 con-
sists of 3 sub-scenarios.

2.2. Use Case 2

If the recipes of products are following:

{ }, ,pr B S B S= ∪ (2)

That means a raw product must go by the workstation 2, but not the workstation
1. That is defined as a use case 2. Based on the above recipes, the use case 2 con-
sists of 3 sub-scenarios.

2.3. Use Case 3

If the recipes of products are following:

{ } { }{ }1 2pr R G w B S w= ∪ ∪ ∪ (3)

That means a raw product must go by the workstation 2, but not the workstation
1. That is defined as a use case 3. According to the above recipes, the use case 3
consists of 9 sub-scenarios.

Here, we need some further discussion on the mentioned use cases.
1) iw W∀ ∈ , () ()11 2 , , 2p p w p w pr r t t∩ ∪ ∩ =∅ , e.g. { }1pr R B= ∪ , { }2pr S= ,

that means a filling process of one product does not interfere the other. It is de-
fined as the use cases 1 and 2.

2) iw W∃ ∈ , () ()11 2 , , 2p p w p w pr r t t∩ ∪ ∩ ≠∅ , e.g. { }1pr R S= ∪ , { }2pr G= ,
that means a filling process of one product will interfere the other one. It is de-
fined as the use case 3.

3) If there are more than two products, that means iz w> , with iw de-
noting the number of available workstations, a filling process will interfere oth-
ers. It is also defined as the use case 3.

Besides, we have to consider the following two scenes:
1) When a raw product is a feed by the entrance of the system, it has several

routes to a workstation, and after the filling process, it has random ways to the
exit. Different route plan consumes different makespan, and it may interrupt the
following product and generates “traffic jam.”

2) When a final product appears by the exit of the manufacturing system, the
robot has two options, to feed a raw product to the system first or to pelletize the
completed product. Different choices result in different tardiness time and com-
pletion time.

H. Li

262

These two scenarios are referred to the behavior of the feeding/palletizing ro-
bot, but one selection of the robot has a global influence on a manufacturing
system. So they are viewed as a part of the three use cases defined above. Due to
the random characteristics of the process, e.g. the various completion time by
different routes, the whole manufacturing process is a stochastic process. Thus,
the goal of this paper is to find out how to plan a reasonable route for the global
process and to determine the potential relationship between feeding interval and
completion time with the application of a hybrid machine learning algorithm.

3. Methodology of Control Policy for a Manufacturing
System

After illustrating and formulating the target system, the next step is to find a
reasonable control method to implement. Figure 1 shows that the flexible
manufacturing system can be used for different products and can provide more
than one option for the product, which will make the control process more dif-
ficult or even conflict. However, on the other hand, its property has also trans-
formed the working process from a deterministic process to a stochastic process,
so the machine learning algorithms can be employed to cope with it.

3.1. System Structure Analyses

Before the introduction of the algorithm implementation, we need to have an
overview of a representative complex manufacturing system. Essential elements
of the system consist of the robot, workstations, and conveyor belts (CB) and
conveyor switches (CS). Conveyor belts transport products to the targeted work-
station and conveyor switches change routes for the process and make it possible
for one product to bypass an unnecessary workstation. Under the normal cir-
cumstance, one conveyor switch cannot work independently but must cooperate
with conveyor belts. It connects three belts in the manufacturing system so that
the system can decide not only which product will be delivered first, but also the
coordination of a process when several belts are taking one product to the con-
veyor switch simultaneously. So the fundamental research unit consisting of one
conveyor switch and three conveyor belts is defined as a trident node. In other
words, transporting tasks in the flexible manufacturing system are undertaken
by Trident nodes. The decomposition of the fabrication system to Trident nodes
is shown in Figure 2. Furthermore, the details of the system analyses and dy-
namics can be seen in the previous work of the author in [19].

One important target of the system is to decide a better transport order and to
coordinate behaviors of conveyor belts. So the key component in the node is the
conveyor switch. Since one node consists of four elements, all the conveyor
switches are numbered by 4n. On the global level, a product will go from the
feeding part to the palletizing part. According to the system structure in Figure
2, for the n-th node, the product comes from the right side in most of the cases.
So a conveyor belt on the right side in the node will be numbered by 4n + 1.
Further, vertical conveyor belts are numbered by 4n + 2, and a conveyor belt on

H. Li

263

Figure 2. The node definition of the manufacturing system.

the left end of one conveyor switch will be counted by 4n + 3. Besides that, a
public conveyor belt in adjacent nodes has two identifiers.

The control system tries to find the time-efficient option for one product; then
it attempts to find the time-efficient option for the whole manufacturing proc-
ess. On the other hand, algorithm recognizes the influence of each option or
each node simultaneously. The flowchart of the hybrid algorithm is displayed in
Figure 3.

3.2. Implementation of GA

According to the above analyses, a messy GA constitutes the basis of this hybrid
algorithm. A standard procedure for the implementation process of GA includes
encoding, operation, and selection.

3.2.1. Encoding
In this paper, the system is encoded by the sequence of the nodes’ number with
genetic algorithms. A raw product may pass the different amount of nodes, so
the gene code is a messy digital number. It was first mentioned by D. Goldberg
[20], but the messy encoding method in this paper differs from it.

A “tour” is defined as a product traveling from the feeding entrance to the
palletizing exit. A “legal tour” means a pathway that passes by the corresponding
filling machine according to the recipes. On the contrary, an “illegal tour”
doesn’t pass by the corresponding filling machine. For example, 1243690 is a le-
gal tour for the recipe “red pellets”, and 1236780 is an illegal tour for the recipe
“black pellets”. In the coded number, “0” represents node 10 to avoid conflict
with node 1.

3.2.2. Gene Length
Since an encoding number implies the passing order of nodes, the gene length is

H. Li

264

Figure 3. The flowchart of the hybrid algorithm, system behaviour and algorithm target
in parallel.

naturally more than 6. That means a product must pass through at least six
nodes from the feeding point to the palletizing point via some filling station. In-
tuitively, the gene length can be a relatively huge number because a product may
go around some cycles e.g. “3243”, “345783”. If a solution is a very long string, it
will consume more time. Thus it can be considered as not an optimal solution.
On the other hand, because of constraints of a crossover operator and mutation
operator, the gene length cannot be set too short either. In this paper, the gene
length shall be fixed to no more than 16.

3.2.3. Crossover Operator
During the crossover operation, the same node(s) except node 10, node 1, node
involved in a filling process and the adjacent node to 10 and 1 in common be-
tween two parents is searched at first. For instance, the following two parents are
legal tours for the use case 1.

Parent 1:
Parent 2:
This means two parental solutions pass through common node 1, 2, 3, 4, 6, 8,

10. Node 3 is involved in a filling process for the use case 1 and node 8 is the ad-
jacent node to 1 in common. In that way, node 2, 4, 6 are potential crossover
points. The system will choose one of them randomly and then will build up an
offspring. If one child represents an illegal tour, the system will select another
rest crossover point to generate new offspring. Suppose node 6, which is under-
lined in parents, is a crossover point, in this case, we get offspring like following,

Offspring 1’:
Offspring 2:
The route of offspring one does not include the filling station. Using node□;

4, as a crossover point, the system keeps offspring2 and then generates a new
random child,

Offspring 1:
The crossover rate is set as 1 in this paper.

H. Li

265

3.2.4. Mutation Operator
The mutation is necessary for helping this algorithm to jump out of a premature
searching space. Inspired by cycles in the system mentioned in 3.2.2, we employ
them to execute a mutation operator. They increase the gene length, but not al-
ways increase time consumption. So a cycle is applied here as modifications to
help the system to get rid of a pseudo-optimal solution space. One of the node 3,
4, 5, 7 will be selected to add a cycle. Suppose a parent as following:

Parent:
One possible mutation might be,
Offspring:
Node 4 which is underlined in the parent’s chromosome is randomly chosen

as a mutation point in the instance. The mutation rate is set based on the parent.
If chromosomes of offspring are identical to two parents, then the mutation rate
is set as 1. Else, if potential chromosomes of offspring are different from parents,
the mutation rate is set as 0.05 at the global level.

3.2.5. Selection of the Initial Parents
In the mutation process, an extra circle is added. Similarly, a circle in a parent
can be also subtracted. However, that will make an intergenerational transmis-
sion of a mess. To avoid that kind of confusion, non-repeat chromosome routes
are provided with higher priority. However, it does not mean that non-repeat
chromosome routes are elite routes. This is another necessity of the mutation
process. 15 initial parents in the whole population are chosen to generate and it-
erate the later population.
• If the non-repeat chromosome population in a use case is more than 15, then

choose 15 of them randomly.
• If the non-repeat chromosome population in a use case is less than 10, the

system will accept all of them first and then substitute the vacancy with re-
peating chromosome randomly.

Based on the analysis in the previous section, a repeating chromosome off-
spring can be generated by the non-repeat parents. It is essential because the op-
timal solution may exit in repeat chromosome routes.

4. Simulation Results

Because control units on real plants are PLC-mounted, the simulation is exe-
cuted on CoDeSysV3.5 SP5 Patch 3. CoDesys is a developing environment based
on the IEC-61131 standard. Physical parameters are following,
• Speed of conveyor belt -vb = 300 mm/s;
• The robot transporting time -trt = 2 s;
• The moving speed of robot -vrm = 300 mm/s;
• The filling time at each workstation -tf = 2 s.

Another fundamental property should be pointed that one product can pass a
workstation several times, but it can pick up pellets by one workstation only
once in the simulation. The behaviors of the system in this paper are simulated

H. Li

266

with the proposed hybrid algorithm. Owing to the characteristic of a stochastic
process, one node in the system can decide the transporting sequence and direc-
tion, and the robot can decide to feed a raw product first or to palletize a fin-
ished product. The goal of the simulation is to recreate the decision and learning
process of the system to find out whether the hybrid algorithm fits the circum-
stance. It is evident that the production effectivity is decided by robot transport-
ing time, moving time on the slide way of the robot, and time-consuming within
the manufacturing system. On the other hand, the makespan in the production
system is denoted by one selected route in the stochastic process. Because of its
own characteristics of the system, there is no intervention process in the use case
1 and the use case 2. So targets of the use case 1 and the use case 2 are to find the
optimal routes. The simulation results are displayed in Figure 4 and Figure 5
respectively.

From Figure 4 and Figure 5, it is evident that optimal solutions are non-re-
peat chromosome sequence. The optimal solution for the use case 3 is displayed
in Figure 6.

4.1. Lessons Learned

Figure 6 shows that the optimal solution found by the GA for the use case 3 is a
repeat chromosome. This means that a product may hinder another product.
The optimal solution for the entire process is not a simple superposition of the
optimal solution, but a combination of a set of simpler solutions. Thus, this ge-
netic algorithm cannot dispose of the use case 3 with present parameters and
operators. Here, we use one reinforcement learning algorithm to cope with this
use case. From the implementation of GA in the use case 1 and the use case 2, it
can be found that the weight of each node is different. For example, in the use
case 1, there are three kinds of nodes. A product with the corresponding recipe
must pass through node 1, 2, 4, 10, which means they are essential nodes and if

Figure 4. The optimal solution for the use case 1: (G2-2): 1243690.

H. Li

267

Figure 5. The optimal solution for the use case 2 (G2-4): 1967580.

Figure 6. The optimal solution for the use case 3.

those four nodes appear in one solution, it does not affect the performance of a
solution. On the other hand, rest nodes are non-essential nodes. Nonetheless,
they will affect the performance. The influence of these nodes may be beneficial,
or harmful. In fact, a raw product needs only red pellets or green pellets in use
case 2, which means it is time-saving to avoid node 5, 7, 8 in the route plan.
Thus, node 5, 7, 8 are defined as the negative nodes or negative chromosomes.
Finally, we cannot judge rest nodes 2, 3, 6, 9 on the surface. So they are defined
as neutral nodes or chromosomes.

There are also some other facts we need to consider. For example, there are
several routes for a product to go through node 8 to node 10. One is from node 8
to node 10; another might be from node eight via node 7, 6, 9 to node 10. That
means adjacent nodes are not independent.

H. Li

268

Based on experience gained before, there ward function can be set as follows:

() () () ()0 0 0 02 Pn 0 Nn Hnn n n n
i jr Z Z Z Z n n= ∗ + ∗ − −∑ ∑ ∑ ∑ (4)

Here, Pn represents the potential positive nodes; Hn represents the harmful
nodes; Nn represents the neutral nodes, and Z() counts the passing number of
nodes.

There are 63 raw products waiting in line in total based on the physical struc-
ture displayed on the right side in Figure 1. The process from the first raw
product is moving to the entrance conveyor belt to the 63rd product getting off
the exit conveyor belt, is defined as one episode.

4.2. Implementation of the Reinforcement Learning Algorithm

After the reward function is determined, the reinforcement learning algorithms
need to be introduced briefly. A typical decision starts at time t0, with the initial
state given by s0. At any time, possible actions are based on the current state, and
it is depicted as ()Γt ta s∈ [21]. The value of the state-action pair (),s a under
the policy π, denoted by (),V s aπ , represents the expected return when starting
in state s, taking action a and following policy π thereafter:

() { }, ,V s a F E s aπ π= (5)

where {}Fπ ⋅ denotes time consumption under the stochastic dynamics f, given
that the controller applies policy π. The optimal action value function *V is de-
fined as the maximum Bellman equation among all potential policies:

() ()* , max ,V s a V s aπ= (6)

Once *V is obtained, an optimal policy (i.e. one that minimizes time con-
sumption) can be decided by an optimization over the action argument:

() ()* *arg max ,s V s aπ = . (7)

The Q-learning algorithm estimates Q* from the interaction between actua-
tors and environment, depending on both the previous state and the selected ac-
tion. Thus Q is updated. The foundation of the algorithm is a simple value itera-
tion update proposed in [22]. Moreover, it updates the following equation to
search the optimal action:

() () () ()1 1 1, , max , ,t t t t t t t t t t t t tQ s a Q s a r Q s a Q s aα γ+ + + = + + −  (8)

Here, 1tr + represents reward values obtained by one controller during inter-
acting with environment; γ represents the discount rate and α is the learning
rate. In this experiment, they are both set to 0.9.

Obviously, the system transporters fulfill the following conditions, and then it
has been proved that the control policy converges to *Q when t →∞ [23].
• Explicit, distinctive values of the Q-function are stored and updated for each

state-action pair
• The sum of the squares of α is finite, whereas the sum of α is infinite.
• The controller keeps trying all actions in all states with nonzero probability.

The completion time of 50 episodes is shown in Figure 7.

H. Li

269

Figure 7. Time consumption for 50 tests in the simulation.

From the simulated 50 trials, the completion time tends to decrease. At the

very beginning, it shrinks quickly, and then slows down. The curve is not
smooth because the range of the tour time is discontinuous. Furthermore, the
curve fluctuates a lot because of the system structure and the relationship be-
tween nodes and routes. The control system will traverse as many initial popula-
tions as possible at the very beginning. The influence of a local decision is com-
prehensive and in-depth. One previous decision affects the tours of several fol-
lowing products, thus affects the total completion time. Once an option of a pre-
vious product is selected, the tour range of the following product shrinks. The
sharp time decline occurs when the algorithm recognizes one crucial node, while
the subsequent rise is always tiny because the algorithm tries to promote the
system performance in the neighborhood. After 30 tests, the curve tends to be
mild. Therefore, it can be convinced that the system has completed the training
process.

5. Further Discussion
5.1. The Influence of Transporting Robot on the System

Performance

There is another part of the system, i.e. the feeding and palletizing robot.
Though it is defined as a subsidiary device, it will also influence the performance
of the system. For example, if it chooses to continue to feed a raw product to the
system when a finished product appears on the exit conveyor belt, the palletizing
process must be delayed, and vice versa. The mean tardiness time is employed as
an indicator to elaborate that influence. The tardiness time is defined as the time
delay from the appearance of a raw product at the head of the scheduling list to
its first appearance at the entrance conveyor belt. The average tardiness time is
displayed in Figure 8.

It is obvious that test 23 has a significant shorter completion time than test 3
by the evaluation of completion time. Synthesizing the results from Figure 7 and

H. Li

270

Figure 8. A comparison example of average tardiness time in the 3rd test and 23rd test.

Figure 8, we can find the flatter the curve of average tardiness, the shorter the
time consumption. For the manufacturing system, it needs to find the best way
(use case 1 and use case 2), and arrange the combination of routes (use case 3).
And for the feeding and palletising subsystem, it needs to decline average tardi-
ness time. When these two points are completed, the system can execute with
the optimal performance.

Figure 8 indicates the inherent direction of the system optimization. The os-
cillation of average tardiness time in the early stage of the test, e.g. the transpor-
tation process of the first 15 product, is ascribed to choices of the robot to fetch a
raw product first or a completed product. The more number of oscillations sig-
nifies the more alternatives between feeding and palletising selection of the ro-
bot. If we have more positions for both raw product and finished product in the
inventory, we will get a smoother curve of average tardiness time.
Comparison of test 3 and test 23 shows that if the average tardiness time is
viewed as a sequence, the limit of the sequence is decided by the physical struc-
ture of the system, but not the number of the product.

5.2. System Structure

Based on the analysis and simulation results of different nodes in the system, it is
found that the topological structure has a significant influence. A flexible manu-
facturing system can be controlled and improved more conveniently by a corre-
sponding machine learning algorithm due to the more reasonable nodes topo-
logical structure in the design process. In return, an intelligent machine learning
algorithm can enhance the design of a flexible manufacturing system.

It is evident that the best position for a unique workstation is by node nine if
there is only one kind of a product. At that moment, the complexity of the sys-
tem is reduced to a simple manufacturing system. Even though work station one
is fixed by the conveyor belt between node 2 and node 4, the system behaviour
(e.g. completion time, average tardiness time) will be totally changed.

H. Li

271

6. Conclusions

In this paper, the model of a multi-branches complex manufacturing system is
elaborated and formulated. Then a hybrid algorithm integrating messy GA and
RL algorithm is proposed to control the fabrication process based on system
structural analyses and recipe specification. Messy GA is employed to represent
route options, and RL algorithm is used to evaluate and to improve system per-
formance. Next, implementation of the hybrid control algorithm is simulated on
IEC 61131 environment. Results of the simulation prove that the algorithm can
significantly cut down the time consumption.

Besides that, the result can be beneficial for the system design in the topologi-
cal structure level. The position of workstations and nodes can be better planned
to cut down the time consumption on the route planning or to avoid conflicts
between two or more products when they need to pass through one node.

Further research should focus on two prospects. First, it is necessary to simu-
late more complicated scenarios in a production session which can put forward
the control policy for the complex manufacturing system. For instance, some
products only pass workstation 1, and some products pass both workstations in
one process. Besides, the production order is uncertain, and needs to be sched-
uled by the control system. Second, it will be beneficial to find the optimal posi-
tion of a workstation without changing the structure of a system.

References
[1] Leitão, P. (2009) Agent-Based Distributed Manufacturing Control: A State-of-

the-Art Survey. Engineering Applications of Artificial Intelligence, 22, 979-991.
https://doi.org/10.1016/j.engappai.2008.09.005

[2] Gould, P. (1997) What Is Agility? [Agile Manufacturing]. Manufacturing Engineer,
76, 28-31. https://doi.org/10.1049/me:19970113

[3] Jayal, A.D., Badurdeen, F., Dillon, O.W. and Jawahir, I.S. (2010) Sustainable Manu-
facturing: Modeling and Optimization Challenges at the Product, Process and Sys-
tem Levels. CIRP Journal of Manufacturing Science and Technology, 2, 144-152.
https://doi.org/10.1016/j.cirpj.2010.03.006

[4] Lee, J., Lapira, E., Bagheri, B. and Kao, H.A. (2013) Recent Advances and Trends in
Predictive Manufacturing Systems in Big Data Environment. Manufacturing Let-
ters, 1, 38-41. https://doi.org/10.1016/j.mfglet.2013.09.005

[5] Garey, M.R., Johnson, D.S. and Sethi, R. (1976) The Complexity of Flowshop and
Jobshop Scheduling. Mathematics of Operations Research, 1, 117-129.
https://doi.org/10.1287/moor.1.2.117

[6] Van Laarhoven, P.J., Aarts, E.H. and Lenstra, J.K. (1992) Job Shop Scheduling by
Simulated Annealing. Operations Research, 40, 113-125.
https://doi.org/10.1287/opre.40.1.113

[7] Chen, J.C., Wu, C.C., Chen, C.W. and Chen, K.H. (2012) Flexible Job Shop Sched-
uling with Parallel Machines Using Genetic Algorithm and Grouping Genetic Algo-
rithm. Expert Systems with Applications, 39, 10016-10021.
https://doi.org/10.1016/j.eswa.2012.01.211

[8] Karthikeyan, S., Asokan, P., Nickolas, S. and Page, T. (2015) A Hybrid Discrete
Firefly Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Prob-

https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1049/me:19970113
https://doi.org/10.1016/j.cirpj.2010.03.006
https://doi.org/10.1016/j.mfglet.2013.09.005
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1287/opre.40.1.113
https://doi.org/10.1016/j.eswa.2012.01.211

H. Li

272

lems. International Journal of Bio-Inspired Computation, 7, 386-401.
https://doi.org/10.1504/IJBIC.2015.073165

[9] Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D. and Leitão, P. (2016)
Pollux: A Dynamic Hybrid Control Architecture for Flexible Job Shop Systems. In-
ternational Journal of Production Research, 1-19.
https://doi.org/10.1080/00207543.2016.1218087

[10] Schaffer, R.A.C.J.D. and Eshelman, L.J. (2016) Gray and Binary Coding for Genetic
Algorithms. Machine Learning Proceedings, Ithaca, 26-27 June 1989, 375-378.

[11] Yuan, Q. and Yang, Z. (2013) A Weight-Coded Evolutionary Algorithm for the
Multidimensional Knapsack Problem. arXiv:1302.5374

[12] Sastry, K., Goldberg, D.E. and Kendall, G. (2014) Genetic Algorithms. In: Burke,
E.K. and Kendall, G., Eds., Search Methodologies, Springer, Berlin, 93-117.
https://doi.org/10.1007/978-1-4614-6940-7_4

[13] Zhang, G., Gao, L. and Shi, Y. (2011) An Effective Genetic Algorithm for the Flexi-
ble Job-Shop Scheduling Problem. Expert Systems with Applications, 38, 3563-
3573. https://doi.org/10.1016/j.eswa.2010.08.145

[14] Grefenstette, J., Gopal, R., Rosmaita, B. and Van Gucht, D. (1985) Genetic Algo-
rithms for the Traveling Salesman Problem. Proceedings of the 1st International
Conference on Genetic Algorithms and their Applications, Pittsburg, 24-26 July
1985, 160-168.

[15] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002) A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6, 182-197. https://doi.org/10.1109/4235.996017

[16] Ting, T.O., Wong, K.P. and Chung, C.Y. (2008) Hybrid Constrained Genetic Algo-
rithm/Particle Swarm Optimisation Load Flow Algorithm. IET Generation, Trans-
mission & Distribution, 2, 800-812. https://doi.org/10.1049/iet-gtd:20070224

[17] Li, H. (2015) The Implementation of Reinforcement Learning Algorithms on the
Elevator Control System. 20th Conference on Emerging Technologies & Factory
Automation, Luxembourg, 8-11 September 2015, 1-4.
https://doi.org/10.1109/etfa.2015.7301554

[18] Sutton, R.S. (1992) Introduction: The Challenge of Reinforcement Learning. In:
Sutton, R.S., Ed., Reinforcement Learning, Springer, Berlin, 1-3.
https://doi.org/10.1007/978-1-4615-3618-5_1

[19] Li, H. (2016) An Approach to Improve Flexible Manufacturing Systems with Ma-
chine Learning Algorithms. 42nd Annual Conference of the IEEE Industrial Elec-
tronics Society, Florence, 23-26 October 2016, 54-59.

[20] Goldberg, D., Deb, K. and Korb, B. (1989) Messy Genetic Algorithms: Motivation,
Analysis, and First Results. Complex Systems, 3, 493-530.

[21] Watkins, C.J. and Dayan, P. (1992) Q-Learning. Machine Learning, 8, 279-292.
https://doi.org/10.1007/BF00992698

[22] Bradtke, S.J. and Duff, M.O. (1995) Reinforcement Learning Methods for Continu-
ous-Time Markov Decision Problems. Advances in Neural Information Processing
Systems, 7, 393-400.

[23] Jaakkola, T., Tommi Jordan, M.I. and Singh, S.P. (1994) On the Convergence of
Stochastic Iterative Dynamic Programming Algorithms. Neural Computation, 6,
1185-1201. https://doi.org/10.1162/neco.1994.6.6.1185

https://doi.org/10.1504/IJBIC.2015.073165
https://doi.org/10.1080/00207543.2016.1218087
https://doi.org/10.1007/978-1-4614-6940-7_4
https://doi.org/10.1016/j.eswa.2010.08.145
https://doi.org/10.1109/4235.996017
https://doi.org/10.1049/iet-gtd:20070224
https://doi.org/10.1109/etfa.2015.7301554
https://doi.org/10.1007/978-1-4615-3618-5_1
https://doi.org/10.1007/BF00992698
https://doi.org/10.1162/neco.1994.6.6.1185

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Improve the Performance of a Complex FMS with a Hybrid Machine Learning Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Problem Formulation
	2.1. Use Case 1
	2.2. Use Case 2
	2.3. Use Case 3

	3. Methodology of Control Policy for a Manufacturing System
	3.1. System Structure Analyses
	3.2. Implementation of GA
	3.2.1. Encoding
	3.2.2. Gene Length
	3.2.3. Crossover Operator
	3.2.4. Mutation Operator
	3.2.5. Selection of the Initial Parents

	4. Simulation Results
	4.1. Lessons Learned
	4.2. Implementation of the Reinforcement Learning Algorithm

	5. Further Discussion
	5.1. The Influence of Transporting Robot on the System Performance
	5.2. System Structure

	6. Conclusions
	References

