
Journal of Software Engineering and Applications, 2017, 10, 245-256
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.103014 March 8, 2017

Survey on Essential and Accidental
Real-Time Issues in Software
Engineering

Furrakh Shahzad1, Dr. Maruf Pasha2, Dr. Urooj Pasha3, Bushra Majeed2, Khurram Shahzad2

1Department of Computer Science, Pakistan Institute of Engineering and Technology, Multan, Pakistan
2Department of Information Technology, Bahauddin Zakariya University, Multan, Pakistan
3Institute of Management Sciences, Bahauddin Zakariya University, Multan, Pakistan

Abstract
Software product lines have recently been presented as one of the best prom-
ising improvements for the efficient software development. Different research
works contribute supportive parameters and negotiations regarding the prob-
lems of producing a perfect software scheme. Traditional approaches or recy-
cling software are not effective to solve the problems concerning software
competence. Since fast developments with software engineering in the past
few years, studies show that some approaches are getting extensive attention
in both industries and universities. This method is categorized as the software
product line improvement; that supports reusing of software in big organiza-
tions. Different industries are adopting product lines to enhance efficiency
and reduce operational expenses by way of emerging product developments.
This research paper is formed to offer in-depth study regarding the software
engineering issues such as complexity, conformity, changeability, invisibility,
time constraints, budget constraints, and security. We have conducted various
research surveys by visiting different professional software development or-
ganizations and took feedback from the professional software engineers to
analyze the real-time problems that they are facing during the development
process of software systems. Survey results proved that complexity is a most
occurring issue that most software developers face while developing software
applications. Moreover, invisibility is the problem that rarely happens ac-
cording to the survey.

Keywords
Software Engineering Issues, Real-Time Software Development Problems,
Unexpected Issues of S.E

How to cite this paper: Shahzad, F., Pasha,
D.M., Pasha, D.U., Majeed, B. and Shahzad,
K. (2017) Survey on Essential and Acci-
dental Real-Time Issues in Software Engi-
neering. Journal of Software Engineering
and Applications, 10, 245-256.
https://doi.org/10.4236/jsea.2017.103014

Received: February 6, 2017
Accepted: March 5, 2017
Published: March 8, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.103014
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.103014
http://creativecommons.org/licenses/by/4.0/

F. Shahzad et al.

246

1. Introduction

Essential properties are the properties considered as the core thing: An engine,
four wheels, steering and a transmission are crucial to make a complete car.
These are core features. A car could and could not have a V6 or a V8, studded
snow wheels or racing slicks, a manual or an automatic transmission. These are
the “accidental” or non-functional properties [1]. Software engineering usually
includes the clarification and identification of system necessities, understanding
and organizing the problem world, the arrangement, and requirement of the
hardware and software machine that can guarantee the satisfaction of needs in
problem world [2]. The field of software engineering has seen an explosion in
curiosity in last few years. The industrial organizations have utilized product
lines over the persistent period to uplift their productivity and reduce the opera-
tion expenses by way of emerging several product commonalities [3].

Till 2025, ever-increasing interests will be put on the computer based software
to deliver safe, reliable and secure information technology, to offer new products
in the market. Moreover, to support the management of multi-cultural world-
wide enterprises, to allow rapid revision to change and to aid people to cope with
the complex masses of information and facts, major changes are needed to be
made in software systems. Such demands will cause major alterations in the
processes presently used to describe, design, develop, arrange, and evolve a di-
verse range of software-intensive schemes [4] [5].

Software engineering is basically an organized and systematic method of the
development, process, maintenance, and withdrawal of software. There are some
important problems that software engineering usually faces.

The Problem of Scale: An important problem in the software engineering is a
problem of scale; enlargement of large system necessitates a diverse set of ap-
proaches as compared to developing small application or system. In simple
words, the approaches used for the developing of the small applications normal-
ly do not be compatible with the large systems. Different varieties of approaches
have to be used for engineering the big software systems.

Cost, Quality, and Schedule: Cost of engineering software is basically a cost
of the set of resources used in the development process of this system. For the
software, these resources include hardware, software, the manpower, electricity
and the other provision resources. Mostly, the manpower is a predominant
component, as software engineering is mainly labor-intensive and the charge of
the computing systems is getting quite low.

The quality of software systems is also very important because users distin-
guish the same product of two different brands regarding price and quality. If
the quality of the software is low, then its market credibility will be reduced. We
can see eminence of a software product as having three scopes: Product Transi-
tion, Product Operation, and Product Revision. Scheduling of every step is very
important. Without proper scheduling of all phases of software development,
software cannot be built on time having all functionalities with full accuracy.

Consistency Problem: Though low cost, high quality, great cycle time sche-

F. Shahzad et al.

247

duling are the main points of any scheme, for organization, consistency is also
very demanding. An organization simply does not just need high quality and
low-cost software, but it wants all these things consistently.

The purpose of this research work is to identify essential and accidental diffi-
culties that professional software engineers face while working. Paper also de-
scribes the level and scope of these problems. Survey also tells that about the
projection of these problems, occurring chances of such issues and efforts are
required to handle such issues.

2. Literature Review

The impression that software has to be “engineered” induces an image of care,
assurance, and rigor. In the 1980s, professional courses and university education
emerged with the “software engineering” as a crucial component of their label
and content; and these courses seemed to offer a more realistic understanding of
the computer expertise than did more traditional Information technology or
computer science courses [6]. The process of software engineering is the key to
the development of pleasing software. Its design demands development and
study of process models [7].

The software is progressively becoming the greatest success aspect for the fu-
ture products (aircraft, radios, and automobiles) and services (defense, financial
and communications,). It delivers both, competitive diversity and quick adapta-
bility to modest change [8]. Software companies habitually start with a particular
idea—and thus with a new product. With the passage of time, if the company
goes up then product matures, and organization understands that it can practice
the same idea (or little variations of it) to advance a set of the goods [9]. Some
issues that cause the failure of software projects are mention in the survey result
[10] shown in Figure 1.

Figure 1. Study by Standish group involving 350 companies from 1994/95.

F. Shahzad et al.

248

Like other engineers, a software engineer must be skillful in following points
[11]:
• Theoretical fundamentals of discipline;
• Designing methods of discipline;
• Tools and technology of discipline;
• He/she must be talented to keep his/her understanding of the current as well

as new techniques and approaches;
• Interaction with professionals;
• Understand, formalize, model and analyze the latest problems;
• Recognize a periodic problem, and reprocess or adapt acknowledged solu-

tions;
• Manage a procedure and organize the work of different persons.

Small and Medium Enterprises (SMEs) have some specific issues that are
mentioned below [12]:
• Low maturity level in IT department and software engineering;
• Management and employees are typically overwhelmed with the routine

business, leaving some space for strategic problems such as the process and
quality improvement;

• There is enormous demand for the knowledge transfer to the simple prob-
lems and “how to resolve it”;

• CEOs and management are habitually not used to co-operating with the
outsource consultants.

The world-age has been directed to the software development with new ad-
vancements. However, there is a broad range of engineers who have acquainted
the different ideas to resolve different complexities, so to develop new software
that is better in reliability and supportability. Numerous reports have conceded
that various industries and organizations have many opportunities to capitulate
enhancements on the elements relating to the consumer satisfaction, efficiency,
item quality as well as TTM (Time to market) consequences by using product
line advancement ideas. Another matter of interest is the demand imposed on
organizations to present/establish improved functionality and items quickly in
an attempt to fulfill the market needs. These objectives are exceptionally hard to
meet the capacity of making individual systems.

The arrangement of software segment is a structure of linking the concepts
involving: algorithms, information sets, invocations of the tasks and the relations
between different data sets. The central way of this idea is hypothetical in such a
manner that conjectural basic functions have a similar impact under the various
depictions. However, this research describes the points of interest and clarifica-
tions that are exceptionally precise. Testing and designing of the core structure
of software development is the most complex function. Programmer’s still expe-
rienced syntax errors; however, as a comparison with some grammatical errors
found in a maximum number of developed systems, it is not a central issue.
Another critical issue we usually face in software development is learning only
by studying at institutes vs. learning by practice at work [13] [14]. Students

F. Shahzad et al.

249

should be aware of all kind of practical work relevant to their field because they
have to use all the possible tools in future [15].

According to the industry analysts’ estimation, there are more than 225,000
software applications accessible at different marketplaces. These Applications
are available for different kinds of devices. Wasserman has already conducted a
survey for identifying the software engineering issues for the mobile applications
in 2010. An important goal of this survey was to advance a well understanding of
the engineering practices for the different mobile applications. Some important
points of this survey are following [26]:

1) Most of the mobile applications demands big and more experienced team
of developers to complete the application before time with all the required func-
tionalities;

2) There was a shrill divide between the “native” software applications, which
run completely on the mobile device, and web applications with execution on
the remote server;

3) Developers obeyed fairly well to commended sets of “best practices” but
rarely used any formal development processes;

4) Developers did slightly organized chasing of their development struggles
and collected few metrics.

Wasserman described the problems of application development in a good
manner in his survey. Different issues had been highlighted in the survey but not
described the level and chances of these problems in any scenario. In our re-
search work we have identified several software engineering issues and also hig-
hlighted the level and occurrence chances of these problems.

3. Difficulties in Software Engineering

The complexity that occurs by mistake typically refers to the matters that are
formed as result of the interaction, which may be addressed by using proper ex-
planation; for example writing the facts and rolling the assembly code or delays
in batch processing systems, etc. Alternatively, essential problems deal with
matters that are inclined by a preexisting condition that desires to be deter-
mined, but discovering best solution looks rather problematic, and a user must
employ all radical solutions by use of this program particularly.

Different studies have discussed that influences corresponding with the unin-
tentional complexity usually require some time for alterations, but many devel-
opers these days typically spend lots of time addressing substances relating to the
essential complexity [16]. Now, pay our attention to natural possessions regard-
ing the complicated matter of progressive software schemes on issues regarding
complexity, invisibility, changeability, conformity, time constraints, budget con-
straints, and security. Software engineering issues are shown in Figure 2.

Invisibility: Softwares are very invisible and cannot sometimes be visualized.
Geometric conceptions are potent implements. The framework of development
aids both, designer and client to evaluate the spaces and flow of traffic. Geome-
tric accuracy is précised in the geometric notion. The sanity of software is not

F. Shahzad et al.

250

Figure 2. Software engineering issues.

certainly embedded in the area; hence, there is not any geometric depiction pre-
pared related to how they map for the land coverage, figures for connectivity re-
presentations for the computers. The graphs frequently represent the depen-
dency patterns, a surge of control, name-space connections and data flow [17].
Moreover, charts seem to be fewer classified and of non-planar practices. A
noble way to launch projected control over the same construction is by way of
imposing link cutting approach between hierarchical graph type structures. De-
spite the development in restricting and simplifying the software structures, cer-
tainly they will hold their invisible practice; therefore some vital speculative tools
are not utilized strategically. This difficulty will not only cause to delay scheme
procedure within one’s observance, but it may also hinder the mind considera-
tions rigorously.

Complexity: Some software parts involve a high level of difficulty regarding
their scope, compared to various other developments, since all are dissimilar in
some ways. If there have resemblances between two modules, they are imitated
into an opened or closed. Also, software schemes are at change overwhelming in
contrast to automobiles, buildings, and computers since repeated components
may thrive under these situations. Digital computer projects may pose an exces-
sive complexity as compared to the certain developments. Software projects
comprise of new verdicts in contrast to the computers. In the same way, a soft-
ware product rescaling is not only a recurrence of the same essentials in in-
creased capacities; it essentially is a growth in a diversity of rehabilitated ele-
ments. Frequently, components correlate with each other in a very nonlinear

F. Shahzad et al.

251

way that causes the increase in the level of exertion in contrast to linearity. Soft-
ware product complexity is very vigorous property, rather than the accidental
occurrence.

Lots of common issues relating to the software engineering are derived from
the nonlinear scope enlargement and crucial complexity practiced during the
real-time development. Due to complexity experienced, communication prob-
lems may increase amongst different team members, which may result in the
plan delays and cost overruns. Moreover, other circumstances influenced by the
complexity include the reduced understandability, unreliability and enumeration
problems. Moreover, it will be problematic to appeal various functions, which
then makes it hard to employ the programs [8].

Changeability: As a software of a system embodies its core functionality
which needed to change with the passage of time, so as to enhance quality, relia-
bility, efficiency, etc. It is easier to upgrade a software by making substantial
changes than developing new software. Software that is efficacious involve in
improving the process, and there are essentially two various processes involved
during this kind of change. These methods are mentioned below:
• First, deals with the effectiveness and usability of software. People use appli-

cation or software systems for various causes, and certain important points
may need modifications. Lots of users may feel better with basic functionali-
ties, while others may prefer the progressive approaches to satisfy their needs.

• The second aspect relates to the software that has prospered through the life-
time of the device after its initial integration.

Conformity: Software users usually do not only experience issues concerning
complexity while developing new software. The software engineer needs to con-
trol the arbitrary difficulty, which is superior of a primary basis sustained by
systems as well as human organizations that necessitate the conformed bounda-
ries. These boundaries will vary with the passage of time, as these are human-
made creations, instead of the natural creations. In more occurrences, confor-
mation is essential to establish its competence to conform to convinced bounda-
ries, which usually does not have a streamlined state [18].

Time Constraints: Timing is a big issue that software engineers mostly face
while developing the software. Developers face lots of problems due to this issue.
They have strict time constraints and have to generate lots of functionalities.
Due to time constraints, some functional and non-functional features remain
problematic. Testing of the software is also not maturely performed due to the
short time duration [19]. Time problems sometimes occur when requirements
are not clearly described by the clients. Developers do have to develop the prod-
uct again after getting new requirements.

Budget Constraints: Budget is also a big and very common issue that soft-
ware engineers face. Proper cost estimation is also a challenging task [20] [21].
Clients want lots of functionalities in the very limited budget. Time and budget
are directly proportional to each other [22]. Short budget projects must have to
complete in a short period. If they exceed, then it considered loss for the devel-

F. Shahzad et al.

252

opers/software engineers.
Security: Security is also an important factor that the software engineers

usually face. They do have to develop more secure applications and software so
that no one can exploit their resources [23]. Due to the recent threats, developers
need to make their software fully secure in all aspects. Software safety is an idea
of developing software so that it remains to functional properly even under the
malicious attack [24] [25].

4. Survey

We have formulated various criteria based questionnaires for the evaluation of
our research and to provide an insight of what professional approaches are being
adopted by various software organizations, to see if they conform to any soft-
ware practices. We have conducted various research surveys by visiting different
professional software development teams and took feedback from the profes-
sional software engineers to analyze the real-time problems that they are facing
during the development of software applications.

We have performed the evaluation of various factors among different quality
criteria that are (Projection of software development issues during S.E, Efforts
required to handle such issues during S.E, Occurrence chances of such issues
during S.E, Effects of such issues on software quality) and depicted them in the
form of pie charts.

Projection of Software development Issues during S.E:
Analysis: Figure 3 shows the results of a survey on the projection of software

development issues during software engineering. According to the results, com-
plexity issues hold the highest value (22%) while security issues hold the least
value (10%).

Figure 3. Projection of software development issues during S.E.

12

22

1615

14

11

10

Projection of Software Development issues during S.E

Invisibility Complexity Changeability
Conformity Time Constraints Budget Constraints
security

F. Shahzad et al.

253

Efforts required while handling such Issues during S.E:
Analysis: According to the results shown in Figure 4, about 23% efforts are

required to handle the complexity and 9% efforts required to handle invisibility
issues. Complexity requires highest efforts, and invisibility requires the smallest
amount of efforts.

Occurrence chances such Issues during S.E:
Analysis: Figure 5 showed that occurrence chances of complexity based prob-

lems got the highest percentile 19% and invisibility got the least percentile 11%.

Figure 4. Efforts needed while dealing with such issues during S.E.

Figure 5. Occurrence chances of such issues during S.E.

9

23

17
13

13

13

12

Efforts required while handling such issues during S.E

Invisibility Complexity Changeability
Conformity Time Constraints Budget Constraints
security

11

19

19
15

12

12

12

Occurrence chances of such issues during S.E

Invisibility Complexity Changeability
Conformity Time Constraints Budget Constraints
security

F. Shahzad et al.

254

Figure 6. Effects of such issues on software quality.

Effects of such Issues on Software Quality:
Analysis: Results in Figure 6 showing that complexity is an issue that highly

affects the software quality during software development process. Invisibility
rarely affects the software quality according to the survey.

5. Conclusions

The main objective of this research is to see the impact of various real-time is-
sues that most software engineers face while developing the new software. The
survey is conducted by visiting different software development organizations to
see the real-time issues. The survey is done on seven issues (complexity, chan-
geability, conformity, time constraints, budget constraints, security, and invisi-
bility) to see the percentile ratio of their occurring chances, impact, effects on
software quality and efforts required to handle such issues.

Survey results showed that complexity ratio is higher in projection of S.E is-
sues, occurring chances of these issues, efforts required to handle these issue,
and effects of such issues on the software quality. In the projection of software
engineering issues, security got the smallest ratio. Invisibility got the least ratio
in efforts required to handle such issues, occurring probabilities, and effects of
such issues on software quality according to the survey.

References
[1] McConnell, S. (1999) Software Engineering Principles. IEEE Software, 16, 6-8.

https://doi.org/10.1109/MS.1999.754046

[2] Hall, J.G., Rapanotti, L. and Jackson, M. (2006) Problem Oriented Software Engi-
neering. Open University, Dept. of Computing, Milton Keynes, 10.

[3] Ash, L. (2003) The Web Testing Companion: The Insider’s Guide to Efficient and

11

18

17

13

15

13

13

Effects of such issues on Software Quality

Invisibility Complexity Changeability
Conformity Time Constraints Budget Constraints
security

https://doi.org/10.1109/MS.1999.754046

F. Shahzad et al.

255

Effective Tests. John Wiley & Sons, Hoboken.

[4] Boehm, B. (2005) The Future of Software Processes. Software Process Workshop,
Beijing, 25-27 May 2005, 10-24.

[5] Astrachan, O., Mitchener, G., Berry, G. and Cox, L. (1998) Design Patterns: An Es-
sential Component of CS Curricula. ACM SIGCSE Bulletin, 30, 153-160.
https://doi.org/10.1145/274790.273182

[6] Bryant, A. (2000) It’s Engineering Jim… but Not as We Know It: Software Engi-
neering—Solution to the Software Crisis, or Part of the Problem? Proceedings of the
22nd International Conference on Software Engineering, Limerick, 4-11 June 2000,
78-87. https://doi.org/10.1145/337180.337191

[7] Lehman, M.M. (1991) Software Engineering, the Software Process and Their Sup-
port. Software Engineering Journal, 6, 243-258.
https://doi.org/10.1049/sej.1991.0028

[8] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T. and
DeBaud, J.M. (1999) PuLSE: A Methodology to Develop Software Product Lines.
Proceedings of the 1999 Symposium on Software Reusability, Los Angeles, 21-23
May 1999, 122-131. https://doi.org/10.1145/303008.303063

[9] Knauber, P., Muthig, D., Schmid, K. and Widen, T. (2000) Applying Product Line
Concepts in Small and Medium-Sized Companies. IEEE Software, 17, 88-95.
https://doi.org/10.1109/52.877873

[10] Pfleeger, S.L. (1998). The Nature of System Change [Software]. IEEE Software, 15,
87-90. https://doi.org/10.1109/52.676964

[11] Ghezzi, C. and Mandrioli, D. (2005) The Challenges of Software Engineering Edu-
cation. International Conference on Software Engineering, St. Louis, 15-21 May
2005, 115-127.

[12] Kamsties, E., Hörmann, K. and Schlich, M. (1998) Requirements Engineering in
Small and Medium Enterprises. Requirements Engineering, 3, 84-90.
https://doi.org/10.1007/BF02919967

[13] Jazayeri, M. (2004) The Education of a Software Engineer. Proceedings of the 19th
IEEE International Conference on Automated Software Engineering, Linz, 20-25
September 2004, 18-27. https://doi.org/10.1109/ase.2004.1342718

[14] Baker, A., Navarro, E.O. and Van Der Hoek, A. (2005) An Experimental Card Game
for Teaching Software Engineering Processes. Journal of Systems and Software, 75,
3-16. https://doi.org/10.1016/j.jss.2004.02.033

[15] Dijkstra, E.W. (1989) On the Cruelty of Really Teaching Computing Science.
Communications of the ACM, 32, 1398-1404.

[16] Brooks, F. (1987) No Silver Bullet. 1-14.

[17] Stey, C., Steurer, J., Bachmann, S., Medici, T.C. and Tramer, M.R. (2000) The Effect
of Oral N-Acetylcysteine in Chronic Bronchitis: A Quantitative Systematic Review.
European Respiratory Journal, 16, 253-262.
https://doi.org/10.1034/j.1399-3003.2000.16b12.x

[18] Brownsword, L. and Clements, P. (1996) A Case Study in Successful Product Line
Development. No. CMU/SEI-96-TR-016.

[19] Dasarathy, B. (1985) Timing Constraints of Real-Time Systems: Constructs for Ex-
pressing Them, Methods of Validating Them. IEEE Transactions on Software En-
gineering, 11, 80-86. https://doi.org/10.1109/TSE.1985.231845

[20] Harman, M. (2007) The Current State and Future of Search Based Software Engi-
neering. 2007 Future of Software Engineering, Minneapolis, 23-25 May 2007, 342-

https://doi.org/10.1145/274790.273182
https://doi.org/10.1145/337180.337191
https://doi.org/10.1049/sej.1991.0028
https://doi.org/10.1145/303008.303063
https://doi.org/10.1109/52.877873
https://doi.org/10.1109/52.676964
https://doi.org/10.1007/BF02919967
https://doi.org/10.1109/ase.2004.1342718
https://doi.org/10.1016/j.jss.2004.02.033
https://doi.org/10.1034/j.1399-3003.2000.16b12.x
https://doi.org/10.1109/TSE.1985.231845

F. Shahzad et al.

256

357. https://doi.org/10.1109/fose.2007.29

[21] Kirsopp, C., Shepperd, M.J. and Hart, J. (2002) Search Heuristics, Case-Based Rea-
soning and Software Project Effort Prediction.

[22] Feng, C.W., Liu, L. and Burns, S.A. (1997) Using Genetic Algorithms to Solve Con-
struction Time-Cost Trade-Off Problems. Journal of Computing in Civil Engineer-
ing, 11, 184-189. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:3(184)

[23] Cheng, B.H. and Atlee, J.M. (2007) Research Directions in Requirements Engineer-
ing. 2007 Future of Software Engineering, Minneapolis, 23-25 May 2007, 285-303.
https://doi.org/10.1109/fose.2007.17

[24] McGraw, G. (2004) Software Security. IEEE Security & Privacy, 2, 80-83.
https://doi.org/10.1109/MSECP.2004.1281254

[25] McGraw, G. and Hoglund, G. (2004) Exploiting Software: How to Break Code. In
Invited Talk, Usenix Security Symposium, San Diego, 9-13 August 2004.

[26] Wasserman, A.I. (2010) Software Engineering Issues for Mobile Application De-
velopment. Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research, Santa Fe, 7-8 November 2010, 397-400.
https://doi.org/10.1145/1882362.1882443

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

https://doi.org/10.1109/fose.2007.29
https://doi.org/10.1061/(ASCE)0887-3801(1997)11:3(184)
https://doi.org/10.1109/fose.2007.17
https://doi.org/10.1109/MSECP.2004.1281254
https://doi.org/10.1145/1882362.1882443
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Survey on Essential and Accidental Real-Time Issues in Software Engineering
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Difficulties in Software Engineering
	4. Survey
	5. Conclusions
	References

