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Abstract 
In present paper, we confirm our previous result [5] that the Planck constant 
is adiabatic invariant of the electromagnetic field propagating on the adiabat-
ically changed Finslerian manifold. Direct calculation of the Planck constant 
from the first principles with using of the actually measured cosmological pa-

rameters, gives value ( )276 10 erg sh −= × ⋅ . We also confirm that Planck con-

stant (and hence other fundamental constants which depend on h) is varied 
on time due to changing of geometry. As an example the variation of the fine 
structure constant is calculated. Its relative variation ( ( )d da t a ) consist 

( )181.0 10 1 s−× . We show that on the Finsler manifold characterized by adia-

batically changed geometry, the classical free electromagnetic field is quan-
tized geometrically, from the properties of the manifold in such manner that 
the adiabatic invariant of field is 276 10ET h−= × = . Equations of electrody-
namics on the Finslerian manifold are obtained. It is stressed that quantiza-
tion naturally appears from these equations and is provoked by adiabatically 
changed geometry of the manifold. We consider in details two direct conse-
quences of the equations: i) cosmological redshift of photons and ii) effects of 
Aharonov-Bohm, that immediately follow from obtained equations. It is shown 
that quantization of systems consists of electromagnetic field and baryonic 
component (like atoms) is obvious and has clear explanation.  
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1. Introduction 

The problem of formulation of general theory which could naturally unify Gen-
eral Relativity (GR) and Quantum Theory (QT) is of most fundamental and ac-
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tual problem of modern physics. But to resolve this problem, we should first to 
know what the Planck constant is. This is the question which opens the door and 
allows us to find unified theory for all branches of physics. To obtain this key we 
have first to have in mind some important facts. 

1) In quantum mechanics, Planck constant always appears together with de-
rivatives in the same power. This fact clearly points out on the possible relation 
between Planck constant and geometry. 

2) Einstein [1] and later Debye [2] have shown from thermodynamical ap-
proach that electromagnetic field is quantized alone, without any assumption on 
the nature of oscillators. So this is another hint that it should be quantized from 
geometry, without axiomatic introduction of the wave function. 

3) Recently the cornerstone result was announced [3] in respect to the quan-
tization at very small scales. It was found that at the small scales a quantum sys-
tem behaves as a classical one (see paper [3] for details). This result also argues 
that QT is pure geometrical phenomenon and it disappears at small scales when 
geometry becomes to be approximately Euclidean. 

4) In 2011, Zhotikov showed [4] that quantum postulates of Bohr and quanti-
zation rules of Bohr-Sommerfeld, follow directly from the geometric structure of 
space-time. 

5) Recently, we have published the paper in which we clearly points out the 
geometrical origin of the Planck constant [5]. In this paper, we have shown that 
the Planck constant is adiabatic invariant of electromagnetic field on the adia-
batically changed Finslerian manifold. From this fact, the variation of the Planck 
constant on the time directly follows (and hence variations of fundamental con-
stants, for example variation of the fine structure constant, due to adiabatically 
changed geometry [5] [6]). 

On the one hand, we have these serious arguments for the geometric origin of 
quantization, but on the other hand, we have also serious problems with Rie-
mannian geometry. General relativity was created as theory on (pseudo-) Rie-
mannian manifold (we will use farther in this paper “Riemannian” instead of 
“pseudo-Remannian”). Such choice was not favored by some serious arguments 
but only by the fact the real geometry is curved. Metric tensor ( )g xµν  in this 
case depends only on the coordinates and this fact applies some restrictions on 
the theory, and leads to the serious problem with singularity. However, as it fol-
lows from experiments on measurement of the cosmological constant, our Uni- 
verse expands with acceleration and for this reason complete geometry of Finsler 
should be favoured. On the Finslerian manifold, the metric tensor ( ),g x xµν �  
depends not only on coordinates, but also on velocities and (as it will be shown 
in this paper) this fact allows us to introduce the cosmological constant in natu-
ral way and to calculate from geometry correct value of the Planck constant, un-
ify gravity, electrodynamics and QT. The Hubble constant, cosmological con-
stant, quantization and much more follow from the Finsler geometry in a natural 
way and we can conclude that Finsler geometry naturally complies with all ob-
servational data. 
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In this paper, we also obtain classical equations of motion for a system on the 
manyfold with adiabatically changed geometry and supplied by Finslerian me-
trical function ( ) ( ), , d dL x x g x x x xµ ν

µν=� � . We show how the Planck’s constant 
naturally appears from geometry and, within the (3 + 1) formalism, we write an 
exact relation between the Planck constant on the one hand and scalar curvature 
and cosmological constant on the other hand. 

We show how the classical electromagnetic field is naturally quantized due to 
existence of adiabatic invariant of the field on adiabatically changed Finslerian 
manifold. 

Finally, we write equations of electrodynamics, which classically (geometri-
cally) describe quantization of electromagnetic field (and hence of any electro-
magnetically interacting system). To illustrate how it works, we clearly consi-
dered two important particular cases which describe these equations: i) case of 
free electromagnetic field, when quantization appears from geometry and leads 
to losses of energy as photon propagates (so called cosmological redshift), and ii) 
the Aharonov-Bohm effects, which immediately follow from obtained electro-
dynamic equations. 

All-around in this paper we suppose that Latin indexes , , , , 1, 2,3i j k l m =  
and greek , , , 0,1, 2,3α β µ ν =� � . Signature of metric is ( )1, 1, 1, 1− − − . 

2. Adiabatic Invariant and General Formalism 

In classical physics the equations of motion follow immediately from the relation 
( ) 0mS x S= , where ( )mS x  is action of matter and 0S  is a constant or zero. By 

varying this equation we obtain usual classical Hamilton (or Lagrange-Euler) 
equations [7]. 

In the case of General Relativity we put into the right hand part of Equation 
(1) the only invariant we have in pseudo-Riemannian geometry—scalar curva-
ture   of the manifold and this way obtain the Einstein equations. 

More general case appears when we consider a manifold supplied by Finsle-
rian metric. The case of static Finslerian manifold is well studied and can be 
found for example in textbooks [8] [9] and papers [10] [11]. We should also 
mention here very interesting discussion regarding unusual properties of equa-
tions of motion on Finsler manifold suggested in [12]. Let us consider what 
happens in general case, when the right-hand term of Equation (1) contains 
some adiabatically changed parameters which characterize the Finslerian mani-
fold, i.e. when the geometry of the manifold is changed adiabatically on time. 

Let M  be an 3-dimensional, class 3C  manifold characterized by scalar 
curvature   in the point kx , where kx  is a local coordinate on an open 
subset U M⊂ . Let also suppose M  be supplied by Finsler metric ( ),L x x�  
and write a 1-parameter family of hypersurfaces on the M  defined by equation 

( ) ( )m MS x S x=                         (1) 

Here mS  stay for matter action and MS  corresponds to the 1-parameter 
family of the adiabatically changed hypersurfaces on the M . Our more general 
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case differs from that examined in [8] by the fact that now hypersurface is 
changed adiabatically. 

Our aim is to write the geodesic equations (Hamilton or Lagrange-Euler equa-
tions) for this general case. By varying (1) 

( ) ( ) ( ), d d d , dk k k k
m m k M MS x x t p x H t S x x tδ δ δ δ δ= = − = =∫ ∫ ∫� �      (2) 

we immediately obtain Hamilton-like equations 
d
d

k M
k k

p H
t x x

∂∂
= − −

∂ ∂
                        (3) 

and 

d .
d

k
M

k k

x H
t p p

∂∂
= +
∂ ∂

                        (4) 

One can see that due to expansion of the Universe (adiabatic changes of right 
hand term in (1)) there appears an additional force in the Equation (3) and an 
additional velocity in (4), which we naturally can attribute to cosmological con-
stant (acceleration) and to the Hubble constant ( v Hx= ). It actually corres-
ponds to the fact that absolutely closed systems do not exist and those additional 
terms appear due to adiabatic changes of geometry (changes of metric tensor) 
which take place because of the Universe expansion. 

Absolutely the same way we can write equations of Lagrange-Euler by varying 
(1): 

d d .
d d

m m M M
k k k kt tx x x x

∂ ∂ ∂ ∂
− = −

∂ ∂ ∂ ∂� �
                      (5) 

As one can see in right part of this equation again appear two additional terms 
due to expansion of the Universe (due to changing of geometry of the manifold, 
as the system under consideration is moving). 

3. Exact Planck’s Constant Value and Quantization of  
Electromagnetic Field 

Let us calculate value of the Planck constant from the parameters which charac-
terize the Finslerian manifold. Consider a generalized system distributed over 
volume. Let ( )pT M  and ( )pT M∗  be respectively tangent and cotangent bun-
dles on M , where ( )pp T Mα ∈  and ( )pp T Mα ∗∈  are covariant and contra-
variant components of corresponding momentum. 

We are interested here in the variation of the photon momentum due to 
adiabatic change of geometry of M . This variation can be obtained directly 
from the geometry [6], but also from Einstein’s equations. Variation of the mo-
mentum density of our system due to changes of M, in unit volume summed 
over all directions is given by expression 

3 3

2

1 .
8π 4π
c cp

G G R
δ δ δ= =                    (6) 

Here, the scalar curvature 22 R=  and R  is the radius of curvature (we 
note here that we are interested in the evolution of the electromagnetic field, 
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which is described by a tensor of rank = 2. Such tensors are known to corres-
pond to a 2D surface). In this section, and later in this article we are interested in 
the electromagnetic field, or more precisely—its variation due to the change of 
the metric. Therefore, we identify the coordinate x  with the size of the field 
resonator (a “box”). Accordingly, the value x�  will characterize the speed of 
change for this “box” due to adiabatic changes in geometry of the manifold M. 

It is well known that on the Finsler manifold the metric tensor depends on x  
and x�  for this reason the momentum ( )2 ,p g x x p pµν

µ ν= �  also depends on 
x  and x� . Let us assume that the geometry changes are adiabatic and due to 

this fact we can represent x  as 0x x tθ= + , where 0x  and θ  are constant. 
In this case we have ( ),p t xδ �  and, hence (see Equation (6)) ( ),R t xδ �  too. So 
we can write 

( ) ( ) ( )3 3

3 3

1 1, ,
2π 2π

R Hc cp R t x R t H
G G HR R

δ δ δ δ
∂ − −

= = + 
∂ 

�        (7) 

here we note that ( ) ( )0, ,R t x R t Hx=�  where H  is the Hubble constant. 
But by taking into account that (see [6]) 

22 2
R c c H
t t H tH

∂ ∂ ∂
= = −

∂ ∂ ∂
                    (8) 

one can write 

2 .
2

R R t c
H t H H
∂ ∂ ∂

= = −
∂ ∂ ∂

                     (9) 

Let us consider variation of Hubble constant. 
From the relation x Hx=�  we can find 

x x H H xδ δ δ= +�                        (10) 

or 

x H x t H xδ δ δ= −��                       (11) 

But the only cosmological acceleration we have experimentally measured is 
that, associated with the cosmological constant Λ , so we can write for this vari-
ation 

( )2 2 .H c H tδ δ= Λ −                      (12) 

Substituting these expressions into (7) we find 
3 2

2

2 2 ,
π
c H Hp t
G c

δ δ
 

= −Λ 
 

                   (13) 

or taking into account that for electromagnetic field 22 R=  and by chang-
ing volume from the spherical coordinates to the euclidean ones, we obtain 

( )
3

2

3 4 .
8π
c Hp t

G
δ δ= − Λ                     (14) 

This is a variation of momentum (in unit volume in 3 directions) due to adia-
batically changed geometry, written for our generalized system localized on the 
Finslerian manifold. 
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Now we are ready to write a complete adiabatic invariant for a free propagat-
ing electromagnetic field. The components of the 4-momentum p  of free elec-
tromagnetic field propagating on the Finslerian manifold with adiabatically 
changed geometry are varied on time. This variation proceeds adiabatically and 
can be considered as linear function i.e. for energy ε  of the field, for example, 
we have 

t
t

δε δ
ε

= −                          (15) 

so, the adiabatic invariant we are interested in is given by the expression 

2 .t t
t

δεε
δ

= −                          (16) 

But 

.kc pδε δ=                          (17) 

By substituting (14) into (16) we can write finally (we divide pδ  by factor 3 
because in the case of the electromagnetic plane wave, we are interesting only in 
one direction of the momentum) 

( )
4

2 2
02 4

8π
p c Ht ct t
t G

ε η∂
= − = − − Λ =

∂
               (18) 

so, by taking into account 22 R= , 2R c H=  (see comments made before 
and also [6]), measured values of 1 1 -18 173 kms Mpc 2.4 10  sH − − −= ⋅ = ×  and 

56 21.7 10  cm− −Λ = ×  [13] we have for this adiabatic invariant  
( )27

0 6 10 erg s.hη −= = × ⋅  for one second and in cubic centimeter, as it should 
be. In the same way we can obtain similar relations for other components of 
4-momentum: 

p xγγ γη=                          (19) 

(there is no summation over γ  in this relation and for the photon propagating 
in direction 3x  the components 1 2 0p p= = ). In the case of plane electromag- 
netic wave, introduced here 4-vector γη  has components in unit volume: 

( ),0,0, .h hγη =  
And for general case we can write 

( ), , , .h h h hγη =                        (20) 

Here the adiabatic invariant for electromagnetic field (Planck constant), 
which depends clearly on the parameters of the manifold   and Λ  (and 
consequently depends on time) is: 

( )
4

2
2 4

8π
c Hh t

G
= − − Λ                     (21) 

that gives for unit time and unit volume at present epoch ( )276 10 erg s.h −= × ⋅  
as it was mentioned above. From this relation it is easy to see that the Planck 
constant depends on time as 1h t∼ . 



A. A. Lipovka 
 

588 

3.1. Hilbert Integral 

Now let’s consider integral of Hilbert for particular case of the free electromag-
netic field propagating along geodesic on the adiabatically changed Finslerian 
manifold: 

d ,Mp q Sα
α = ∆∫                        (22) 

where pα  is 4-momentum of the field, qα  is generalized coordinate and right 
hand term MSδ , as before, corresponds to the changing of the 1-parameter 
family of hypersurfaces due to adiabatic variation of geometry as system under 
consideration is moving on M . For electromagnetic field described by Lagran-
gian 16πm F F µν

µν=  we have from (22) 

,
,

1 dm
MA x S

c A
σ

µ σ
µ ν

∂
= ∆

∂∫
                     (23) 

By taking into account that tensor of energy-momentum is 

,
,

m
mT A

A
ν ν
σ µ σ σ

µ ν

δ
∂

= −
∂


                     (24) 

we can write for propagating classical electromagnetic field 

( )1 dm MT x S
c

ν ν σ
σ σδ+ = ∆∫                     (25) 

If the field propagates in the direction 3x , than electric field 1E=E  and 
magnetic field 2H=H . So the only non-zero components of the field tensor 
Fµν  are 01 10 1F F E= − = ; 13 31 2F F H= − = −  and hence  

( )00 33 30 2 2 8T T T E H π= = = + , where for the plane wave we have  

( )0 cosE E k xαα=  and ( )0 sinH H k xαα= . 
In this case for the 00-component, for example, by taking into account (18) 

and after elementary integration we obtain 
2 2
0 0 .

8π
E H h h

T
ν

+
= =                       (26) 

Similar relations one can write for other components. 
So, as one can see the classical electromagnetic field is quantized due to adia-

batic variation of the Finslerian manifold and we do not need some artificial 
methods to quantize it. 

3.2. Variation of the Fine Structure Constant 

As it was shown before [6] even on the adiabatically changed Riemannian ma-
nifold the value of the fine structure constant is changed adiabatically on time. 
This variation appears due to a change in the metric of space, in which the atom 
is localized. In the case of Finslerian manifold this variation is smaller by factor 
2/3 due to the presence of the cosmological constant. To show this let’s start 
from (14). For one direction (divided by factor 3) we have from (14): 

( )
3

2 4 .
8π
c Hp t

G
δ δ= − Λ                     (27) 
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But the fine structure constant is V cα =  where V  is electron velocity at 
the first Bohr orbit. Momentum in this case we can write as 

21

m cP α

α
=

−
                        (28) 

so 

( )3 221

mcPδ δα
α

=
−

                      (29) 

and 

( )
( )

3 22 3

2

1
4

8π

Hc
t

mc G

α
δα δ

−
= − Λ                 (30) 

that give us value 181.03 10α α −= − ×�  (for 1 second), 22 R=  , 2R c H=  
(see [6]), 1 1 18 173 kms Mpc 2.4 10  sH − − − −= ⋅ = ×  and 56 21.7 10  cm− −Λ = × ). 

4. Electrodynamics on the Finslerian Manifold 

In Riemannian geometry, the first pair of equations of electrodynamics follows 
directly from the properties of the field tensor. 

; ; , ,F A A A Aµν ν µ µ ν ν µ µ ν= − = −                  (31) 

where 

; ,A A Aσ
µ ν µ ν µν σ= −Γ                       (32) 

And for this reason ( σ σ
µν νµΓ = Γ ) the first pair of equations on Riemannian 

manifold with constant scalar curvature is 
0F F Fσ µν µ νσ ν σµ∂ + ∂ + ∂ =                    (33) 

On the Finsler manifold, we can obtain the first pair in the same way, but in 
this case the field tensor is 

; ;F A Aµν ν µ µ ν= −�                        (34) 

where covariant differentials DAµ  include now terms with the Cartan connec-

tions 1
2

g
C

x
µν

µνσ σ

∂
=

∂�
 like this dC A xσ ν

µν σ �  and also dA xσ ν
µν σΓ . In the most im- 

portant case, we are interested in, when the scalar curvature is small and the me-
tric tensor has spatial structure described by the Robertson-Walker metric, the 
additional terms dC A xσ ν

µν σ �  and dA xσ ν
µν σΓ  in covariant derivative can be eva-

luated easily as dA x Rν
σ≈  (here 291 2 5 10R H c −= = ×  is the inverse radius 

of scalar curvature at the point of observation) so we have 

, ,F A A tµν ν µ µ ν µν= − −�                      (35) 

where our estimation for the small components consist  
29d d 10t A x R A xν ν

µν µ µ
−≈ ≈ × . 

As one can see these components probably will be significant only in the vi-
cinity of black holes and can be omitted in our present consideration. 

For this reason the first pair of the equations can be written as 
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; ; ; 0F F Fµν σ νσ µ σµ ν+ + =� � �                     (36) 

or, by taking into account our estimations discussed above, we can write 

( ), .F F F O tσ µν µ νσ ν σµ µν σ∂ + ∂ + ∂ =                 (37) 

So one can see that the first pair of electrodynamic equations remains to be 
the first pair of the Maxwell equations with high precision. 

The second pair of equations of electrodynamics follows directly from varia-
tion of functional (1) if we consider a charge characterized by 4-current jα , and 
the electromagnetic field on the Finslerian manifold: 

m MS S=                           (38) 

Here MS  as before, corresponds to the family of the hypersurfaces on the 
expanded manifold. By varying mS  we have 

( )1 1 1 d
16πmS j A F F

c c
α µν

α µνδ δ δ
Ω

 = − + Ω  ∫             (39) 

here we put Fµν  instead of Fµν
�  because, as we have seen, small additional 

terms corresponding to small components of tµν  are insignificant in the case of 
Robertson-Walker metric. Integrating the second term by parts, we obtain 

,
1 1 1 d

4πm
FS j A x

c c x

µν
µ σ

µ σνδ δ
Ω

 ∂
= − + Ω ∂ 

∫              (40) 

By varying MS  we have (see Equations (16)-(20)) 

( )2 dMS x
x

σσ

σ

η
δ δ

Ω

= Ω∫                     (41) 

where, as it was shown before, ( ), , ,h h h hση =  in unit volume (here h  is the 
Planck constant) and Ω  is a 4-volume. The equations under discussion one 
can write as follows 

( )
( )2

, 2

1 1 1 d d
4π

Fj A x x O
c c x x

µν
µ σ σσ

µ σ σν σ

η
δ δ η

Ω Ω

 ∂
+ Ω = − Ω+ ∂ 

∫ ∫      (42) 

or finally 

( )
( )2

, 2

1 1 1
4π

Fj A O
c c x x

µν
µ σ

µ σ σν σ

η
η

 ∂
+ = − + ∂ 

            (43) 

(there is no summation over σ  here). 
This is the second pair of equations of electrodynamics on the adiabatically 

changed Finslerian manifold. The bounded electromagnetic field (second term) 
in this case is explicitly included into consideration, as it takes place in the case 
of Bohmian formalism when this field appears in QT as quantum potential (see 
[14] for details and also results of paper [15]). It is easy to see that when the 
Planck constant tends to zero, the expression (43) (as it should be) is converted 
into the Maxwell equations. (Especially emphasize here that in this extreme case, 
the topology becomes simple, space is isotropic, flat and described by the Min-
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kowski geometry). Let us consider two important cases which immediately fol-
low from these equations. 

4.1. Cosmological Redshift 

It is well known that as the photon propagates through expanding universe its 
frequency (or wave length) is changed. This loss of energy by free electromag-
netic field, named as cosmological redshift, appears in our equations by natural 
way as losses of the energy by photon due to adiabatically changed geometry of 
manifold. 

( )
( )

( )2
, 2

1 1
4π 8π

F FF A O
c cx x x

µνµν
µν σ

µ σ σν σ σ

η
η

∂∂
= = − +

∂ ∂
        (44) 

(there is no summation over σ ). 
The meaning of these equations is most obvious if we put 0σ = . In this case, 

the left side will be the electromagnetic field energy loss with time, and the right 
side became 2h t —small value associated with the geometry of the universe 
(see expression (18)), i.e. 

( )
( )

4

2 2

1 4
8π 8π

F F h c H
t t G

µν
µν∂

≈ − = − Λ
∂


 

4.2. The Aharonov-Bohm Effects  

Another important case that follows directly from the second pair of equations is 
the Aharonov-Bohm effects. As it is known, a necessary condition for the exis-
tence of the Aharonov-Bohm (AB) effects is the presence, in the overall structure 
of the equations, of the “zero field” potentials which cannot be removed by 
gauge transformations and they do not create electromagnetic fields [16] [17]. 
These “zero-potentials” are the result of “non-trivial topology” of the area on 
which the particle moves [16] [18] [19]. Such a situation arises in electrodynam-
ics of anisotropic media where the structure of Maxwell’s equations eliminates 
the possibility of satisfying the boundary conditions. To satisfy regularly the 
boundary conditions in anisotropic media, usually the zero-potential is intro-
duced, which do not create electromagnetic fields (see [16] and references there- 
in). In the case of adiabatically expanding Finslerian manifold, the anisotropy of 
space occurs for any moving body automatically as right part of Equaiton (43). 
Therefore, it is safe to say that in the case of AB effects we are dealing directly 
with the anisotropy of space, which appears due to adiabatically changed Finsle-
rian manifold as the particle moves along its trajectory. In this case, the role of 
the zero potentials (which do not generate electromagnetic fields) performs va-
riable geometry of space as it follows directly from (43). 

In absence of electric and magnetic fields en route of propagation of the par-
ticle under consideration, the second term disappears (but it still take place in-
side of the solenoid and affects our particle: “In spite of the fact that the magnet-
ic field vanishes out of the solenoid, the phase shift in the wave functions is pro-
portional to the corresponding magnetic flux inside of the solenoid” [20]) and 
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we obtain (we neglect here by the small term ( )2O ση ) 

( ),2 2

1 j A
c x

µ σ
µ σ

σ

η
= −                      (45) 

but ( ), kj c Vµ ρ ρ=  (here ρ  is charge density and kV  is 3-velocity) so if we 
put eρ =  and remember that 0jµδ =  (for this reason 0A jµµ σ∂ =  and 

( ),A j A jµ µ
µ σ σ µ= ∂ ) we obtain by using the Gauss theorem 

( ) ( )
0

0 0
, .k k

k k

e eA A V
c cx x

η η
= − = −                 (48) 

These equations describe the electric and magnetic effects of Aharonov-Bohm 
(here 0x  and kx  are fixed). Namely for 0µ =  we have for the phase varia-
tion ∆Φ  

d
1sec.t

te t h hϕ ∆
= − = − ∆Φ∫                    (49) 

electric effect of Aharonov-Bohm, and when kµ =  (here 1,2,3k = ) we have 
relation 

d
1 .

k
k

l

e xA x h h
c cm

∆
= − = − ∆Φ∫                   (50) 

describes magnetic effect of Aharonov-Bohm. 
To conclude this part we would like to stress again that whereas the bounded 

field (second term in (43)) do not appears in these relations, it actually affects 
the moving particle through potentials Aµ  [20] and this bounded field corres-
ponds to quantum potential in the Bohmian formalism [14] [15]. 

5. Complete Theory  

In previous part we have obtained electrodynamic equations. They are applied in 
the case when the movement of charge (or 4-current jµ ) is defined. To con-
struct self-consistent theory we should treat jµ  as variable from the beginning. 

We consider now a charge characterized by 4-current jα , and the electro-
magnetic field on the Finslerian manifold: 

m MS S=                           (51) 

Here MS  as before corresponds to family of the hypersurfaces on the ex-
panded manifold. In complete form, when 0jµδ ≠ , we have the action 

( )1 1 1d d
16π Mmc s j A F F S

c c
α µν

α µν
Ω

 − − + Ω =  
∑∫ ∫          (52) 

which describes quantum properties of our system. It is clear there are a lot of 
different systems, particular cases and applications which can not be considered 
here because of their huge amount. For this reason let us consider here the hy-
drogen atom as an example. In order to coincide with the Schrödinger formula-
tion of quantum mechanics, we should neglect the third term in (52) which cor-
responds to quantum potential [14] [15] in Bohmian formulation, and gives the 
zero energy correction (for example in the case of harmonic oscillator it gives 
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term 1/2 in expression for energy [5] [14]). In this case by varying (52) we have 

d d M
emc s A x S
c

α
αδ δ − + = 

 ∫                   (53) 

and we can write 

( )2

d
d d .

d
u AAemc u x s x s
s c x x x
µ µ µν µ µν

µ ν µ

η
δ δ

 ∂  ∂
− − = −  

∂ ∂   
∫ ∫        (54) 

So, finally we obtain equations of motion 

( )2

d
.

d
u emc F u
s c x
µ µµν

ν
µ

η
− = −                   (55) 

By taking into account that classical period for orbital movement of electron is 

2
3π ,

2
mT e
E

=                        (56) 

in classical limit v c�  the straightforward calculations give the energy for first 
Bohr orbit, obtained from classical electrodynamic on Finslerian manifold:  

4

1 22
meE =
�

                          (57) 

that coincides with quantum calculations. Relativistic corrections are obvious 
and follow directly from (55). 

6. Conclusions 

In this paper, we confirm our previous result [5] that Planck constant is adiabat-
ic invariant of electromagnetic field propagating on the adiabatically changed 
Finslerian manifold. Direct calculation of the Planck constant value made from 
cosmological parameters gives ( )276 10 erg s.h −= × ⋅  that is in excellent agree-
ment with the measured value. We also confirm that Planck constant (and hence 
other fundamental constants which depend on h) is varied on time due to 
changing of geometry of the manifold. 

As an example we suggest a calculation of the fine structure constant varia-
tion. The obtained value consists 181.03 10α α −= − ×�  (for 1 second) and this 
variation is expected to be measured in nearest future. 

We show that on the Finslerian manifold characterized by adiabatically changed 
geometry, classical free electromagnetic field is quantized geometrically, from 
the properties of the manifold. 

Equations for electrodynamics on the Finslerian manifold are suggested. It is 
shown that quantization naturally appears from these equations and is resulted 
from adiabatically changed geometry of manifold. We consider in details two 
direct consequences of the equations—cosmological redshift of photons and ef-
fects of Aharonov-Bohm. 

Finally we show appearance of quantization for the systems consisting of elec-
tromagnetic field and charged baryonic components (like atoms and molecules). 
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