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Abstract 
Low power supply operation with leakage power reduction is the prime con-
cern in modern nano-scale CMOS memory devices. In the present scenario, 
low leakage memory architecture becomes more challenging, as it has 30% of 
the total chip power consumption. Since, the SRAM cell is low in density and 
most of memory processing data remain stable during the data holding opera-
tion, the stored memory data are more affected by the leakage phenomena in 
the circuit while the device parameters are scaled down. In this survey, origins 
of leakage currents in a short-channel device and various leakage control 
techniques for ultra-low power SRAM design are discussed. A classification of 
these approaches made based on their key design and functions, such as bias-
ing technique, power gating and multi-threshold techniques. Based on our 
survey, we summarize the merits and demerits and challenges of these tech-
niques. This comprehensive study will be helpful to extend the further re-
search for future implementations. 
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1. Introduction 

To accomplish high-density chip, ultra-low power dissipation, and high perfor-
mance, complementary metal oxide semiconductor (CMOS) devices have been 
scaled since last 30 years. As a result, the propagation delay time has been re-
duced by 30% per technology leading to the microprocessor performance being 
doubled every two years. Scaled technology has reduced the supply voltage to 
obtain low power consumption [1] [2] [3] [4]. Additionally, a scaled technology 
also has reduced device parameters such as threshold voltage, channel length 
and gate oxide thickness. However, the scaled technology has two drawbacks. 
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First, a low-VTH device has an exponential increase in sub-threshold leakage. 
Sub-threshold leakage rises by ten times for every 0.1-volt decrease of the thre-
shold voltage [5] [6] [7]. The second problem is the reduction of worst-case per-
formance due to threshold variation at lower supplies [8] [9] [10]. As technology 
scales down, leakage current in a sub-micron region becomes more significant 
and is comparable with the dynamic power dissipation. Figure 1(a) shows the 
full chip leakage power dissipation based on the international technology road-
map for semiconductor (ITRS) [11] [12]. Various components affecting the sub- 
threshold leakage, gate leakage, and junction leakage are depicted in Figure 
1(b). However, finding and modelling of the several leakage mechanisms are es-
sential for evaluation and minimization of leakage current for low power appli-
cation [13] [14].  
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Figure 1. (a) Full chip power dissipation based on ITRS. (b) Leakage currents 
components. 
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Generally, device non-conducting current ( )OFFI  depends on the supply 
voltage, threshold voltage, length of the channel, surface/channel doping profile, 
drain/source junction depth and gate oxide thickness [15]. For long channel de-
vices OFFI  mainly originates from the drain-source reverse bias junctions. 
Short-channel device needs low power supply in order to reduce power dissipa-
tion [16] [17]. Hence, the reduced threshold voltage causes exponential increase 
in OFFI  current due to the weak-inversion region [18] [19].  

A conventional 6T SRAM cell consists of two inverters connected back to 
back and two access NMOS transistors as shown in Figure 2(a). The SRAM cell 
leakage versus technology scaling is shown in Figure 2(b). It shows that the  
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Figure 2. (a) Leakage phenomena in basic SRAM cell (b) SRAM Leakage cur-
rent versus technology node [24]. 
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leakage current exponential increased with technology scaling below 90 nm. 
Sub-threshold leakage arises whenever the transistor gate voltage is zero and the 
drain-source voltage is non-zero. Hence, leakage current can arise within the bit 
cell or on the bit line access paths [20] [21]. The transistor leakage in SRAM cell 
essentially depends on 1) the data value stored in the cell, 2) the logic data level 
of the word line and 3) the type of operation being performed. Bit line leakage 
current is a very small amount as compared to total cell leakage. However, the 
bit line leakage is a very important factor, as the bit line leakage can affect the 
constancy of the memory stored in the cell [22] [23]. The total leakage current is 
given by 

( )total leak sub _ th gate junctionI I I I− = + +                 (1) 

In order to bring the classification of leakage minimization approaches, we 
analyzed based on their fundamental design and mechanism. A brief summary 
of different leakage control schemes with their merits and demerits along with 
the limitations by using these schemes is presented. This paper will be helpful for 
researches to work towards emerging power-efficient memory designs for ultra- 
low power applications. The rest of the paper is organized as follows. Section 2 
presents the origin of leakage current in a short-channel device. Various biasing 
techniques for leakage control SRAM are discussed in Section 3. Emerging pow-
er gating techniques for low power SRAM designs are presented in Section 4. 
Asymmetrical SRAM designs with multi-threshold transistor are described and 
comparisons of various low power techniques are tabulated in Section 5. Finally, 
the survey paper concludes in Section 6.  

2. Leakage Currents 

Basic leakage currents in a MOS transistor are as shown in Figure 3. Three types 
of leakage currents are presented when the device channel is in a non-conduct- 
ing state, which are sub-threshold leakage current ( )Sub _ thI , gate-induced drain 
leakage ( )GIDLI  and punch-through leakage ( )PunchI  [25]. Two other leakage 
currents that are independent of the conduction of the device are gate tunneling 
current ( )tunnelI  and pn junction reverse bias leakage ( )junctionI  due to a band 
to band tunneling effect [26] [27].  
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Figure 3. Leakage currents in a MOSFET. 
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2.1. Sub-Threshold or Weak Inversion Current 

Sub-threshold or weak inversion current is present between the source and the 
drain terminals of the MOSFET transistor when the gate voltage is less than the 
threshold voltage of the device ( )GS THV V< . Weak inversion region has small 
minority carrier concentration and it varies along with the length of the channel. 
The drift current dominates in the strong inversion region and the diffusion 
current dominates in weak inversion region [28] [29] [30]. Let us assume that 
the source of the NMOS is zero ( )G THV V<  and the drain to source voltage is 
greater than 1 V. In this case, weak inversion current at DSV  falls completely 
due to the existence of reverse-biased subtract-drain pn junction [10] [31]. The 
NMOS transistor Gate-source voltage versus drain current has presented in 
Figure 4, which represents the sub-threshold and junction currents when the 
threshold voltage is 0.6 V. Drain current for NMOS transistor function in 
weak-in- version region is given by 

( )
( )

onweak inversion
GS TV V

DI I e⋅=                    (2) 

where η  is sub-threshold slope coefficient; TV  is the thermal voltage equal to 
q KT ; and onI  is ( ) 2 1.8

o ox tC W L V eµ . 

2.2. Gate-Induced Drain Leakage 

Gate-induced drain leakage (GIDL) occurs due to band to band tunneling at 
gate-drain overlap region under the strong electric field. Electrical field increases 
with the decreasing the depletion layer at the surface. The GIDL is more in case 
of single-diffused drain as compared to double-diffused drain. At low subtract 
voltage the minority carrier accumulated into drain depletion region under the 
gate region that forms the path for the GIDL current [32] [33]. Further the GIDL 
current increases exponential with thinner gate oxide thickness, low-VTH and the 
higher potential difference between gate and drain [34] [35]. A simple mathe-
matical analysis is presented for the effect of gate work function in the electric  
 

 
Figure 4. Gate-source voltage vs. drain current. 
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field at the gate-drain overlap in Equation (3).  
2 2

2
Total

1DG FB S DG

OX DG

OX

V V V
T V h

E
T

ψ
γ

 −
− + 

 =                   (3) 

Based on the tunneling theory, the IGIDL current can be written as 

2 expGIDL GIDL
GIDL

BI AE
E

 −
=  

 
                    (4) 

where Sψ  is the potential drop across the silicon for BTBT; h is the parameter 
interrelated to junction depth, GIDLE  the electric field accountable for GIDL 
current; A and B are constants that aid in tunneling [36] [37].  

2.3. Punch-Through Current 

Punch-through current occurs in small-geometry MOS transistors due to the 
nearness of the source and drain depletion regions as there junctions spread into 
the short-channel (i.e., when dS dDx x L+ = ). Since the short-channel doping 
concentration remains constant as a result the boundaries between the depletion 
regions are reduced [38] [39]. In submicron technology, the surface region was 
highly doped as compared to the substrate and the depletion region extended 
towards the substrate which rises the punch-through current below the surface 
[40] [41]. Punch-through current can be reduced with higher substrate doping, 
small oxides, modest junctions and preferably with long channels.  

In short-channel devices, the potential barrier is governed by both the 
drain-to-source voltage VDS and the gate-to-source voltage VGS. When the drain 
voltage is increased, it decreases the potential barrier in the short channel, lead-
ing to drain-induced barrier lowering (DIBL). Carriers are injected into the 
channel surface from the source region independent of the gate voltage [42]. The 
drain and source junction widths are expressed as 

( )2 Si
dD DS si SB

A

x V V
qN
ε 

= +∅ + 
 

                   (5) 

( )2 Si
ds si DB

A

x V
qN
ε 

= ∅ + 
 

                     (6) 

The sub-threshold surface diffusion current ( )SdifI  for short channel at its  

saturation level 
4 0.1ds

kTV V
q

 
> ≈ 

 
 can be expressed as [43].  

( )2
Sdif eff

sq kT
i eI Dn L∆∅∝                      (7) 

( ),s so gs bs dsV V m V∆∅ = ∆∅ +                    (8) 

where D is the surface diffusion constant of minority carriers; in  is the intrin-
sic carrier concentration; so∆∅  is the surface-band-bending (a function of 

,gs bsV V ) and m is a dimensionless constant. 
Two other leakage currents that are independent of the conduction of the de-
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vice are gate tunneling current and pn junction reverse bias leakage due to a 
band to band tunneling effect (IBTBT) [26] [27]. 

2.4. Gate Tunneling Current 

Gate tunneling current occurs due to the high electric field formed across the 
small gate oxide layer. Gate tunneling current depends on the device structure 
and biasing conditions. At high electric field, tunneling of electrons take place 
from gate to bulk and also from bulk to gate region through the gate oxide layer 
(i.e the quantum-mechanical wave function of a charged carrier [44]). Highly 
charged electrons can easily enter into or through the oxide layer due to small 
width of potential barrier. It increases the gate current [45] [46]. On the other 
hand, if the gate voltage is less than zero ( )0Vg <  the charged electrons in n + 
poly-silicon can easily tunnel into or through the gate oxide and form a gate 
current. Gate tunneling current depends on the device structure and biasing 
conditions. Gate tunneling current in a scaled device contains a gate-to-channel 
current ( )gcI  and edge direct tunneling currents ( )gsoI  and ( )gdoI  [47] [48].  

g gc gso gdoI I I I= + +                          (9) 

Gate tunneling current is divided into mainly two types, Flowler-Nord-heim 
(FN) tunneling and direct tunneling. In FN tunneling mechanism, electrons 
tunnel straight into the conduction band through the forbidden band gap of the 
oxide layer [49] [50]. The direct tunneling current form between the source- 
drain extension and the gate overlap. Direct tunneling occurs mainly due to the 
electrons and holes tunneling, the electron tunnel from the conduction band and 
the valence band while the holes tunnel from valence band. It is more sensitive 
to the gate oxide thickness [51]. The FN current expression represents the 
tunneling through the triangular potential barrier and is valid for ox oxV > ∅ , 
where oxV  denotes the voltage drop across the oxide. The current density of FN 
tunneling is expressed as 

3 2 3 2

2
4 2exp

316π
ox ox

FN
oxox

q E mJ
hqEh

 ∅
= −  ∅  

                 (10) 

where oxE  is electric field across the gate oxide; ox∅  is the potential barrier 
height for electrons and m is the mass of an electron in the conduction band [52] 
[53]. 

2.5. Junction Leakage 

Generally, body-to-drain and body-to-source junction are in reverse bias, which 
produces a pn junction reverse bias leakage current. In small-geometry devices, 
highly doped p and n regions cause a band-to-band tunneling (BTBT) leakage. 
The pn junction reverse bias leakage current primarily originates from minority 
carrier diffusion and drift current near the depletion region. Secondly, in reverse 
biased pn junction, the depletion region generates electron-hole pair. The re-
verse bias pn junction leakage current is mainly dependent on the doping con-
centration and depletion junction area [54] [55]. The BTBT current density is 
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given by 
3 2

app
1 2 exp g

B B
g

EV E
J A B

EE−

 
= −  

 
                    (11) 

where m is the mass of an electron; gE  is the energy-band gap; appV  is the ap-
plied reverse bias; E is the electric field at the junction; q is the electronic charge; 
and h is 1 2π  times Planck’s constant. 

3. Biasing Techniques 

Generally the body terminal of the transistors is connected to the supply voltage 
(VDD in the case of PMOS and GND in the case of NMOS) in order to control a 
threshold voltage. In the case of reverse body bias (RBB), the body voltage of 
PMOS is greater than the VDD and the body voltage of NMOS is less than VGND. 
This results in an increase in depletion layer width. The higher gate voltage is 
required to create an inversion layer by increasing the threshold voltage [56] 
[57] [58]. Similarly, in forward body bias (FBB) the body voltage of PMOS is less 
than the VDD and the body voltage of NMOS is greater than VGND. As a result, the 
depletion layer width is reduced. The smaller gate voltage creates the inversion 
layer thereby decreasing threshold voltage. Consequently FBB has fast transition 
[59] [60]. Analysis of NMOS body bias versus threshold voltage and leakage 
current is as shown in Figure 5(a) and Figure 5(b). PMOS body bias versus 
threshold voltage and leakage current is as shown in Figure 5(c) and Figure 
5(d). These analysis shows that the FBB has lower-VTH, it increase the leakage 
current exponential and RBB has higher-VTH, it reduce the leakage current. Var-
ious biasing ideas to design high-VTH PMOS and NMOS transistors given in Ta-
ble 1 and the arrows represent the sub-threshold current. In bulk MOSFETs, the 
threshold voltage (VTH) is given by  

( )0 2 2TH TH b BS bV V Vγ= + ∅ − − ∅               (12) 

2ox
si A

ox

t q Nγ ε
ε

⋅= ⋅                      (13) 

ln A
b

i

NkT
q N

 
∅ =  

 
                      (14) 

where VTH0 is the threshold voltage of the device without body bias; γ is the coef-
ficient of body effect; oxt  is the gate oxide thickness; oxε  is the dielectric con-
stant of the silicon dioxide; siε  is the permittivity of silicon; b∅  is the device 
surface potential on strong inversion; NA is the doping concentration density of 
the body; Ni is the carrier concentration in intrinsic silicon; k is Boltzmann’s 
constant; q is the electric charge and T is the absolute temperature. 

3.1. Reverse Body Bias (RBB) 

Since the mid-1970s, RBB has been widely used in memory cells, in order to re-
duce the latch-up problem and memory data damage [62] [63]. RBB reduces the  
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Figure 5. NMOS body voltage versus (a) Threshold voltage (b) Leakage 
current. PMOS body voltage versus (c) Threshold voltage (d) Leakage 
current. 
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Table 1. Biasing methods for high-VTH PMOS and NMOS [61]. 
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sub-threshold leakage while increasing the body voltage. Hence, an optimized 
RBB reduces the total leakage current. However, the junction leakage is influ-
enced by substrate BTBT rather than the surface BTBT which is also called GIDL 
[64]. Novel techniques are required to reduce the substrate BTBT leakage in or-
der to use the advantage of RBB. Furthermore, RBB is ineffective for leakage 
control in short channel devices and also for low-VTH devices functions at high/ 
room temperature [65] [66]. 

3.2. Forward Body Bias (FBB) 

Reverse body bias has larger drain-substrate depletion layer to minimizes the 
short channel effects. However, threshold variation occurs across a die due to 
larger depletion layer. Moreover, the short channel devices have lower body 
coefficient ( )γ , and the channel potential is more affected by drain than by the 
body due to the DIBL. The short channel effect and DIBL are more sensitive to 
the low-VTH transistors [67]. Hence the range of body biasing is motivated from 
RBB to FBB. FBB reduces the threshold voltage of high-VTH devices and im-
proves the circuit performance due to smaller switching capacitance. The FBB 
devices form larger junction capacitance due to reduced depletion width across 
the source and drain region [68] [69].  
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However, FBB increases the leakage current due to a source to a body junction 
is in forward bias. At lower-VTH, the short circuit current is increase due to larg-
er junction and gate capacitance. Hence, for optimized design operation at a 
maximum temperature of 110˚C, the desired forward body voltage is 450 mV, 
with a tolerance of ±50 mV [70]. 

3.3. Dual-VTH Technology 

Further improvements in short channel and DIBL can be achieved through 
dual-VTH technology. A dual-VTH device switches between low-VTH and 
high-VTH. The low-VTH device can be formed by applying FBB and high-VTH de-
vice with zero body steps. The complexity associated with a dual-VTH process is 
reduced because it has a critical fabrication masking process. Need for additional 
device fabrication with various threshold voltages are eliminated [71]. 

3.4. VTCMOS Technique 

In variable threshold CMOS (VTCMOS), a threshold voltage is controlled by the 
body biasing technique. Different threshold voltages can be achieved by using a 
self-body biasing transistor (SBT). In active mode, nearly zero body bias is used 
to achieve high speed. In standby mode, RBB is used to raise threshold voltage, 
thus minimizes the leakage current. Moreover, in active mode, a little FBB is ap-
plied to increase the performance speed while minimizing the short-channel ef-
fect. In VTCMOS, additional circuitry is required for body biasing which in-
creases chip area [72] [73].  

3.5. Clamping Diode  

Lijun Zhang et al. proposed a source biasing technique to reduce leakage cur-
rents in SRAM cell, as shown in Figure 6. High threshold NMOS transistor M7  
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Figure 6. Clamping diode SRAM cell design. 
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is connected between SRAM source line (VSL) and ground terminals. In active 
mode, M7 will turn on when gate voltage is high and its resistance is small, VSL is 
equal to the ground and SRAM cell functions in the traditional manner. In 
standby mode, M7 is turned off, the source voltage VSL increases which reduces 
the gate and sub-threshold leakage currents. The problem of floating voltage can 
be resolved by a clamping diode (PMOS transistor gate connected to its drain 
terminal) which is placed in parallel with the M7 [74]. 

3.6. Stacking Technique 

The NMOS stacking transistors are realized with 16 nm, node voltage and lea-
kage current as shown in Figure 7(a) and Figure 7(b). The stacking transistors 
provide the self-reverse biasing effect:  
• Drain-to-source voltage decreases, leading to reduced DIBL current and the 

sub-threshold leakage current.  
• Gate-to-source voltage is less than zero, thus decreasing sub-threshold cur-

rent exponentially. 
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Figure 7. (a) Stacked transistor (b) leakage current curve. 
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• Substrate-to-source voltage is negative, thus increasing the threshold voltage 
due to body effect, resulting in a decrease in sub-threshold current. 

N. K. Shukla et al. proposed a novel P4-SRAM cell consisting of a stacked 
transistor as shown in Figure 8. When the word line is low, the cell functions as 
conventional 6T SRAM cell. When the word line is high, transistor P3 andP4will 
turn off as a result, the self-reverse biasing (SRB) of series connected transistors 
will reduce the sub-threshold and gate leakage currents [75] [76].  

4. Power Gating Techniques 

Another efficient leakage reduction technique generally used in industry is pow-
er gating. In power gating scheme, the leakage currents are almost minimized by 
introducing the external header and footer transistors. These transistors elimi-
nate the path exiting between VDD to ground when the devices are in quiescent 
mode [77] [78]. 

4.1. Power Gating Scheme with a Sleep Transistor 

To reduce the leakage mechanism in SRAM cell, M. Powell et al. proposed a 
power gating scheme with a sleep transistor connected in the ground path called 
Gated-VDD, as shown in Figure 9. This design basic principle is to introduce an 
additional NMOS transistor in the leakage current path present in between the 
power supply to a ground [79] [80]. The additional transistor is fundamentally 
“gating” the cell’s power supply by “switch on” in the active mode and “switch 
off” in an idle mode. Gated-VDD scheme significantly reduces the leakage current 
by maintaining the performance compensation of low power supply and thre-
shold voltage [81] [82].  
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Figure 8. P4-SRAM cell design. 
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Figure 9. Gated-VDD power gating scheme. 

4.2. Data Retention Gated-Ground (DRG) 

The drawback of the SRAM cell with power gating scheme is the determination 
of the stored data and the ground gated transistor increases the pull-down (PD) 
path resistance. To resolve this problem Amit Agarwal et al. proposed a data re-
tention gated-ground (DRG) SRAM cell design to achieve low leakage power, as 
shown in Figure 10. The ground gated transistor is controlled by the external 
signal which is connected to the word-line. The leakage current significantly re-
duced through fundamentally “gating” the cell’s power supply by “switch on” in 
the active mode and “switch off” in an idle mode [83].  

4.3. N-Control SRAM Cell with Gated-VDD 

Praveen Elakkumanan et al. proposed an N-control SRAM cell with gated-VDD 
and dual threshold voltage to achieve more reduction in leakage power dissipa-
tion, as shown in Figure 11. The SRAM cell is designed with low threshold tran-
sistor to attain high speed. Additional sleep transistors are designed with high- 
VTH transistor to minimize leakage power, high-VTH transistor are show with 
doted circles [84].  

4.4. Diode-Connected PMOS Bias Transistor 

Ankur Goel et al. proposed a power gating scheme along with post-silicon trim 
of the SRAM cell, as shown in Figure 12(a). This technique provides many ways 
to trim the source voltage across SRAM cell ranging from 50 to 150 mV. Sec-
tor-based power gating has been presented which allows the leakage current re-
duction while SRAM is in active mode [85]. The PMOS transistor acts as a diode 
by connecting the source and gate terminal together. This process is termed as 
the self-biasing technique and it controls the virtual ground [86]. 

However, the self-biasing technique used in nanometre technology suffers 
from three problems. First, an additional self-biasing transistor (SBT) requires  
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Figure 10. DRG SRAM cell design. 

 

WL

VDD
BL BLB

P1P2

N1N2

N3N4

WL

N5 N6
WL

V> GND

WLB

 
Figure 11. NC-SRAM cell design. 
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Figure 12. The SRAM cell with (a) diode-connected PMOS bias transistor (b) program-
mable bias transistor (c) active feedback with Op-Amp-based control. 



P. Bikki, P. Karuppanan 
 

38 

extra area which is around 5%. Second, these schemes fail to carry out the cor-
rect mechanism for the modified source voltage. Third, increasing the virtual 
ground voltage has serious consequences such as negative bias temperature in-
stability (NBTI)/positive bias temperature instability (PBTI) [87] [88] [89]. 

4.5. Programmable Bias Transistor 

Kevin Zhang et al. proposed a programmable bias transistor (PBT) to control the 
SRAM virtual ground in standby mode, as shown in Figure 12(b). PBT design is 
more effective in solving the post-silicon trimming issues and it has good control 
in a virtual ground. PBT provides two main advantages. First, the transistor bi-
asing settings (virtual ground voltage) can be adjusted to achieve maximum lea-
kage current reduction. Second, various biasing settings can be randomly chosen 
at various power supplies to provide an effective design under dissimilar voltage 
environments. However, they have some issues regarding the die-to-die (D2D), 
within die (WID) and induced temperature variations [90].  

4.6. Active Feedback with Op-Amp-Based Control 

To overcome the variations in a die, another efficient technique has been pro-
posed with an active feedback op-amp, as shown in Figure 12(c). A sleep tran-
sistor with active feedback op-amp bias reduces the standby power of the last 
level caches (LLCs) under all circumstances throughout the lifespan of the pro-
cessor [91]. The main disadvantage of this technique is the DC power consumed 
by the op-amp that needs to be replicated along with each data. Further, this 
technique increases the SRAM cell area and it is noticeable in CMOS nanometre 
technology.  

4.7. Diode and on Transistor Interchangeable Technique 

Suhwan Kim et al. proposed a novel design which consists of “on transistor” and 
“power gating diode”. This design is termed as “diode and on transistor inter-
changeable technique”. This technique functions in two modes, light sleep mode 
and shutdown mode. In light sleep mode SRAM cell, data will be retained and 
voltage around SRAM memory must be greater than the minimum data reten-
tion voltage. It is also referred to as leakage saving mode which is shown in Fig-
ure 13(a). In shutdown mode, SRAM memory data need not necessarily be re-
called and the virtual ground level will be raised to attain enhanced leakage 
power saving. The shutdown mode design is as shown in Figure 13(b), which 
has modified control logic transistor. The modified design can be operated in 
both light sleep and shutdown modes [92]. 

5. Multi-Threshold Design 

Generally, SRAM cell contains six transistors with symmetrical configuration 
and normally they maintain same threshold voltage. MTCMOS is one of the 
prominent topologies to minimize the leakage power [93] [94]. By using an ap-
propriate multi-threshold transistor result in a low leakage SRAM cell without  
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Figure 13. (a) Light sleep mode (b) Shutdown mode. 
 
degrading the read/write performance. A suitable solution for having the low 
power SRAM cell with high performance and constancy is to implement asym-
metrical designs [95] [96].  

5.1. Asymmetrical Design 

Asymmetrical cells can be designed in two different methods. The first approach 
is to have all original 6T-cell with different threshold voltages for selected tran-
sistors. The second approach is to add an extra transistor to the traditional 6T- 
cell. Asymmetrical SRAM cells designs are mainly based on the state of the cell, 
choose a state “0” or “1” and change the necessary transistor with high-VTH tran-
sistors in order to minimize the leakage current. N. Azizi et al. proposed several 
designs of asymmetrical SRAM cells, with main focus on state “0”, as it plays 
important role in storing the data. These architectures reduce the leakage cur-
rent in the “0” state and probably they do not affect the “1” state.  

5.2. Basic Asymmetric (BA) 

The first design is named as Basic Asymmetric (BA) as shown in Figure 14(a). 
In this design N1, N4, and P2 transistors are replaced with high-VTH transistors, 
which is shown in doted circles. This SRAM cell reduces leakage power by 70X 
when the cell stores “0” and maintains the same leakage in case “1” is stored. 
However, the read access time is reduced (the bit-line discharge time is increased 
w.r.t traditional cell) due to high-VTH transistors (N1 and N4). P1 and P2 tran-
sistor do not affect the read access time since the bit lines are discharged through 
two NMOS transistors. 

An asymmetrical SRAM cell transistor P1 is modified with high-VTH as shown 
in Figure 14(b). This design reduces the leakage current by 1.6X when the cell 
stored data is “1” as compared to traditional design and the BA design. It reduc-
es the leakage power reduction by 70X when the cell stores data “0”. As another 
modification, transistor N2 is designed with high-VTH, as shown in Figure 14(c).  
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Figure 14. SRAM cell designs (a) Basic asymmetric (b) P1 is modified (c) Another mod-
ification (d) Special precharge. 
 
Asymmetric cells have different discharge timings for bit-line and bit-line-bar. 
In this case, sense amplifier should match the read access time of slow side to the 
fast access side. This design further minimizes the leakage power by 7X when 
cell stored data “1”. To reduce the read access time delay, an asymmetrical 
SRAM cell needs to be modified. 

The special precharge SRAM cell is as shown in Figure 14(d), where only P1, 
N2 transistors are replaced with high-VTH and the remaining with low-VTH tran-
sistors. Initially bit-line is precharge to VDD but in steady state bit-line needs to 
be kept at ground. This design attains leakage reduction 83X when the cell is 
stores data “0” and no reduction in leakage when cell stored data “1”. The 
bit-line times decreased by 12X as compared to traditional cell [97] [98].  

5.3. Effect of MTCMOS on RBL Sensing 

A T Do et al. have proposed a decoupled 8T SRAM cell to achieve larger bit-line 
data sensing margin which is used in ultra-low power SRAM cells due to en-
hanced stability. The read word line performs the read operation by enabling N7 
and the read bit lines are conditionally discharged according to the SRAM cell 
data. However, due to aggressive scaling of device parameters, the read bit-line 
leakage current increase which is almost comparable with the SRAM cell read 
current. The read bit-line data discharging depends on the cell read access cur-
rent and read bit-line leakage current [99] [100]. In order to overcome these li-
mitations, a leakage control bit-line scheme was proposed in read access path 
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with a high-VTH and low-VTH transistors which are shown in Figure 15. In the 
super-threshold region, high-VTH transistors design achieves good Ion and Ioff 
current ratio. Low-VTH transistor design had larger read bit-line swing along 
with smaller read bit-line data sensing margin due to sub-threshold leakage cur-
rent [101] [102].  

5.4. Bit Line Boosting Current Scheme 

Bo Wang et al. proposed a 9T-MTCMOS SRAM cell, which consists of addition-
al 3T read access bit-line, as shown in Figure 16(a). This design reduces the lea-
kage current while increasing read bit-line sensing margin. A 9T SRAM cell con-
sists of a basic 6T cell and the read access port contains 3T NMOS. All transis-
tors in 6T-SRAM cell are designed with high-VTH, which are shown in thick lines 
and the read access bit-line 3T NMOS are designed with low-VTH to achieve very 
high performance through improved bit-line sensing margin. However, the cell 
bit line leakage is more than the cell read access current at higher temperatures 
[103] [104]. 

A. Teman et al. have proposed a 9T SRAM cell with a unique structure of 
supply feedback methodology for low voltage operation. In this 9T SRAM design, 
the supply voltage feedback transistor gate terminal is connected to the latch 
output to weaken the pull-up network of SRAM cell in a write operation, as 
shown in a Figure 16(b). The main advantage of this feedback is to maintaining  
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improved write margins and functionality, even though the PMOS transistors 
are stronger than the NMOS transistors [105] [106]. 

6. Conclusion 

In this paper, the origin of leakage currents in a short-channel device has been 
discussed when a device is in conduction and non-conduction state. The various 
leakage control techniques proposed for low power SRAM cell architecture are 
presented. Classification of leakage minimization approaches analyzed based on 
their fundamental design and mechanism, such as biasing techniques, power 
gating techniques and multi-threshold techniques. The biasing techniques focus 
on changing the threshold voltage in order to control sub-threshold leakages. 
RBB design has reduced the leakage but it has consequences in terms of perfor-
mance. Optimized FBB design can help to achieve high performance with low 
power dissipation. The key emphasis of power gating technique is on leakage 
path that exists in the circuit. Extra circuitry is added to create the virtual 
ground in leakage path to control the leakage currents. The multi-threshold de-
sign has the concept of asymmetrical design with a high-VTH transistor in lea-
kage path and a low-VTH transistor for fast access. All these techniques have  
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Table 2. Comparison of various low power techniques. 

Technique 
No. of 
MOS’s 

Merits Demerits Limitations 

Biasing techniques 

Reverse body biasing 
[57] [58] [63] [65] [107] [108] 

6T ISub-th ↓↓ 
IJunction↑, Large transition 

delay 
Sensitive to VTH variation & 

GIDL 

Forward body bias,  
[59] [60] [68] [69] [70] 

6T 
Small switching capacitance, 

speed ↑ 
Process complexity,  

Area overhead 
Sensitive to SCE & DIBL 

Source-biasing  
[61] [109] [110] 

6T ISub-th, IGate ↓↓ Delay penalty (τPD ↑) 
Impact on soft error rate 

(SER) 

Dual-VTH [71] 6T 
Improved short-channel, 

DIBL 
Switching Need of FBB 

VTCMOS [72] [73] 6T Low leakage, high speed 
Additional circuitry need to 

control the threshold 
Need to control the  

body bias 

Clamping diode [74] 8T ISub-th, IGate ↓ Delay penalty (τPD ↑) Floating voltage at VSL 

Stacking body biasing (SRB) 
[75] 

8T ISub-th, IGate ↓ 
Delay increase,  
Area overhead 

VTH ↑ due to body effect 

Power gating techniques 

Ground gated, sleep transistor 
[79] [80] [82] 

8T ISub-th, IGate ↓ 
virtual ground ↑↑, PD path 

resistance ↑ 

process-induced Vt  
variation, data  

retention problem 

Data retention gated-ground 
[83] 

7T data retention, low leakage Delay penalty 
Need of External  

control signal 

N-control with gated-VDD 
[84] 

8T leakage power, high speed Dual-threshold 
Need to control virtual 

ground 

Diode-connected [85] [88] 8T ISub-th, IGate ↓ 
SNM ↓, sensitive to 

NBTI/PBTI 
Data recalled, need of SBT 

programmable bias transistor 
[90] 

8T 
Good control in virtual 

ground, 
die-to-die, within die  

temperature variations 
Need of PBT 

Active feedback op-amp [91] 
7T+ 

op-amp 
Standby power ↓, die-to-die 

leakage ↓ 
DC power consumed  
by the op-amp, area 

Need of op-amp 

Light sleep mode [92] 9T 
Low leakage power,  

data retained 
performance  

degradation, area 
Memory voltage > min. data 

retention voltage 

Shutdown mode design [92] 11T Low leakage power 
Increased virtual  

ground, area 
Need more no. of control 

inputs 

Multi-threshold design 

Basic Asymmetric [97] [98] 6T reduces leakage power by 70x bit-line discharge time ↑ Need of high-VTH 

High-VTH on RBL Sensing 
[100] 

8T good Ion and Ioff current ratios Read access time ↑ 
Small prominent in near and 

sub-threshold region 

Low-VTHon RBL Sensing  
[100] [102] 

8T larger read bit-line swing Isub-th ↑ 
smaller read bit-line data 

sensing margin 

Bit-line boosting [103] [104] 9T 
low leakage, read bit-line 

sensing margin ↑ 
Data dependent bit  

line- leakage ↑ 
Data effected due to  

Temperature variations 

Supply Feedback approach 
[105] [106] 

9T 
Improved write margin & 

functionality 
Performance degradation 

Need to maintain a  
reasonable SNM. 
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the single objective of reducing the leakage in the nano-scale era. Most of these 
techniques focused on the sub-threshold leakage minimization. However, some 
of the techniques emphasize on retaining the data during the standby mode. A 
brief summary of different leakage control schemes with their merits and deme-
rits along with the limitations by using these schemes is presented in Table 2. 
The low power SRAM cell designs presented in this paper will be helpful for re-
searches to work towards emerging power-efficient memory designs for ultra- 
low power applications. We presented only three main techniques for a basic 
SRAM cell. Simulation analysis has been shown for basic leakage currents in a 
device; these are the limitations of this paper. 
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Abbreviations 

BTBT   Band-to-band tunneling 
BL   Bit line 
BLB   Bit line bar 
CMOS   Complementary metal oxide semiconductor 
DIBL   Drain-induced barrier lowering 
DRG   Data retention gated-ground 
D2D   Die to die 
FBB   Forward body biasing 
GIDL   Gate-induced drain leakage 
IBTBT   Band to band tunneling effect 

gcI    Gate-to-channel current 
IGIDL   Gate-induced drain leakage 
IPunch  Punch-through leakage 
ISdif   Sub-threshold surface diffusion current 
ISub-th  Sub-threshold leakage current 
Low-VTH  Low threshold voltage 

NBTI   Negative bias temperature instability 
PBTI  Positive bias temperature instability 
PBT   Programmable bias transistor 
PD   Pull-down 
RBB   Reverse body bias 
RBL   Read word line 
SBT   Self-biasing transistor 
SCE   short-channel effect 
SNM   Signal to noise margin 
SRAM   Static random access memory 
SRB   Self-reverse biasing 
VTCMOS  Variable threshold CMOS 
VSL    Virtual source line 
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