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Abstract 
Robust regression estimation deals with selecting estimators that have desira-
ble statistical properties when applied to data drawn from a wide range of dis-
tributional characteristics. Ideally, robust estimators are insensitive to small 
departures from the assumed distributions and hopefully would be unbiased 
and have variances close to estimators based on the true distribution. The ap-
proach explored in this paper is to select an estimator based on a flexible dis-
tribution which includes, for example, the normal as a limiting case. Thus, the 
corresponding estimator can accommodate normally distributed data as well 
as data having significant skewness and kurtosis. In the case when an assumed 
distribution over-parameterizes the true distribution, the variance of the esti-
mator is larger than necessary, but often the increases are modest and much 
smaller than assuming a model which does not include the true distribution. 
The selection of a flexible probability distribution can impact the efficiency 
and biasedness of the corresponding robust estimator. Knowing the relations 
among potential distributions can lead to a better estimator that improves ef-
ficiency, avoids bias, and reduces the impact of misspecification.  
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1. Introduction and Background 

The problem of selecting an appropriate probability distribution for a dataset, if 
one exists, is as old as Gauss’s development of the “normal” distribution. Many 
distributions have been developed since the normal was used to describe the dis-
tribution of a sample drawn from an unknown population. Important differenc-
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es between many distributions are the implied restrictions on the higher order 
moments, such as skewness and kurtosis.  

The modern literature of the empirical analysis of fitting alternative probabil-
ity distributions to financial data begins with Mandelbrot [1] and Fama [2] and 
continuing to this day concludes that distributions of financial asset prices or the 
corresponding rate of return (returns) data are usually asymmetric and are short 
and wide compared to the normal pdf. That is, they are skewed and leptokurtic. 
Therefore, methods that are used to estimate the relationship between assets 
prices and returns such as ordinary least squares (OLS) regression or those that 
are based on an assumed symmetric and non-leptokurtic normal pdf may gen-
erate inefficient parameter estimates when the errors are not normally distri-
buted. The inappropriate assumption of a symmetric distribution for the error 
can lead to biased estimates of the intercept if the data are skewed. There is a 
growing literature on robust estimation and outlier resistant methods that deals 
with how to address the potential inefficiency and bias problems associated with 
outliers and non-normality often found in financial data. One approach is to as-
sume a more general pdf that can accommodate asymmetry and thick tails.  

Many such pdf’s and outlier resistant methods can be nested using a family of 
flexible pdf’s whose members are obtained by imposing different restrictions on 
the distributional parameters with corresponding restrictions on the moments. 
Some of these generalized pdf’s can be visualized as being at the top of a pyramid 
of pdf’s obtained by imposing parameter restrictions which imply different restric-
tions on feasible values of skewness and kurtosis. If a model is over-parameterized 
(selecting a more general model than necessary), then the estimators will be in-
efficient. For example, if the data are normally distributed and a five-parameter 
Skewed Generalized t (SGT) distribution is fit to the data where only two para-
meters are needed to describe the data, the estimators of the SGT parameters will 
not be efficient. However, if a symmetric distribution is fit to skewed data, the 
parameter estimates and implied estimated moments will be biased. By studying 
the families of flexible distributions and their related characteristics, the re-
searcher will be better able to select a robust estimator having desirable statistical 
properties. For example, McDonald, Michelfelder, and Theodossiou [3] showed 
that if OLS or a robust estimator based on a symmetric error distribution is used 
to estimate the relationship between asset prices and returns, the estimated in-
tercept will be biased if the errors have a skewed distribution.  

This paper presents the relationships between the generalized and the re-
stricted pdf’s associated with several families of pdf’s that are more commonly 
being used in empirical finance. We also report the feasible skewness-kurtosis 
spaces of the generalized pdf’s and compare them with empirical estimates of US 
stock returns. These results add to the financial estimation literature by showing 
the nesting relationships within the flexible pdf’s and the corresponding restric-
tions on higher order moments. It also demonstrates the performance of the ge-
neralized pdf’s in fitting non-normal datasets. It is important to note that the 
feasible skewness-kurtosis space corresponding to a generalized pdf does not 
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accommodate all possible skewness-kurtosis combinations.  

2. Literature Review 

Mandlebrot [1] and Fama [2] initially found that stock returns regression resi-
duals are skewed and are fat-tail distributed. McDonald and Nelson [4] found 
that many stock risk premiums are positive or negatively skewed and most have 
thick tails. Harvey and Siddique [5], Harvey and Siddique [6], and Chan and 
Lakonishok [7] concluded that stock returns are skewed and fat-tail distributed 
and applied various robust methods to address the estimation inefficiencies.  

Chan and Lakonishok [7], Butler, McDonald, Nelson, White [8], McDonald 
and Nelson [4] discuss specifically the inefficiency in estimating the CAPM beta 
with OLS.  

There are many robust estimation methods, some that are outlier adjustment 
methods, others are based on alternative specifications of pdf’s and some that are 
both, such as least absolute errors (using the Laplace pdf) rather than least 
squares for regression estimation. This investigation focuses on those methods 
that use alternative pdf’s that can accommodate varying levels of skewness and 
kurtosis and that nest more restrictive pdf’s. 

Boyer, McDonald, and Newey [9] bifurcate robust estimation into reweighted 
least squares or least median squares, and partially adaptive estimators. The ro-
bust or partially adaptive estimators considered in this paper can be viewed as 
quasi-maximum likelihood estimators. They maximize a likelihood function 
corresponding to an approximating error distribution to yield estimated regres-
sion and distributional parameters. The least squares methods address only the 
choice of regression parameters. Boyer, McDonald, and Newey [9] use simula-
tions to compare the efficiency of generalized pdf’s and least squares methods. 
Using one of the generalized pdf’s, they concluded that generalized pdf’s pro-
duced more efficient estimators than outlier adjustment methods that cannot 
change pdf parameters when regression errors have skewness or kurtosis. 
Therefore, among the myriad of robust estimation methods, this paper focuses 
on the use of generalized pdf’s.  

The generalized probability distribution families considered in this investiga-
tion can accommodate a wide range of data characteristics. These generalized 
probability distribution families are the generalized beta and exponential genera-
lized beta and variants from McDonald and Xu [10], the skewed generalized T 
from Theodossiou [11], the inverse hyperbolic sine from Johnson [12] and the 
g-and-h from Tukey [13] and Dutta and Babel [14]. Some of these distributions 
have been used in Hansen, McDonald, and Theodossiou [15] to model various 
skewed and fat-tail distributed financial time series data in GARCH specifica-
tions. The skewed generalized T pdf is starting to be used more frequently and 
recently has been as added to the Stata© econometric software package for re-
gression. The SGT was used by Hansen, McDonald, Theodossiou, and Larsen 
[16] to show the differences in regression results for a model of real estate prices 
with data and errors that are positively skewed and fat tail distributed. It clearly 
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shows the improvement in variance of the estimates.  
Mauler and McDonald [17] apply the generalized beta of the second kind, the 

inverse hyperbolic sine, the g-and-h, and others to generalize the Black-Scholes 
option pricing model to explore potential improvements relative to the original 
log-normal specification of the options model. All alternative flexible pdf’s con-
sidered generated improvements in the accuracy of options price estimates rela-
tive to the log-normal pdf. 

Kerman and McDonald [18] [19] derive feasible skewness-kurtosis spaces for 
variants of pdf’s within the exponential generalized beta and the skewed genera-
lized T families. Kerman and McDonald [19] find that the skewed generalized T 
and its nested skewed generalized error pdf’s have the most flexibility of many 
pdf’s that they modeled. McDonald, Sorenson, and Turley [20] obtain expres-
sions defining the skewness-kurtosis spaces corresponding to the generalized 
beta of the second kind.  

Theodossiou [21] derives the skewed generalized error distribution nested 
within the skewed generalized T family and applies it to various asset pricing 
models estimations and derivations. Theodossiou and Savva [22] use robust es-
timation (partially adaptive estimators) based on the skewed generalized T, 
which accommodates negatively skewed asset returns, to address empirical in-
consistencies in the finance literature on the risk-return relation. Next, the fami-
lies of the generalized pdf’s are discussed. 

3. Families of Generalized Probability Distributions for 
Financial Modeling 

We present the following generalized pdf families that accommodate asymmetry 
and thick tails and the pdf’s that they nest where y is the random variable and 
the distributional parameters control the moments of the distribution. Whereas 
the normal has two parameters, the following distributions have 4 to 5 parame-
ters (described in the Appendix for each distribution):  
1) The generalized beta (GB), ( )GB ; , , , ,y a b c p q ,  
2) The exponential generalized beta (EGB), ( )EGB ; , , , ,y m c p qφ , 
3) The skewed generalized T (SGT), ( )SGT ; , , , ,y m p qλ φ , 
4) The inverse hyperbolic sine (IHS), ( )IHS ; , , ,y kµ σ λ  and, 
5) The g-and-h distribution, ( )GH ; , , ,y a b g h . 

The Appendix shows the specifications of the pdf’s and the associated para-
meter expressions that controls their shape (skewness and kurtosis) and loca-
tion. The GB, EGB, and SGT are five-parameter distributions and the IHS and 
g-and-h distributions each involve four parameters. All of these families nest the 
normal or a variant of the normal. For example, the GB nests the half-normal. 
Gauss’s development seems to have been the catalyst which motivated future 
generations of mathematicians and statisticians to start with the normal pdf and 
generalize it, going down different pathways, to better model the diverse distri-
butional characteristics encountered in modelling various data sets.  

Figures 1-5 show the many distributions that are nested within the five pdf’s  
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Where: a controls peakedness; b is a scale parameter; c domain ( )0 1a ay b c< < − ; p, q shape parameters. 

Figure 1. Generalized beta family of density functions [10]. 

 

 
Where: m controls location; φ  is a scale parameters; c defines the domain; p, q are shape parameters. 

Figure 2. Exponential generalized beta family of density functions [10]. 
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Where: m = mode (location parameter); scaleφ = ; 1skewness area to left of ,  1 1
2

m λλ λ− = = − < < 
 

; p, q = shape pa-

rameters (tail thickness, moments of order < pq = df). 

Figure 3. Skewed generalized T family of density functions [3]. 
 

Parameter Values Shape of Distribution 

μ (mean) Location 

σ2 (variance) Dispersion 

λ (skewness) ≠ 0 Asymmetry 

k (tail thickness) Thick Tails 

λ = 0 and k → ∞ Approximates Normal 

Figure 4. Inverse hyperbolic sine family of density functions. 
 

Parameter Values Shape of Distribution 

g ≠ 0 Asymmetry only 

h ≠ 0 Thick tails only 

g = 0 and h = 0 Approximates Normal 

g ≠ 0 and h ≠ 0 Asymmetry and Thick Tails 

Figure 5. The g-and-h family of density functions. 
 

listed above. An inspection of Figures 1-5 show that the nested distributions are 
obtained by imposing various restrictions on the parameter values of the more 
flexible pdf. For example, the restrictions on the values of p and q of the GB and 
EGB control the skewness and kurtosis of those families of pdf’s. For example, if 
c = 1 in the GB distribution (Figure 1), the corresponding pdf is seen to be the 
generalized beta of the second kind (GB2) which is defined for positive valued 
random variables. For the SGT family in Figure 3, λ describes skewness (nega-
tive for negative skewness and vice versa) and p and q determine the shape of the 
pdf. The IHS and g-and-h pdf’s nest the normal (see Figure 4 and Figure 5) as 
limiting cases and have the flexibility to accommodate a wide range of skewness 
and kurtosis values.  

The GB nests at least 26 pdf’s. Among those some that are commonly used in 
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economics and finance are the GB2, log-normal (LN), Pareto, truncated or half- 
student’s T, chi-squared, exponential (EXP) and the truncated or half-normal 
pdf’s. Its exponential version, the EBG, nests the EGB2, which has been used in 
recent papers on robust estimation involving the capital asset pricing model and 
other financial models. The EGB and SGT nest at least ten distributions each. 
The SGT, among the many others, nests the Laplace, uniform, normal, student’s 
T, and the generalized error distribution (GED). The non-unitary version of the 
student’s T and the GED are offered as options to the normal pdf by EVIEWS© 
and Stata© econometric software for GARCH regression error pdf choices to 
model thick-tailed errors distributions. As this writing, no pre-written commer-
cially available statistical software is available for estimation that we are aware of 
for most of these generalized pdf’s other than the SGT in a regression specifica-
tion in Stata© (sgtreg). 

The combination of mathematically admissible skewness-kurtosis values cor-
responding to the generalized pdf’s, the EGB2, SGT, SGED, IHS and g-and-h 
pdf’s are shown on Figure 6. The g-and-h has the least restrictive combination 
of the admissible moments and the EGB2 is the most restrictive with all combi-
nations having to be on or inside the EGB2 moment space “smile.” differences in 
minimum levels of kurtosis.  

Figures 7-12 show how the shapes of the density functions change for varying 
values of the parameters of each pdf. Note in Figure 12 that for the g-and-h we 
allowed h < 0 which corresponds to a random variable with bounded support 
and permits bimodal distributions. Combined with varying skewness values for 
g, the pdf’s have bounded support, but only for g < 0. 

4. Empirical Applications 
4.1. Distributional Characteristics 

First, we consider the distributional characteristics of the total stock returns for 
the population of stocks included in the Center for Research for Security Prices 
(CRSP) database. Secondly, we focus on the distribution of the stock returns on 
two stocks, one normally distributed and the other non-normally distributed. 
We also look at the impact of the distribution on estimated capital asset pricing 
model betas. Finally, we consider the distributional impacts in an ARCH speci-
fication. 

The data used is the daily, weekly, and monthly excess stock returns for all 
continuously traded common stocks in the CRSP database for every trading day 
for five years within the period January 2, 2002 to December 29, 2006 with ap-
proximately 1250 daily returns, 260 weekly returns and 60 monthly returns data 
points for each stock. Since asset market speculative bubbles and crashes have a 
tendency to exacerbate skewness and thick tails of the returns distribution, this 
investigation chose a time frame that did not include either asset market condi-
tions. The financial market crisis and the ensuing extreme drop in asset prices 
that occurred in the forthcoming years after 2006 were purposely avoided so that 
returns in a typical market regime are modeled. The choice of an observation 
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period that includes bubbles would exacerbate the difference in results between 
robust and standard estimation methods. 

 

 
Figure 6. Skewness and kurtosis ranges for the EGB2, SGT, SGED, IHS and g-and-h distributions. 

 

 
Where: a controls peakedness; b is a scale parameter and p q are shape parameters.   

Figure 7. GB2 pdf’s evaluated for different parameter values. 
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Where: m controls location; φ  is a scale parameters; p, q are shape parameters. 

Figure 8. EGB2 pdf’s evaluated for different parameter values. 
 

 

Where: m = mode (location parameter); scaleφ = ; 1skewness area to left of ,  1 1
2

m λλ λ− = = − < < 
 

; p, q = shape parameters (tail thickness, 

moments of order <pq = df). 

Figure 9. SGT pdf’s evaluated for different parameter values. 
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Where: 2mean variance skewness parameter tail thickness.kµ σ λ= = = =； ； ；  

Figure 10. IHS pdf’s evaluated for different parameter values. 
 

 
Figure 11. g-and-h pdf’s evaluated for different parameter values with h > 0. 
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Figure 12. g-and-h pdf’s evaluated for different parameter values with h < 0. 
 

The excess return is calculated by CRSP as the total holding period rate of re-
turn minus the total holding period rate of return on the one-month US Trea-
sury (the Fama-French risk free rate of return). This provided data for 4547 
stocks traded on the NYSE, NASDAQ, and AMEX exchanges for the time frame. 
The skewness and kurtosis values were calculated for the daily, weekly and 
monthly returns for each stock for the time frame.  

Figure 13 and Figure 14 show the plots of the estimates of the skewness and 
kurtosis contrasted with the admissible parameter spaces for each pdf. It shows 
how high to lower frequency returns affect the skewness and kurtosis of stock 
returns. ARCH processes in returns are more pronounced for higher frequency 
data therefore we should expect to see more leptokurtosis relative to skewness 
from ARCH effects as intermittent high and low volatility in returns clusters 
drive the persistence of the volatility of returns while the randomness of the al-
gebraic signs of the spikes (+ or −) dampens skewness in either direction. 

A comparison of the admissible moment spaces with the estimated moments 
shows that much of the data does fall within skewness-kurtosis feasible spaces of 
the pdf’s. Figure 15 shows the proportion of the estimates that fall within the 
parameter spaces for the selected generalized pdf’s. It shows that the g-and-h 
admissible space includes nearly all of the estimates with 100%, 99.98% and 
98.99% of the daily, weekly and monthly estimates, respectively, falling within 
the space. The EGB2 has the least fit of the estimates with 15.48%, 43.81% and 
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50.80% fitting within its admissible space. The SGT and IHS spaces generally fit 
the estimates well with roughly 80% to 90% of the estimates within their spaces. 
This finding is consistent with Kerman and McDonald (2013) that the SGT has 
the most flexibility of the EGB2, SGT, and IHS families. The “bound” in these 
figures corresponds to Klassen [23] bound for unimodal distributions. 

 

 
Figure 13. Daily, weekly and monthly excess returns moments and admissible skewness – 
kurtosis parameter spaces. 
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Figure 14. Monthly excess returns moments and admissible skewness – kurtosis parame-
ter spaces. 

 

 
Figure 15. Fraction of stock returns in admissible parameter space. 

4.2. Two Examples 

We now contrast the pdf’s of two stocks with normally and non-normally dis-
tributed returns. Figure 16 and Figure 17 show the empirical pdf’s of the total 
returns for US Steel and iShares as examples. US Steel was chosen because its 
returns are approximately normally distributed with almost no skewness or 
excess kurtosis as reflected in the statistically insignificant value of the Jar-
que-Bera (JB) statistic, which is asymptotically distributed as a chi-square with 
two degrees of freedom. iShares was chosen because it has severe skewness 
(−29.1), kurtosis (965.1), and a statistically significant JB statistic equal to 
48,733,899. Note that the plotted pdf’s, log-likelihood values, sum of squared er-
rors (SSE) and sum of absolute errors (SAE) as indicators of goodness-of-fit for 
all pdf’s for US Steel returns are very similar in value. This is in sharp contrast to 
the results for iShares. The log-likelihood value of the flexible pdf’s are orders of 
magnitude higher than that for the normal. The fitted pdf’s, SSE’s and SAE’s all 
indicate that the flexible pdf’s provide a much better fit than does the normal. 

daily weekly monthly
EGB2 15.48% 43.81% 50.80%
IHS 83.92% 84.39% 61.97%
SGT 87.62% 89.00% 95.10%
g-and-h 100.00% 99.98% 98.99%
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These two examples demonstrate how much better the pdf’s that accommodate 
skewness and kurtosis can approximate the distribution of the returns relative to 
the normal. 

4.3. Capital Asset Pricing Model Betas 

We have also performed capital asset pricing model (CAPM) regressions for two 
stocks, one with approximately normally distributed regression errors and the 
other that is skewed and has thick-tails. This is the same approach used by 
McDonald, Michelfelder, and Theodossiou (2010) to compare beta (slope) esti-
mates for public utility stocks with normal and skewed and thick-tail distributed 
regression errors. Figure 18 shows the skewness, kurtosis, JB Statistics, and beta 
estimates for two stocks, one with normally distributed regression errors and the 
other non-normally distributed. United Natural Foods has normally distributed 
CAPM regression errors as indicated by the values of skewness, kurtosis and the 
JB statistic. The OLS beta for United Natural Foods is 0.313 and the range from 
the other regression error pdf’s range from 0.302 to 0.335. 

 

 
 

 
 

 
Figure 16. PDF fits for a stock with normally distributed daily excess returns: US steel. 

Estimated PDF logL SSE SAE Chi^2
Normal 2753.52 0.001 0.12 27.81
EGB2 2756.83 0.001 0.11 23.38
IHS 2756.76 0.001 0.11 23.46
SGT 2758.78 0.001 0.12 28.19
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Figure 17. PDF fits for a stock with leptokurtic and skewed daily excess returns: iShares. 

 

 
 

 
Figure 18. Capital asset pricing model beta estimates for stock examples with normal and non-normally distributed returns re-
gression error terms. 
 

The 99 Cent Only stock returns distribution is non-normally distributed as 
indicated by the skewness and kurtosis values and JB statistic. The beta esti-
mated with OLS for the 99 Cent Only stock is subject to more prediction error 
compared with United Natural Foods as the OLS estimate is 0.184 and the range 
for the flexible pdf’s are from 0.106 to 0.125.  

Estimated PDF logL SSE SAE Chi^2
Normal 2516.86 0.099 0.93 1433.33
EGB2 3713.99 0.002 0.13 43.47
IHS 3795.21 0.001 0.12 33.43
SGT 3810.07 0.003 0.21 79.35

Company Name Skewness Kurtosis JB stat
UNITED NATURAL FOODS INC -0.074 2.8004 0.1543
99 CENTS ONLY STORES 1.7541 7.6594 85.0456

Statistics of OLS residuals

Company Name OLS T GT SGED EGB2 IHS ST SGT
UNITED NATURAL FOODS INC 0.313 0.313 0.335 0.334 0.303 0.302 0.314 0.335
99 CENTS ONLY STORES 0.184 0.125 0.125 0.110 0.109 0.106 0.110 0.110

Estimated Betas
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4.4. ARCH Specifications 

Lastly, we consider the impact of distributional assumptions in an ARCH speci-
fication. Figure 19 shows the root mean square errors of the estimated beta from 
10,000 replications of 60-month simulations for the three data generating 
processes (DGP). The data generating process is  

( )0 0.9 excess market returnst tty ε= + +  where 1, ,60t =   months between 
1 2002  to 12 2006 . For the normal-no ARCH ( )2~ 0,t Nε σ , for normal-  

ARCH, ( )0.52
0 1 1 t t ta aε µ ε −= +  with ( )  0,1t Nµ   and for the T-ARCH, 

( )0.52
0 1 1 t t ta aε µ ε −= +  with ( )   ~ 5t Tµ . 

Not surprisingly, as the shaded highlights show for each of three data gene-
rating processes, the correct specification yields the most efficient estimates. For 
example, consider the normal-no-ARCH DGP. Over-specifying the model (us-
ing a more flexible pdf than necessary) increases the variance of the estimates 
(reduces efficiency). However, in many cases the efficiency loss is modest. This is 
also true for the ARCH estimations for this data generating process, with addi-
tional efficiency losses associated with the inclusion of unnecessary ARCH pa-
rameters. The normal-ARCH DGP results also show that over-specifying the 
model increases the root mean square error whereas correctly including the 
ARCH component improves estimator efficiency. Neglecting to account for the 
ARCH component has a significant impact whereas specifying a more flexible 
pdf has a modest impact on the RMSE in most cases.  

Regarding the T-ARCH DGP, again, as expected, the correct specification 
yields the most efficient estimates. Again, failing to account for the ARCH com-
ponent has a greater negative impact on efficiency than does over parameteriz-
ing the underlying distribution.  

Therefore, correctly specifying the data generating process yields the most ef-
ficient estimator as measured by RMSE. Over-specifying the error distribution, 
including the inclusion of an unnecessary ARCH component reduces efficiency, 
but in many cases the impact is small. Similarly, failure to include an appropriate  

 

 
Figure 19. Root mean square errors based on simulations of the prediction of excess 
stock returns. 

Errors

Estimation Non-ARCH ARCH Non-ARCH ARCH Non-ARCH ARCH

OLS/Normal 0.352 0.356 0.347 0.291 0.353 0.300

LAD 0.444 0.446 0.397 0.369 0.315 0.297

T 0.358 0.363 0.338 0.293 0.283 0.265

GED 0.381 0.389 0.357 0.318 0.306 0.285

GT 0.387 0.396 0.362 0.322 0.306 0.286

SGED 0.406 0.417 0.374 0.341 0.318 0.297

EGB2 0.371 0.376 0.352 0.312 0.300 0.281

IHS 0.368 0.377 0.348 0.319 0.291 0.275

ST 0.375 0.382 0.350 0.310 0.293 0.277

SGT 0.409 0.420 0.376 0.344 0.316 0.297

Root Mean Square Error (RMSE) for 10,000 replications
N(0, σ^2) N(0,1), Arch(1) t(5), Arch(1)
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ARCH component reduces efficiency. Log-likelihood ratios or Wald test statis-
tics can help detect over-specification of an error data generating process.  

5. Conclusion 

Robust or partially adaptive estimation is an approach to estimating parameters 
which are relatively insensitive to mis-specifying the underlying distributional 
assumptions of the model. We have shown several families of general or flexible 
distributions that can reduce the impact of model misspecification. It is also 
important to understand that the more general distributions, while accommo-
dating possible skewness and thick tails, cannot accommodate all possible com-
binations of skewness and kurtosis parameter values. The wrong choice of an 
error distribution can reduce efficiency as well as introduce bias to the estimates. 
This paper shows the family trees, nesting relations, parameter space restrictions 
and a few asset returns applications of the major flexible pdf’s used in robust es-
timation in the literature. A researcher must choose very carefully the appropri-
ate distribution. The choice of a more general pdf has an increased likelihood of 
including a correct specification.  
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Appendix: Specifications of the General Probability Distributions and Their Parameters 

Distribution Specification Parameters 
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φ  is a scale parameter 
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p, q are shape parameters 
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g > 0 allows for skewness 
h > 0 allows for thick tails 
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