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Abstract 
This paper studies the problem of recovering low-rank tensors, and the ten-
sors are corrupted by both impulse and Gaussian noise. The problem is well 
accomplished by integrating the tensor nuclear norm and the l1-norm in a 
unified convex relaxation framework. The nuclear norm is adopted to explore 
the low-rank components and the l1-norm is used to exploit the impulse noise. 
Then, this optimization problem is solved by some augmented-Lagrangian- 
based algorithms. Some preliminary numerical experiments verify that the 
proposed method can well recover the corrupted low-rank tensors. 
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1. Introduction 

The problem of exploiting low-dimensional structures in high-dimensional data 
is taking on increasing importance in image, text and video processing, and web 
search, where the observed data lie in very high dimensional spaces. The prin-
cipal component analysis (PCA) proposed in [1] is the most widely used tool 
for low-rank component extraction and dimensionality reduction. It is easily 
implementable and efficient for data mildly corrupted by small noise. However, 
this PCA method is sensitive to data corrupted by heavy impulse noise or outly-
ing observations. Then, a number of robust PCA methods were proposed. But 
none of these approaches yield a polynomial-time algorithm with strong per-
formance guarantees under broad conditions. The proposed Robust PCA [2] is 
one among the earliest polynomial-time algorithms. Assume that a data matrix 

1 2n n×∈X �  consists of a low-rank matrix 0A  and a sparse matrix 0E . Then, 

0A  and 0E  can be recovered with a high probability by solving the following 
convex relaxation problem (if 0A  is low-rank and satisfies some incoherent 
conditions, 0E  is sufficiently sparse): 
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* 1,
min

s.t.   

λ+

= +
A E

A E

X A E
                       (1) 

where *A  denotes the nuclear norm of A  and 1E  denotes the 1l -norm 
of E . Nuclear norm and 1l -norm are used to induce low rank and sparsity, 
specifically. 0λ >  is a parameter balancing the low rank and sparsity. Candes 
et al. [2] prove that ( )1 21 max ,n nλ =  works with a high probability for re-
covering any low-rank, incoherent matrix. Notably, Chandrasekaran et al. [3] 
also consider the problem of decomposing a given data matrix into sparse and 
low-rank components, and give sufficient conditions for convex programming 
to succeed. Their work was motivated by applications in system identification 
and learning of graphical models. In contrast, Candes et al. [2] were motivated 
by robust principal component computations in high dimensional settings when 
there were erroneous and missing entries; missing entries were not considered in 
[3]. In [3], the parameter λ  is data-dependent, and may have to be selected by 
solving a number of convex programs, while Candes et al. [2] provide a universal 
value of λ , namely, ( )1 21 max ,n nλ = . The distinction between the two re-
sults is a consequence of different assumptions about the origin of the data ma-
trix X . 

In many real world applications, we need to consider the model defined in 
Equation (1) under more complicated circumstance [4] [5]. First, only a fraction 
of entries of X  can be observed. This is the well-known matrix completion 
problem. If the unknown matrix is known to have low rank or approximately 
low rank, then accurate and even exact recovery is possible by nuclear norm mi-
nimization [6] [7]. Second, the observed data are corrupted by both impulse 
noise (sparse but large) and Gaussian noise (small but dense). Let X  be the 
superposition of low-rank matrix A , the impulse noise matrix E  and the 
Gaussian noise F , i.e., = + +X A E F . The Gaussian noise of the observed 
entries is assumed to be small in the sense that ( ) F

P δΩ ≤F , where δ  is the 
Gaussian noise level and F⋅  is the Frobenius norm. Then, to be broadly ap-
plicable, we consider the following extension of model defined in Equation (1): 

( )
* 1,

min

s.t.  
F

λ

δΩ

+

− − ≤
A E

A E

X A E
                   (2) 

where Ω  is a subset of the index set of entries { } { }1 21, 2, , 1, 2, ,n n×� � . It’s 
assumed that only these entries ( ){ }, ,ij i j− ∈ΩX  can be observed. The opera-
tor 1 2 1 2: n n n nP × ×

Ω →� �  is a orthogonal projection onto the span of matrices 
vanishing outside of Ω  so that the ij-th entry of ( )PΩ X  is ijX  if ( ),i j ∈Ω  
and zero otherwise. The problem defined in Equation (2) can be solved by the 
classical Augmented Lagrangian Method (ALM). The separable structure 
emerging in the objective function and the constraints entails the idea of split-
ting the corresponding augmented Lagrangian function to derive more efficient 
numerical algorithms. Tao et al. [5] developed the Alternating Splitting Aug-
mented Lagrangian Method (ASALM) and its variant (VASALM), and the Pa-
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rallel Splitting Augmented Lagrangian method (PSALM) for solving Equation 
(2). 

One shortcoming of model defined in Equation (2) is that it can only handle 
matrix (two-way) data. However, the real-world data are ubiquitously in mul-
ti-way, also referred to as tensor. For example, a color image is a 3-way object 
with column, row and color modes; a greyscale video is indexed by two spatial 
variables and one temporal variable. If we use the model defined in Equation (2) 
to process the tensor data, we have to unfold the multi-way data into a matrix. 
Such a preprocessing usually leads to the loss of the inherent structure high-di- 
mensional information in the original observations. To avoid this negative factor, 
a common approach is to manipulate the tensor data by taking the advantage of 
its multi-dimensional structure. Tensor analysis have many applications in 
computer vision [8], diffusion Magnetic Resonance Imaging (MRI) [9] [10] [11], 
quantum entanglement problem [12], spectral hypergraph theory [13] and 
higher-order Markov chains [14]. 

The goal of this paper is to study the Tensor Robust PCA which aims to accu-
rately recover a low-rank tensor from impulse and Gaussian noise. The observa-
tions can also be incomplete. Tensors of low rank appear in a variety of applica-
tions such as video processing (d = 3) [15], time-dependent 3D imaging (d = 4), 
ray tracing where the material dependent bidirectional reflection function is an 
order four tensor that has to be determined from measurements [15], numerical 
solution of the electronic Schrödinger equation ( 3d N= , where N is the number 
of particles) [16] [17] [18], machine learning [19] and more. More specifically, 
suppose we are given a data tensor 1 2 dn n n× × ×∈ ��  ( d  is the number of ways), 
and it can be decomposed as 

0 0 0= + +                          (3) 

where 0  is low-rank and 0  is sparse. 0  is Gaussian noise with the noise 
level being δ . Then, we try to recover the low-rank 0  through the following 
convex relaxation problem: 

( )
* 1,

min

s.t.  
F

λ

δΩ

+

− − ≤
A 
 

   
                  (4) 

1.1. Related Work 

Although the recovery of low-rank matrix has been well studied, the research of 
low-rank tensor recovery is still lacking. This is mainly because it’s difficult to 
define a satisfactory tensor rank which enjoys similar good properties as the ma-
trix case. Several different definitions of tensor rank have been proposed but 
each has its limitation. For example, the CP rank [20] is defined as the smallest 
number of rank one tensors that sum up to  , where a rank one tensor is of 
the form ⊗ ⊗ ⊗1 2 du u u� . Expectedly, the CP rank is NP-hard to compute. Its 
convex relaxation is also intractable. Another more popular direction is to use 
the tractable Tucker rank [20] and its convex relaxation. For a d-way tensor  , 
the Tucker rank is a vector defined as 
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( ) ( )( ) ( )( ) ( )( )( )1 2rank := rank , rank , , rank d
tc X X X� , 

where ( )iX  is the mode-i matricization of  . Motivated by the fact that the 
nuclear norm is the convex envelop of the matrix rank within the unit ball of the 
spectral norm. The Sum of Nuclear Norms (SNN), defined as ( )

*

i
i∑ X , is 

used as a convex surrogate of the Tucker rank. This approach is effective, but 
SNN is not a tight convex relaxation of Tucker rank. 

More recently, the work [21] proposed the tensor tubal rank based on a new 
tensor decomposition scheme denoted as t-SVD. The t-SVD is based on a new 
tensor-tensor product which enjoys many similar properties as the matrix case. 
Based on the computable t-SVD, the tensor nuclear norm [22] is used to replace 
the tubal rank for low-rank tensor recovery (from incomplete/corrupted tensors). 
The problem of recovering the unknown low-rank tensor   from incomplete 
samples 0  can be solved by the following convex program [21], 

( ) ( )
*

0

min

s.t.  Ω Ω=



   
                     (5) 

where *⋅  is the nuclear norm of  , Ω  is the index set of known elements 
in the original tensor, and Ω  is the projector onto the span of tensors. Lu et al. 
[23] extended the work and studied the Tensor Robust Principal Component 
(TRPCA) problem, as defined in the following equation: 

* 1,
min

s.t.  

λ+

= +
A 
 

  
                       (6) 

In this work, we go one step further, and consider recovering low-rank and 
sparse components of tensors from incomplete and noisy observations as de-
fined in Equation (4). 

1.2. Paper Contribution 

The contributions of this work are two-fold: 
• A unified convex relaxation framework is proposed for the problem of reco-

vering low-rank and sparse components of tensors from incomplete and 
noisy observations. Three augmented-Lagrangian-based algorithms are de-
veloped for the optimization problem. 

• Numerical experiments on synthetical data validate the efficacy of our pro-
posed denoising approach. 

1.3. Paper Organization 

The rest of the paper is organized as follows. In Section 2, some preliminaries 
that are useful for the subsequent analysis are provided. In Section 3, three aug-
mented-Lagrangian-based methods are developed for the problem defined in 
Equation (4). In Section 4, some numerical experiments verify the justification 
of the model defined in Equation (4) and the efficiency of the proposed algo-
rithms. Finally, in Section 5, we make some conclusions and discuss some topics 
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for future work. 

2. Preliminaries 

In this section, we list some lemmas concerning the shrinkage operators, which 
will be used at each iteration of the proposed augmented Lagrangian type me-
thods to solve the generated subproblems. 

Lemma 1. For 0τ > , and 1 2n n×∈T � , the solution of the following problem 
(7) obeys 

2

1

1
arg min

2 F
S

τ − + 
 

S T S                   (7) 

is given by ( )shrink ,τT . ( )shrink ,⋅ ⋅  is a soft shrinkage operator and defined 
as: 

( )
 

shrink , 0       
 

a a
a a

a a

κ κ
κ κ

κ κ

− >
 ≤
 + < −

                  (8) 

Lemma 2. Consider the singular value decomposition (SVD) of a matrix 
1 2n n×∈A �  of rank r . 

{ }( )1
* * , diag i i r

σ
≤ ≤

= =A Q S V S                (9) 

where 1n r×∈Q �  and 2n r×∈V �  are orthogonal, and the singular values iσ  
are real and positive. Then, for all 0τ > , define the soft-thresholding operator 
 , 

( ) ( ) ( ) ( ){ }( )1
: * * , diag i i rτ τ τ σ τ

+ ≤ ≤
= = −A Q S V S         (10) 

where x+  is the operator that ( )max 0,x x+ = . Then, for each 0τ >  and 
1 2n n×∈B � , the singular value shrinkage operator (10) obeys 

( ) 2

*

1
arg min

2 Fτ τ = − + 
 B

A B A B             (11) 

3. Algorithm 

An alternative model to study the problem defined in Equation (4) is the fol-
lowing nuclear-norm- and 1l -norm- normalized least squares problem: 

( ) 2
1 2* 1,

min
F

λ λ Ω+ + − −
A 
                 (12) 

Equation (12) can be reformulated into the following favourable form: 

( ) 2
1 2* 1, ,

min

s.t.  
F

λ λ Ω+ +

= + +
A  

   

   
              (13) 

Alternating Direction Method of Multiplier (ADMM), which is an extension 
of ALM algorithm, can be used to solve the tensor recovery problem defined in 
(13). With given ( ), ,k k k   , the ADMM generate the new iterates via the 
following scheme: 
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( )

( )

( )( )

1 1
*

1 1 1
1 1

21 1 1 1
2

1 1 1 1
1 1

( )arg min
2

arg min
2

arg min
2

k
k k k

k
k k k

k
k k k

F

k k k k k

β
β

βλ
β

βλ
β

β

+

+ +

+ + +

∈

+ + + +

  Λ
= + − + + +     


 Λ = + − + + +   
 

  Λ = + − + + +    
Λ = Λ + − + +





 

     

     

     

   

     (14) 

See Algorithm 1 for the optimization details. 

3.1. Stopping Criterion 

It can be easily verified that the iterates generated by the proposed ADMM algo-
rithm can be characterized by 

( )
( ) ( )

( ) ( )
( )

1 1
1*

1 1 1
1 11

21 1 1 1
2 1

1 1 1 1
1 1

k k k k k

k k k k k

k k k k k
F

k k k k k

β

λ β

λ β

+ +

+ + +

+ + + +

+ + + +

  ∈∂ − Λ − + + − 
  ∈∂ − Λ − + + −  


 ∈∂ − Λ − + + −  
  Λ = Λ − + + −  

    

    

    

   

0

0

0
         (15) 

which is equivalent to 

( ) ( )
( ) ( )

( )
( )

1 1 1 1
1*

1 1 1
1 11

21 1
2 1

1 1 1 1
1 1

k k k k k k

k k k k

k k
F

k k k k k

β β

λ β

λ

β

+ + + +

+ + +

+ +

+ + + +

 ∈∂ −Λ + − + −

 ∈∂ −Λ + −


∈∂ −Λ

  Λ = Λ − + + −  

    

  



   

0

0

0
          (16) 

 
Algorithm 1. Optimization framework for problem defined in Equation (13). 

Input: Observation  , parameters 1λ , 2λ  
Output: Useful signal   
Initialization: Choose parameters 1η >  and min max,β β  with min max0 β β< < < +∞ , Initialize an 

iteration counter 0k ←  and a bounded starting point, Initialize [ ]0
min max,β β β∈ ; 

repeat 
Update 1k+ , 
Update 1k+ , 
Update 1k+ , 
Update penalty parameter ( )1

maxmin ,k kβ ηβ β+ ←
 

Update Lagrangian multiplier ( )( )1 1 1 1
1 1
k k k k k kβ+ + + +Λ ← Λ + − + +    , 

if some stopping criterion is satisfied; then 
Break; 

else 
1k k← + ; 

end if 
until exceed the maximum number of outer loop. 
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Equation (16) shows that the distance of the iterates ( )1 1 1, ,k k k+ + +    to the 
solution ( )* * * *, , ,Λ    can be characterized by ( )1 1k k k kβ + +− + −     

and 1
1 1

1 k k

β
+Λ −Λ . Thus, a straightforward stopping criterion for Algorithm 1 

is: 

( )1 1 1
1 1

1min ,k k k k k kβ
β

+ + + 
− + − Λ −Λ ≤ 

 
              (17) 

Here   is an infinitesimal number, e.g., 10−6. 

3.2. Convergence Analysis 

In this subsection, we mainly analyze the convergence of ADMM for solving 
problem defined in Equation (13). We denote ( )1 *f ⋅ = ⋅ , ( ) 2

2 Ff ⋅ = ⋅ , and 
( )3 1f ⋅ = ⋅ . ( )2f ⋅  is strongly convex, while ( )1f ⋅  and ( )3f ⋅  are convex terms, 

but may not be strongly convex. The problem defined in Equation (13) can be 
reformulated as 

( ) ( ) ( )1 2 2 1 3, ,
min

s.t.   

f f fλ λ

χ

+ +

= + +
  

  

  
                 (18) 

Definition 1. (Convex and Strongly Convex) Let [ ]: ,nf → −∞ +∞ , if the 
domain of f  denoted by ( ){ }: ,nf f= ∈ < +∞x x  is not empty, f  is 
considered to be proper. If for any n∈x  and n∈y , we always have 

( )( ) ( ) ( ) ( ) [ ]1 1 , 0,1f t t tf t f t+ − ≤ + − ∀ ∈x y x y , then it is considered that f  
is convex. Furthermore, f  is considered to be strongly convex with the 
modulus 0µ > , if 

( )( ) ( ) ( ) ( )

( ) [ ]2

1 1

1 1 , 0,1
2

f t t tf t f

t t tµ

+ − ≤ + −

− − − ∀ ∈

x y x y

x y
              (19) 

Cai et al. [24] and Li et al. [25] have proved the convergence of Extended Al-
ternating Direction Method of Multipliers (e-ADMM) with only one strongly 
convex function for the case m = 3. 

Assumption 1. In Equation (18), 1f  and 3f  are convex, and 2f  is strongly 
convex with modulus 2 0µ > . 

Assumption 2. The optimal solution set for the problem defined in Equation 
(18) is nonempty, i.e., there exist ( )* * * * *

1, , ,Λ ∈Ω    such that the following 
requirements can be satisfied: 

( )* *
1 ,f∇ −Λ = 0                        (20) 

( )* *
2 2 1 ,fλ ∇ −Λ = 0                      (21) 

( )* *
1 3 1 ,fλ ∇ −Λ = 0                       (22) 

* * * ,χ+ + − = 0                       (23) 

Theorem 1. Assume that Assumption 1 and Assumption 2 hold. Let 
( )1, , ,k k k kΛ    be the sequence generated by Algorithm 1 for solving the problem 
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defined in Equation (18). If 26
0,

13
µ

β  ∈ 
 

, the limit point of ( )1, , ,k k k kΛ    

is an optimal solution to Equation (18). Moreover, the objective function con- 
verges to the optimal value and the constraint violation converges to zero, i.e., 

( ) ( ) ( )* * * *
1 2 2 1 3lim 0

k
f f f fλ λ

→∞
+ + − =               (24) 

and 

( )lim 0
k

χ
→∞

− + + =                      (25) 

where *f  denotes the optimal objective value for the problem defined in Equa- 

tion (18). In our specific application, 26*2
0,

13
λ

β  ∈ 
 

 can sufficiently ensure 

the convergence [24]. 

3.3. Parameter Choice 

In our optimization framework given in Equation (13), there are three parame-
ters β , 1λ  and 2λ . As mentioned in Lu [23], 1λ  does not need any tuning 
and can be set to ( ) 311 n n , where ( ) { }1 21 max ,n n n= . Besides, the value of β  

is limited to the range 26*2
0,

13
λ

β  ∈ 
 

 to ensure the convergence of our algo-  

rithm (based on the analysis in Theorem 1). Thus, the value of 2λ  is important 
for the performance of our algorithm. For simplicity, we consider the case when 
  is only degraded by Gaussian noise   without sparse noise  , that is: 

2

*
2

1 1min   s.t.  
2 2F χ

λ
+ = +                 (26) 

The solution for Equation (26) is equal to χ  but with singular values being 
shifted towards zero by soft thresholding. 2λ  should be set large enough to re-
move noise (i.e., to keep the variance low), and small to avoid over-shrinking of 
the original tensor A (i.e., to keep the bias low). For the matrix case (i.e., 3 1n = ), 
Candes et al. [26] have deduced the proper value of 2λ , as shown in the follow-
ing theorem. 

Theorem 2. Supposing that the Gaussian noise term n n×∈F , and each 
entry ,i jn  is iid normally distributed, we can have that for ( )20,σ , 

( )2 28F n n σ≤ +F  with high probability. Then, ( )
1

1 8
2

n n σ
λ

= + . That is, 

( )
2

1

2 8n n
λ

σ
=

+
. 

Based on this conclusion, we derive the required conditions for convex pro-
gram defined in Equation (13) to accurately recover the low-rank component 
  from corrupted observations. Our derivations are given in the following 
main result. 

Main Result 1. Assume that the low-rank tensor 1 2 3
0

n n n× ×∈�  obeys the 
incoherence conditions [27]. The support set Ω of 0  is uniformly distributed 
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among all sets of cardinality m. Then, there exist universal constants 1 2, 0c c >  
such that with probability at least 2

11 cc n−− , 0 0,   is the unique minimizer to 
problem defined in Equation (13). The values of 1λ  and 2λ  can be determined  

as 
( ) ( )

2

3 31 1

1

2 8n n n n
λ

σ
=

+
 and 

( )
1

31

1
n n

λ = . In the same time, the rank of 

0  and the number of non-zero entries of 0  should satisfy that 

( ) ( )

( )( )( )
2 2

1 2 32

0 31

rank    and  
log

r
t s

n
m n n n

n n

ρ
ρ

µ
≤ ≤  

where ( ) { }1 21 max ,n n n=  and ( ) { }1 22 min ,n n n= . ρr and ρs are positive constants. 

The value of penalty parameter β should be within the range of 26*2
0,

13
λ 

 
 

 to 

ensure the convergence. 

4. Experiments on Synthetic Data 

In this section, we conduct synthetic data and real data experiments to corrobo-
rate our algorithm. We investigate the ability of our proposed Robust Low Rank 
Tensor Approximation (denoted as RLRTA) algorithm for recovering low-rank 
tensors of various tubal rank from noises of various sparsity and random Gaus-
sian noise of different intensity. 

4.1. Exact Recovery from Varying Sparsity of   

We first verify the correct recovery performance of our algorithm for different 
sparsity of  . Be similar to [23], we consider the tensors of size n n n× × , with 
varying dimensions 100,200n = . We generate a rankt r−  tensor *=   , 
where the entries of n r n× ×∈  and r n n× ×∈  are independently sampled 
from a uniform distribution in interval ( )0,1 n . The support set Ω , with size 

3
sm nρ=  of sparse component   is chosen uniformly at random. For all 

( ), ,i j k ∈Ω , let ijk ijk=  , where   is a tensor with independent Bernoulli 
1±  entries. For  , it can be mathematically expressed as 

1,       w.p. 2
0       w.p.1

1     w.p. 2

s

ijk s

s

ρ
ρ

ρ


= −
−

                    (27) 

where w.p.  is the abbreviation of “with probability”. We test on two settings: 
the first scenario with setting ( )rank 0.1tr n= =  and 0.1sρ = . The second 
scenario with setting ( )rank 0.1tr n= =  and 0.2sρ = . 

The Gaussian noise   in each frontal slice is generated independently with 
each other, i.e. 

( ) ( )3

2
3 3:,:, 0, ,   1ii i nσ∼ ≤ ≤                 (28) 

The variance values 
3

2
iσ  in each frontal slice are randomly selected from 0 to 

0.1. In this sub-subsection 1, our task is to recovery   from noisy observation 
χ = + +    with   of varying sparsity. Table 1 and Table 2 show the  
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Table 1. Correct recovery for random problems of varying sparsity using RLRTA. 

( )rank 0.1tr n= = , 3
0

0.1m n= =  

n r m 
0

�
  F

F

−
�

 


 F

F

−
�

 


 

100 10 1e5 132,399 1.1838e−04 0.3040 

200 20 8e5 1,046,860 2.8331e−05 0.3026 

( )rank 0.1tr n= = , 3
0

0.2m n= =  

n r m 
0

�
  F

F

−
�

 


 F

F

−
�

 


 

100 10 2e5 222,128 1.5001e−04 0.3072 

200 20 16e5 1,797,586 3.8035e−05 0.3118 

 
Table 2. Correct recovery for random problems of varying sparsity using TRPCA [23]. 

( )rank 0.1tr n= = , 3
0

0.1m n= =  

n r m 
0

�
  F

F

−
�

 


 F

F

−
�

 


 

100 10 1e5 575,485 0.0021 0.2805 

200 20 8e5 4,594,860 5.4577e−04 0.2727 

( )rank 0.1tr n= = , 3
0

0.2m n= =  

n r m 
0

�
  F

F

−
�

 


 F

F

−
�

 


 

100 10 2e5 576,448 0.0030 0.1597 

200 20 16e5 4,609,591 8.3233e−04 0.1707 

 
recovery results of algorithm RLRTA and TRPCA. It’s shown that RLRTA can 
better recover the low-rank compnent   under different sparse component 
 . 

4.2. Exact Recovery with   of Varying Intensity 

Now we exam the recovery phenomenon with Gaussian noise of varying va-
riances. The generation of n n n× ×∈  is the same as that in sub-subsection 1 
and ( )rank 0.1tr n= = . The sparse component   has sparsity 0.1sρ = . 
For simplicity, we assume that   is white Gaussian noise, that is 

( ) ( )2
1 2 3, , 0, wi i i σ∼                      (29) 

where 1 2 31 ,  1 ,  1i n i n i n≤ ≤ ≤ ≤ ≤ ≤ . The noise variance values 2
wσ  are 0.02, 

0.04, 0.06, 0.08 and 0.1, respectively Table 3 and Table 4 show the recovery 
results of algorithm RLRTA and TRPCA. It’s shown that RLRTA can better 
recover the low-rank compnent   under different Gaussian noise  . 

4.3. Phase Transition in Rank and Sparsity 

Now we exam the recovery phenomenon with varying rank of   and varying 
sparsity of  . Similar to [23], we consider two sizes of 3n n n× ×∈ : (1)  
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Table 3. Correct recovery for random problems of varying intensity using RLRTA. 

( )rank 0.1tr n= = , 3
0

0.1m n= = , 100n =  

2
wσ  r m 

0

�
  F

F

−
�

 


 F

F

−
�

 


 

0.02 10 1e5 100,438 1.1900e−04 0.2707 

0.04 10 1e5 111,249 1.1886e−04 0.2915 

0.06 10 1e5 134,908 1.2041e−04 0.3138 

0.08 10 1e5 160,814 1.5044e−04 0.3451 

0.10 10 1e5 184,006 2.2189e−04 0.3824 

( )rank 0.1tr n= = , 3
0

0.1m n= = , 200n =  

2
wσ  r m 

0

�
  F

F

−
�

 


 F

F

−
�

 


 

0.02 20 8e5 803,564 2.8135e−05 0.2709 

0.04 20 8e5 889,969 2.8269e−05 0.2913 

0.06 20 8e5 1,080,602 2.9120e−05 0.3145 

0.08 20 8e5 1,287,048 3.6441e−05 0.3460 

0.10 20 8e5 1,472,423 5.4040e−05 0.3821 

 
Table 4. Correct recovery for random problems of varying intensity using TRPCA [23]. 

( )rank 0.1tr n= = , 3
0

0.1m n= = , 100n =  

2
wσ  r m 

0

�
  F

F

−
�

 


 F

F

−
�

 


 

0.02 10 1e5 571,972 0.0013 0.1036 

0.04 10 1e5 571,943 0.0024 0.2041 

0.06 10 1e5 571,944 0.0036 0.3039 

0.08 10 1e5 571,290 0.0048 0.4037 

0.10 10 1e5 571,880 0.0059 0.5039 

( )rank 0.1tr n= = , 3
0

0.1m n= = , 200n =  

2
wσ  r m 

0

�
  F

F

−
�

 


 F

F

−
�

 


 

0.02 20 8e5 4,573,505 3.0970e−04 0.1036 

0.04 20 8e5 4,574,842 6.0571e−04 0.2043 

0.06 20 8e5 4,573,573 9.0370e−04 0.3040 

0.08 20 8e5 4,573,394 0.0012 0.4039 

0.10 20 8e5 4,572,467 0.0015 0.5021 
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100,n =  3 50n = , (2) 3200,  50n n= = . We generate *=   , where the 
entries of 3n r n× ×∈  and 3r n n× ×∈  are independently sampled from a 
uniform distribution in interval ( )0,1 n . For  , we still consider a Bernoulli 
model for its support and random signs as in Equation (27). The variance values 

3

2
,w iσ  in each frontal slice ( )3 3 31i i n≤ ≤  are randomly selected from 0 to 0.1, 

and the mean variance values are both set to be 0.05. 
We set r n  as all the choices in [ ]0.01: 0.01: 0.5 , and ρs in [ ]0.01: 0.01: 0.5 . 

For each ( ), sr ρ -pair, we simulate 10 test instances and declare a trial to be 
successful if the recovered 

�
  satisfies 310FF

−− ≤
�
   . Figure 1 plots  

 

 
(a) 

 
(b) 

Figure 1. Correct recovery for varying rank and sparsity for RLRTA and TRPCA [23]. 
Fraction of correct recoveries, as a function of ( )rank t   ( x -axis) and sparsity of   

( y -axis). 
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the fraction of correct recovery for each pair (black = 0% and white = 100%). It 
can be seen that there is a large region in which the recovery is correct. 

4.4. Phase Transition in Rank and Entry-Wise Noise Intensity 

Now we exam the recovery phenomenon with varying rank of   and varying 
intensity of noise  . We still consider two sizes of 3n n n× ×∈ : (1) 100,n =  

3 50n = , (2) 3200,  50n n= = . We generate *=   , where the entries of 
3n r n× ×∈  and 3r n n× ×∈  independently sampled from a uniform distribu-

tion in interval ( )0,1 n . For  , we still consider a Bernoulli model for its 
 

 
(a) 

 
(b) 

Figure 2. Correct recovery for varying rank and noise variance for RLRTA and TRPCA 
[23]. Fraction of correct recoveries, as a function of ( )rank t   ( x -axis) and variance of 

  ( y -axis). 
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support and random signs as in Equation (27) and sparsity parameter ρs is fixed 
at 0.1. The generation of   is similar to Equation (29). 

We set r n  as all the choices in [ ]0.01: 0.05 : 0.5 . The noise variance values 
2
wσ  are in [ ]0.01: 0.01: 0.1 . For each ( )2, wr σ -pair, we simulate 10 test in-

stances and declare a trial to be successful if the recovered 
�
  satisfies 

310FF

−− ≤
�
   . Figure 2 plots the fraction of correct recovery for each 

pair (black = 0% and white = 100%). It can be seen that there is a large region in 
which the recovery is correct. 

5. Conclusion 

This work verifies the ability of convex optimization for the recovery of low- 
rank tensors corrupted by both impulse and Gaussian noise. The problem is 
tackled by integrating the tensor nuclear norm, 1l -norm and least square term 
in a unified convex relaxation framework. Parameters are selected to comprise 
the low-rank component, the sparse component and the Gaussian-noise term. 
Besides, the convergence of the proposed algorithm is discussed. Numerical ex-
periments have been conducted to demonstrate the efficacy of our proposed de-
noising approach. 
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