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Abstract 
Through the study of the factorization conditions of a wave function made up 
of two, three and four qubits, we propose an analytical expression which can 
characterize entangled states in terms of the coefficients of the wave function 
and density matrix elements. 
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1. Introduction 

In quantum mechanics, multiple dimensional or multiple particles systems are 
characterized by the tensor product of the Hilbert subspaces [1], where each 
subspace is associated to each element. It is well known [2] that when there is no 
interaction among these elements, the wave function is just the tensor product of 
the wave functions of each element; that is, the tensor product of the wave func-
tion associated to each element determines the non-interacting characteristic of 
the elements in a quantum system. If interaction occurs at some time among 
these elements, this tensor product disappears, and the wave function becomes 
entangled [3]. So, it is necessary to point out that if the wave function is not fac-
torized, the wave function is entangled. In this way, the characterization of fac-
torization is somewhat equivalent to the characterization of entanglement. In 
this paper, we will follow this line of ideas to determine the characterization of 
an entangled state [4]-[12].  

2. Factorized State 

When a quantum systems is made up of several quantum subsystems, where the 
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ith-subsystem is characterized by a Hamiltonian iH  and a Hilbert space iε , 
corresponding a two-states and having a basis { } 0,1i

i ξ
ξ

=
, the Hilbert space is 

written as the tensorial product of each subsystem, 1nε ε ε= ⊗ ⊗  (for n- 
subsystems), The state in each subsystems is defined as a qubit in quantum 
computation and information theory [13] and is given by  

2 20 1 ,    1,i i i i ia b a bψ = + + =                 (1) 

where { }0 , 1  is the basis of the two-states Hilbert subspace iε . A general 
state Ψ  in the Hilbert space ε  can be written as  

2
,    with    1,C Cξ ξ

ξ ξ
ξΨ = =∑ ∑                 (2) 

where C sξ′  are complex numbers, and ξ  is an element of the basis of ε ,  

1 1 ,   0,1  1, , .n n k k nξ ξ ξ ξ ξ ξ= = ⊗ ⊗ = =            (3) 

A full factorized state in this space is  

1 ,nψ ψΨ = ⊗ ⊗                      (4) 

where kψ  is given by (1).  
For 2n = , one has a general state εΨ ∈ ,  

1 2 3 400 01 10 11 ,C C C CΨ = + + +               (5) 

where we have chosen to use decimal notation for the coefficients. Let us assume 
that this state can be written as  

2 1 ,ψ ψΨ = ⊗                        (6) 

with , 1, 2k kψ =  given by (1). Then, substituting (1) in (6) and equaling coef-
ficients with (5), it follows that  

1 1 2 2 1 2 3 1 2 4 1 2,  ,  ,  .C a a C a b C b a C b b= = = =              (7) 

From these expressions one obtains a single condition for factorization,  

1 4 2 3.C C C C=                          (8) 

Thus, if this condition is not satisfied, the state (5) represents an entangled 
state. So, one can use the following known expression [14] as a characterization 
of an entangled state  

( )2
1 4 2 32 .C C C C CΨ = −                    (9) 

For 3n = , a general state in the Hilbert space ε  is  

1 2 3 4

5 6 7 8

00 001 010 011

          100 101 110 111 ,

C C C C

C C C C

Ψ = + + +

+ + + +
          (10) 

where, we have chosen again decimal notation for the coefficients. Assuming 
that this wave function can be written as 3 2 1ψ ψ ψΨ = ⊗ ⊗  with kψ  
given by (1), and after some identifications (as before) and rearrangements, one 
gets  

3 5 7 31
3

2 4 6 8 3

,    0C C C aC b
C C C C b

= = = = =/              (11a) 

5 61 2 2
2

3 4 7 8 2

,    0C CC C a b
C C C C b

= = = = =/              (11b) 
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31 2 4 1
1

5 6 7 8 1

,    0CC C C a b
C C C C b

= = = = =/              (11c) 

These expression reflex a parallelism between the complex vectors ( )1 3 5 7, , ,C C C C  
and ( )2 4 6 8, , ,C C C C , the vectors ( )1 2 5 6, , ,C C C C  and ( )3 4 7 8, , ,C C C C , and the 
vectors ( )1 2 3 4, , ,C C C C  and ( )5 6 7 8, , ,C C C C . In addition, they bring about the 
following eight independent relations  

1 4 2 3 1 6 2 5 1 8 2 7 3 6 4 50,  0,  0,  0C C C C C C C C C C C C C C C C− = − = − = − =  (12) 

3 8 4 7 5 8 6 7 1 7 3 5 2 8 4 60,  0,  0,  0.C C C C C C C C C C C C C C C C− = − = − = − =  (13) 

If one of these expressions is not satisfied, the wave function (10) represents 
an entangled state. Therefore, one can propose the following expression to cha-
racterize an entangled state  

( )3
1 4 2 3 1 6 2 5 1 8 2 7 3 6 4 5

3 8 4 7 5 8 6 7 1 7 3 5 2 8 4 6

2 2 2 2

         2 2 2 2 .

C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C
Ψ = − + − + − + −

+ − + − + − + −
 (14) 

For 4n = , a general state in the Hilbert space ε  is of the form  

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

0000 0001 010 0011

 0100 0101 0110 0111

 100 1001 110 1011

 1100 1101 1110 1111 .

C C C C

C C C C

C C C C

C C C C

Ψ = + + +

+ + + +

+ + + +

+ + + +

      (15) 

Assuming this function can be expressed as 4 3 2 1ψ ψ ψ ψΨ = ⊗ ⊗ ⊗  
with , 1, 2,3, 4k kψ =  given by (1), and after some identifications and rear-
rangements, one gets  

3 5 7 9 13 151 11

2 4 6 8 10 12 14 16

C C C C C CC C
C C C C C C C C

= = = = = = =  

5 6 9 10 131 2 14

3 4 7 8 11 12 15 16

C C C C CC C C
C C C C C C C C

= = = = = = =  

3 9 101 2 4 11 12

5 6 7 8 13 14 15 16

C C CC C C C C
C C C C C C C C

= = = = = = =  

3 5 6 7 81 2 4

9 10 11 12 13 14 15 16

,C C C C CC C C
C C C C C C C C

= = = = = = =  

expressing similar parallelism we mentioned before. Each row gives us 28 rela-
tions, having a total of 112 possible relations, and from these relations, one can 
get the following 36 independent conditions  

1 4 2 3 4 13 7 10 1 6 2 5 4 14 6 120  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =   (16a) 

1 8 3 6 4 15 3 16 1 10 2 9 4 16 8 120  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =  (16b) 

1 11 3 9 5 8 6 7 1 12 2 11 5 14 6 130  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =   (16c) 

1 14 9 6 5 15 7 13 1 15 5 11 5 16 7 140  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =  (16d) 

2 8 4 6 6 11 5 12 2 12 4 10 6 15 16 80  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =  (16e) 

2 13 5 10 6 16 8 14 2 14 6 10 7 16 8 150  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =  (16f) 

2 16 10 8 7 12 8 11 3 8 4 7 9 12 10 110  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =  (16g) 

3 15 7 11 9 14 10 11 3 13 11 5 9 15 11 130  0  0  0C C C C C C C C C C C C C C C C− = − = − = − =  (16h) 

10 16 12 14 11 16 12 15 10 15 11 14 13 16 14 150  0  0  0.C C C C C C C C C C C C C C C C− = − = − = − =  (16i) 
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Again, if one of these expression fail to happen, (15) will represents an entan-
gled state. Thus, one can propose the following expression to characterize an 
entangled state made up of 4-qubits basis  

( )4
1 4 2 3 4 13 7 10 1 6 2 5 4 14 6 12 1 8 3 6 4 15 3 16

1 10 2 9 4 16 8 12 1 11 3 9 5 8 6 7 1 12 2 11

5 14 6 13 1 14 9 6 5 15 7 13 1 15 5 11 5 16 7 14

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

C C C C C C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C

Ψ = − + − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

2 8 4 6 6 11 5 11 2 12 4 10 6 15 16 8 2 13 5 10

6 16 8 14 2 14 6 10 7 16 8 15 2 16 10 8 7 12 8 11

3 8 4 7 9 12 10 11 3 15 7 11 9 14 10 11 3 13 11 5

9 1

2 2 2 2 2

2 2 2 2 2

2 2  2 2 2

2

C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C

C C

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

+ 5 11 13 10 16 12 14 11 16 12 15 10 15 11 14 13 16 14 15 2 2 2 2 .C C C C C C C C C C C C C C C C C C− + − + − + − + −

   (17) 

As we can see from these examples, the number of conditions needed to cha-
racterize a factorized state (or entangled state) grows exponentially with the 
number of qubits. So, characterization of an entangled state for n-qubits in gen-
eral becomes a very hard work. Now, in terms of the density matrix elements, 
one could have the characterization of entangled states made up of 2, 3 and 4 
qubits as  

( ) ( )2
11 44 22 33 12 432 2Re .Cρ ρ ρ ρ ρ ρ ρ= + −             (18) 

( ) ( ) ( ) ( )
( ) ( ) ( )
( )

3
11 44 22 33 12 43 11 66 22 55 12 65 11 88 22 77 12 87

33 66 44 55 34 65 33 88 44 77 34 87 55 88 66 77 56 87

11 77 33 55 13 75 22 88 44 66

2 2Re 2 2Re  2 2Re

2 2Re  2 2Re 2 2Re

2 2Re 2 2Re

Cρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

= + − + + − + + −

+ + − + + − + + −

+ + − + + − ( )24 86 .ρ

 (19) 

( ) ( ) ( ) ( )
( ) ( ) ( )

4
11 44 22 33 12 43 44 13,13 77 10,10 47 13,10 11 66 22 55 12 65

44 14,14 66 12,12 46 14,12 11 88 33 66 13 86 44 15,15 33 16,16 43 15,16

11 10,10 22 99

2 2Re 2 2Re 2 2Re

2 2Re  2 2Re 2 2Re

2

Cρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

= + − + + − + + −

+ + − + + − + + −

+ + − ( ) ( ) ( )
( ) ( ) ( )
( )

12 10,9 44 16,16 88 12,12 48 16,12 11 11,11 33 99 13 11,9

55 88 66 77 56 87 11 12,12 22 11,11 12 12,11 55 14,14 66 13,13 56 14,13

11 14,14 99 66 19 14,6

2Re 2 2Re 2 2Re

2 2Re 2 2Re 2 2Re

2 2Re 2

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

+ + − + + −

+ + − + + − + + −

+ + − + ( ) ( )
( ) ( ) ( )
( )

55 15,15 77 13,13 57 15,13 11 15,15 55 11,11 15 15,11

55 16,16 77 14,14 57 16,14 22 88 44 66 24 86 66 11,11 55 12,12 6,5 11,12

22 12,12 44 10,10 24 12,10 66

2Re 2 2Re

2 2Re  2 2Re 2 2Re

2 2Re 2

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

+ − + + −

+ + − + + − + + −

+ + − + ( )
( ) ( )
( ) ( )

15,15 16,16 88 6,16 15,8

22 13,13 55 10,10 25 13,10 66 16,16 88 14,14 68 16,14

22 14,14 66 10,10 2,6 14,10 77 16,16 88 15,15 78 16,15

22 16,16 10,10 88 2,10 16

2Re

2 2Re 2 2Re

2 2Re 2 2Re

2 2Re

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

+ −

+ + − + + −

+ + − + + −

+ + − ( ) ( )
( ) ( ) ( )

( )

,8 77 12,12 88 11,11 78 12,11

33 88 44 77 34 87 99 12,12 10,10 11,11 9,10 12,11 33 15,15 77 11,11 37 15,11

99 14,14 10,10 11,11 9,10 14,11 33 13,13 11,11 55 3

2 2Re

2 2Re 2 2Re 2 2Re

2 2Re 2 2Re

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

+ + −

+ + − + + − + + −

+ + − + + − ( )
( ) ( )
( )
( )

,11 13,5

99 15,15 11,11 13,13 9,11 1513 10,10 16,16 12,12 14,14 10,12 1614

11,11 16,16 12,12 15,15 11,12 16,15

10,10 15,15 11,11 14,14 10,11 15,14 13,13 16,16 14,14 15,1

2 2Re 2 2Re

2 2Re

2 2Re 2

ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

+ + − + + −

+ + −

+ + − + + ( )5 13,14 16,152Re ρ ρ−

 (20) 
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For other considerations of entanglement multiqubit entanglement see [6] [10] 
[15] [16]. Figure 1 below shows the values of the expressions (14) and (19) for 
50 entangled states made up of 3-qubits basis and with values jC , with 

1, ,6j =   randomly generated. As we can see, the values obtained with the 
coefficients jC s′  and with the density matrix elements nmρ  are the same. 
Figure 2 shows for the W  state,  

2 22
2 3 5 2 3 5001 010 100 ,  1,W C C C C C C= + + + + =          (21) 

the possible values of ( ) ( )3C Ψ . As we can see, there are four possible maxima 
corresponding to the values 2 3 5 1 3C C C= = = ±  and four maxima corres- 
 

 

Figure 1. ( )3C  for arbitrary entangled state. Diamonds (density matrix) and circles 
(coefficients). 
 

 

Figure 2. ( )3C  for the state 1 2 3001 010 100W C C C= + +  such that  
2 2 2

1 2 3 1C C C+ + = . 
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ponding to the values 5 0C = , 2 3 1 2C C= = ± , related to semi-factorized 
state ( )2 30 01 10C C⊗ + . Figure 3 shows the possible values of ( ) ( )3C Ψ  
for the state  

22
1 8 1 8000 111 ,   1.GHZ C C C C= + + =          (22) 

The maximum value of ( ) ( )3C Ψ  is gotten for 1 8 1 2C C= = , as one would 
expect.  

For a Hilbert space ε  generated by n-qubits, ( )nC  defines a continuous 
function ( ) :nC ε +→ℜ  with [ )0,+ℜ = +∞ , 1c ≥ . Since the coefficients of the 
wave function defines a compact set on the real space 2nℜ  due to the relation 

2 1ii C =∑ , the image of this compact set is a compact set in +ℜ  [17]. Thus, a 
normalization factor is possible to introduce on this function to define any 
compact set [ ]0,c , which it is not important. 

3. Dynamical Consideration 

Following Lloyd’s idea [18], consider a linear chain of nuclear spin one half, se-
parated by some distance and inside a magnetic in a direction z , 
( ) ( )( )00,0,B z B z= , and making and angle θ  with respect this linear chain. 

Choosing this angle such that cos 1 3θ = , the dipole-dipole interaction is 
canceled, the Larmore’s frequency for each spin is different, ( )0k kB zω γ=  with 
γ  the gyromagnetic ratio. The magnetic moment of the nucleus kµ  is related 
with its spin through the relation k kSγ=µ , and the interaction energy between 
the magnetic field and magnetic moments is ( )int

z
k k k kk kH B z Sω= − ⋅ = −∑ ∑µ . 

If in addition, one has first and second neighbor Ising interaction, the Hamilto-
nian of the system is just [19] [20].  
 

 

Figure 3. ( )3C  for the state 1 8000 111GHZ C C= +  such that 2 2
1 8 1C C+ = . 
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1 2

1 2
1 1 1

2 2 ,
N N N

z z z z z
s k k k k k k

k k k

J JH S S S S Sω
− −

+ +
= = =

′
= − − −∑ ∑ ∑

 

            (23) 

where N  is the number of nuclear spins in the chain (or qubits), J  and J ′  
are the coupling constant of the nucleus at first and second neighbor. Using the  

basis of the register of N-qubits, { }1, ,
N

ξ ξ  with 0,1kξ = , one has that 

( )1 2kz
k k kS ξξ ξ= − 

. Therefore, the Hamiltonian is diagonal on this basis,  

and its eigenvalues are  

( ) ( ) ( )1 2
1 2

1 1 1
1 1 1 .

2 2 2
k k k k k

N N N

k
k k k

J JE ξ ξ ξ ξ ξ
ξ ω + +

− −
+ +

= = =

′
= − − − − − −∑ ∑ ∑  

    (24) 

Consider now that the environment is characterized by a Hamiltonian eH  
and its interacting with the quantum system with Hamiltonian sH . Thus, the 
total Hamiltonian would be s e seH H H H= + + , where seH  is the part of the 
Hamiltonian which takes into account the interaction system-environment, and 
the equation one would need to solve, in terms of the density matrix, is [21] [22]  

[ ], ,t
ti H

t
ρ

ρ
∂

=
∂

                      (25) 

where ( ),t t s eρ ρ=  is the density matrix which depends on the system and en-
vironment coordinates. The evolution of the system is unitary, but it is not 
possible to solve this equation due to a lot of degree of freedom. Therefore, un-
der some approximations and tracing over the environment coordinates [23], it 
is possible to arrive to a Lindblad type of equation [24] [25] for the reduced den-
sity matrix ( ) ( )e ts trρ ρ= ,  

[ ] † † †

1

1 1,
2 2

I

s i i i i i i
i

i H V V V V VV
t
ρ ρ ρ ρ ρ

=

∂  = + − − ∂  
∑        (26) 

where iV  are called Kraus’ operators. This equation is not unitary and Marko-
vian (without memory of the dynamical process). This equation can be written 
in the interaction picture, through the transformation †U Uρ ρ=  with 

siH tU e=  , as  

( ) ,i
t
ρ ρ∂
=

∂






                         (27) 

where ( )ρ   is the Lindblad operator  

( ) † † †

1

1 1
2 2

I

i i i i i i
i

V V V V VVρ ρ ρ ρ
=

 = − − 
 

∑      

                 (28) 

with †V UVU= . The explicit form of Lindblad operator is determined by the 
type of environment to consider [26] at zero temperature. So, the operators can 
be i iV S −=  (for dissipation) for the model independent with the environment. 
In this case, each qubit of the chain acts independently with the environment, 
and one has local decoherence of the system. The Lindblad operator is  

( ) ( )1 2
2

N

k k k k k k k
k

S S S S S S
i

ρ γ ρ ρ ρ− + + − + −= − −∑    

   



           (29) 

where kS +
  and kS −

  are the ascend and descend operators such that  
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ˆ† ki t
k k kS US U S e± Ω± ± ±= =  

where ˆ
kΩ  is defined as ( ) ( )1 1 2 2

ˆ .z z z z
k k k k k k

J Jw S S S S+ − + −

′
Ω = + + + +

 

. The solu-

tions of the equations are  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

1

2

3

1 2

1 3 2 3

1 2 3

11 11 22 33 44 55 66 77 88

55 66 77 88

33 44 77 88

22 44 66 88

77 88

66 88 44 88

88

0 0 0 0 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0

 0 0 0 0

 0 ;

t

t

t

t

t t

t

t

e

e

e

e

e e

e

γ

γ

γ

γ γ

γ γ γ γ

γ γ γ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ

ρ

−

−

−

− +

− + − +

− + +

= + + + + + + +

− + + +

− + + +

− + + +

+ +

+ + + +

−

 

( ) ( ) ( )
( )

( )( )( ) ( )14
2 31

1
1 58 2

14 14 22
1

0
0 1 ;

i ti j j te
t e e

j j

φ
γ γγγ ρ

ρ ρ
γ

−
− +′+ −

 
 = + −
 ′+ + 

 

( ) ( ) ( ) ( )( ) ( )16
1 32

1
22 38 2

16 16 2 2
2

0
0 1 ;

4

i
tij te

t e e
j

φ
γ γγγ ρ

ρ ρ
γ

−
− +−

 
 = + −
 + 

 

( ) ( ) ( )
( )

( )( ) ( )17
1 23

1
3 28 2

17 17 22
3

0
0 1 ;

i
ti j j te

t e e
j j

φ
γ γγγ ρ

ρ ρ
γ

−
− +′+ −  

 
 = + −
 ′+ + 

 

( ) ( )
( )1 2 3

1
2

18 18 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

1 33

2 3 1 2 3

22 22 44 66 88 66 88

44 88 88

= 0 0 0 0 0 0

               0 0 0 ;

tt

t t

t e e

e e

γ γγ

γ γ γ γ γ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

− +−

− + − + +

+ + + − +

− + +
 

( ) ( ) ( )
( )

( )( )( ) ( )23
2 31

1
1 67 2

23 23 22
1

0
0 1 ;

i
ti j j te

t e e
j j

φ
γ γγγ ρ

ρ ρ
γ

−
− +′− −

 
 = + −
 ′+ − 

 

( ) ( ) ( ) ( ) ( )1 32

1
2

25 25 470 0 1 ;
ttt e e

γ γγρ ρ ρ
− +− = + −   

( ) ( )
( )1 2 3

1
2

27 27 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( )
( )1 2 3

1 2
2

28 28 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

1 22

2 3 1 2 3

33 33 44 77 88 77 88

44 88 88

0 0 0 0 0 0

               0 0 0 ;

tt

t t

t e e

e e

γ γγ

γ γ γ γ γ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

− +−

− + − + +

= + + + − +

− + +
 

( ) ( ) ( )
( )

( )( ) ( )35
1 23

1
3 46 2

35 35 22
3

0
0 1 ;

i
ti j j te

t e e
j j

φ
γ γγγ ρ

ρ ρ
γ

−
− +′− − +  

 
 = + −
 ′+ − 

 

( ) ( )
( )1 2 3

1
2

36 36 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  
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( ) ( )
( )1 2 3

1 2
2

38 38 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( )( ) ( ) ( ) ( )2 3 1 2 3
44 44 88 880 0 0 ;t tt e eγ γ γ γ γρ ρ ρ ρ− + − + += + −  

( ) ( )
( )1 2 3

1
2

45 45 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( )
( )1 2 3

1 2
2

46 46 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( )
( )1 2 3

1 2
2

47 47 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( )
( )1 2 3

1 2 2
2

48 48 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

1 21

1 3 1 2 3

55 55 66 77 88 77 88

66 88 88

0 0 0 0 0 0

              0 0 0 ;

tt

t t

t e e

e e

γ γγ

γ γ γ γ γ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

− +−

− + − + +

= + + + − +

− + +
 

( ) ( )
( )1 2 3

1 2
2

58 58 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( )( ) ( ) ( ) ( )1 3 1 2 3
66 66 88 880 0 0 ;t tt e eγ γ γ γ γρ ρ ρ ρ− + − + += + −  

( ) ( )
( )1 2 3

1 2
2

67 67 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( )
( )1 2 3

1 2 2
2

68 68 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( )( ) ( ) ( ) ( )1 2 31 2
77 77 88 880 0 0 ;ttt e e γ γ γγ γρ ρ ρ ρ − + +− += + −  

( ) ( )
( )1 2 3

1 2 2
2

78 78 0 ;
t

t e
γ γ γ

ρ ρ
− + +

=  

( ) ( ) ( )1 2 3
88 88 0 .tt e γ γ γρ ρ − + +=  

where ijφ  are given by  

1 1 1
14 16 17

1 2 3

1 1
23 35

1 3

2tan ;  tan ;  tan ;

tan ;  tan .

j j j j j

j j j j

φ φ φ
γ γ γ

φ φ
γ γ

− − −

− −

    ′ ′+ +
= = =     

     
  ′ ′− −

= =   
   

 

In our case, we have three qubits space { }3 2 1 0,1iξ
ξ ξ ξ

=
, and our parameter in 

units 2π MHz  are  

1 2 3400;  200;  100  10;  0.4J Jω ω ω ′= = = = =  

1 2 30.05;  0.05;  0.05.γ γ γ= = =  

the time is normalized by the same factor of 2π MHz , and we include in this 
study the entangle state  

( )1
1 000 111 001 110 .
2

Ψ = + + +               (30) 

Figure 4 shows the behavior of the entangled states W  and GHZ  as a 
function of time when this entangled state interact with the environment. Purity 
behavior, ( )2tr ρ , is also shown. The system starts as a pure entangled state, it  
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Figure 4. ( )3Cρ  and Purity for the entangled state W , GHZ , and 1Ψ . 

 
evolves in a mixed state and finishes in the pure ground state ( )000 , after 
sharing energy with the environment. The states GHZ  and 1Ψ  behave 
more robust than the state W , ( )3Cρ  grows since other entangled stated con- 
tribute to this function. In contrast, starting with the entangled state W , there 
are not other entangled states which make contribution to the function ( )3Cρ  in 
the dynamics, and one sees an exponential decay. 

4. Conclusion 

We have studied the full factorization of a state made up of up to 4-qubits basic 
states. We have seen that there is an indication that the number of conditions to 
characterize a factorized state grows exponentially with the number of qubits. 
For two, three and four basic qubits, we showed the conditions in order to have a 
factorized state, and if any of one of these conditions fails, one gets instead an 
entangled state. Therefore, an entangled state is also characterized by the com-
plement of each of this conditions, and the resulting expression has been de-
noted by ( ) ( )2,3, 4nC n = . This non-negative function expressed in terms of the 
coefficients of the wave function or in terms of the density matrix elements 
represents a measurement of the entanglement of any wave function made up of 
basic n-qubits ( )2,3, 4n = . Using this function, we study the decay of entangled 
states W , GHZ , and 1Ψ  due to interaction with environment, and we 
noticed a great different behavior of the function ( )3Cρ , indicating some type of 
robustness behavior of the states GHZ  and 1Ψ . The main reason for this 
different behavior is that the entangled states GHZ  and 1Ψ  contain the 
ground state 000 , which is the final state in the dynamics. 
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