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Abstract 
The evaluation of Gaussian functional integrals is essential on the application 
to statistical physics and the general calculation of path integrals of stochastic 
processes. In this work, we present an elementary extension of an usual result 
of the literature as well as an alternative new derivation. 
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1. Introduction 

In the present work, we apply theorems of Linear Algebra to derive and extend 
an usual result of the literature on evaluation of multidimensional Gaussian in-
tegrals of the form [1]:  
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where Tx  is the transpose of every non-zero column vector nIR∈x  and 

T Ax x  is a real positive definite quadratic form of n  variables. In order to 
guarantee the convergence of the integrals, we should have  
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We can also write A  as a sum of its symmetric and skew-symmetric com-
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2. Application of the Spectral Theorem of Linear Algebra 

From the Spectral Theorem of Linear Algebra [2], a real matrix will be diagona-
lized by an orthogonal transformation if and only if this matrix is symmetric. 

We then apply an orthogonal transformation to the quadratic form  
T

T
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x x :  

T T T T;   ;   1lθ θ θ θ= = =x y x y                   (3) 

where the columns of the matrix θ  are the orthonormal eigenvectors of the 

matrix 
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We then have  
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where 
T

2 d
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 is the corresponding diagonal form.  

From Equation (3) and Equation (4) we have:  
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where 1, , lλ λ  are the eigenvalues and 1, , ln n  their algebraic multiplicities 
[2] with  

1 2 ln n n n+ + + =                       (6) 

The transformation of the volume element is  

1 1d d det d dn nx x y yθ=                      (7) 

and we can choose  

det 1θ =                            (8) 

from Equation (3) and the adequate organization of the orthonormal eigenvec-
tors as the columns of the matrix θ .  

The quadratic form can then be written as  
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From Equation (8) and Equation (9), the multidimensional integral will result  
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since each unidimensional integral is given by  
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We finally write, from Equations ((5), (10), (11)),  
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and we see from Equation (12) that the original matrix A  does not need to be 
diagonalizable [1]. The usual result of the literature will follows if T=A A , i.e., 
if A  is itself a symmetric matrix.  

3. Application of Sylvester’s Criterion Theorem 

We now present an alternative derivation of the result obtained above. We will 
show that there is no need to apply an orthogonal transformation to diagonalize 
a quadratic form in order to derive formula (12).  

Let us write the nIR  vectors:  

1 1
ˆ ˆ,    

n n

j j j jk k
j k

x e b e
= =

= =∑ ∑x b                    (13) 

where ˆ ,   1, ,je j n= 
 is an orthonormal basis,  
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The first ( )1j −  terms of the expansion of x  will produce null determi-

nants of the x
j j

B
×

 matrix. The thj  term will correspond to the determinant 

det j jB ×  times jx . The ( )1 thj +  term will lead to a determinant of a 1j
j j

B +
×

  

matrix which is obtained by replacement of thj  column of the matrix j jB ×  by 
a column whose elements are 1 1 1j jjb b+ +

, times 1jx + . The thn  term will cor-
respond to the determinant of a n

j j
B

×
 matrix which is obtained by replacement 

of the thj  column of the matrix j jB ×  by a column whose elements are  

1n j nb b
, times nx . We can then write,  
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It should be noted that if n nB B× =  is a symmetric matrix like 
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the quadratic form T Bx x  can be written as  
2

T T

1 1 1

det

det det

xn j j

j j j j j

B
A B

B B
×

= − × − ×

 
 
 ≡ = ∑x x x x               (18) 

where  

0 0 1 1 11 1
1 1

det 1,  det ,  det xB B b B× ×
×

= = = ⋅b x
 

From Equation (17), we can write Equation (18) as  
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From Sylvester’s Criterion [3], the quadratic form T Bx x  is positive definite 
if and only if all upper left determinants ( )det , 1, ,j jB j n× =   of the symmetric 
matrix B  are positive. We should note [4] that for each variable jx :  
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since the other variables 1, ,j nx x+   which are contained on the term  
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where α  is a real constant and f  a generic function of its arguments.  

We then have from Equation (19) and Equation (20):  
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