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Abstract 
In this paper we obtain the equivalence between modulus of smoothness and 
K-functional on rotation group SO(3). 
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1. Introduction 

Many results of approximation are based on Euclid spaces or their compact sub-
sets. Periodic approximation is based on compact group {exp(ix)}, whereas ma-
trix group U(n) is the generalization of {exp(ix)}. We know homomorphism 
between SU(2) and rotation group SO(3), which has many applications in Phys-
ics and Chemistry. Some approximation problems on compact groups have been 
studied since in 1920s F. Peter and H. Weyl proved the approximation theorem 
on compact group, that is, the irreducible character generate a dense subspace of 
the space of continuous classes function. For instance, Gongsheng (see [1]) stu-
died the basic problems of Fourier analysis on unitary and rotation groups, in-
cluding the degree of convergence of Abel sum based on Poisson kernel. Xue-an 
Zheng (see [2] [3]) studied the polynomial approximation on compact Lie groups. 
D. I. Cartwright et al. studied Jackson’s theorem for compact connected Lie 
groups (see [4]), and so on. In this paper, we study the modulus of smoothness 
and K-functional on rotation group SO(3) and as classical casein Euclid space we 
will obtain the equivalence between them. 

Let ( ){ }T(3) 3; ;  ; det 1G SO GL= = ∈ = =x x x E x  be the rotation group, 
where ( ),GL n   is the group of invertible real (n × n) matrices. For 1 ≤ p < +∞, 
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( ){ }1/
: ( ) d ( )

pp
p G

L G f f x xµ  < +∞ ∫ , where μ is the normalized Harr measure 
on G. For iD ∈g , the Lie algebra of G = SO(3), i = 1, 2, 3, Let  

{ }, ( ) : ( )r r
p i i pL G f D f L G= ∈ , i = 1, 2, 3, where r

iD g  denote the r-order deriva-
tive of g in direction iD . 

We also write the difference of function f and modulus of smoothness in the 
direction Di as follows 
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and 

( ) { }, , sup : 0 , 1
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r i sD ip p

f f s Dω δ δ= ∆ < < =  

where iD  is the norm induced by Killing inner product on g. 
We denote 

( ) ( )
3

,
1

, ,r r ip p
i

W f fδ ω δ
=

=∑ . 

Accordingly, we denote K-functional as follows 

( )
( ){ }

,
, , inf

r
p i

r r
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K f f g D gδ δ
∈

= − +  
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K f K fδ δ
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Further, for the isotropic case. 
Let multi-indice ( ) 3

1 2 3, ,r r r N+= ∈r , and ( )1 2 3, ,s s s= >s 0 , ( )1 2 3, ,t t t=t ,  
( ){ }1 2 3, , :α α αΛ = = <a a r , { }, 1, 2,3i ire i∂Λ = = , here ie  is the unit vector in 

the i-th direction. Define 

( ) ( )31 2
1 1 2 2 3 3

rr rr
s s D s D s Df x f x∆ = ∆ ∆ ∆ , 

and 

( ) { }31 2
1 1 2 2 3 3

0
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s D s D s D ip p p
f f f D iω

< <
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r s
s t

t 0 s t , 

and 

( ) ( ), ,p pW f fωΛ
∈∂Λ

= ∑ r
r

t t . 

The corresponding K-functional is defined by 

( ), inf
p

p p pg L
K f f g g

ΛΛ
∈ ∈∂Λ

 = − + 
 

∑ r r

r
t t D , 

where ( ) ( ){ }: ,p p pL L G f f L GΛ Λ= = ∈ ∈∂ΛrD r , 31 2
1 2 3

rr rt t t=rt , 31 2
1 2 3

rr rD D D=rD . 
In the next paragraph we denote by C or Ci the positive constants but are not 

the same in the different formula. And A B  means there exist two positive 
constants C1, C2 satisfying C1A ≤ B ≤ C2A. 

2. Theorems and Their Proofs 

We will use the next lemma 1. 
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Lemma 1 [5] [6]. If [ ]1 ,rf L t t s∈ + , then  
( )

0

( ) ( / )( ) d
rrsr r r

s
f t u N u sf t s u

s
+

∆ = ∫ , where Nr denotes the normalized B-spline 

of order r (degree r-1). 
Theorem 1. If ( )(3)pf L SO∈ , 1 p≤ < +∞ , r +∈ , 0 δ< ∈ , then 

( ) ( ), ,r rp pW f K fδ δ . 

Proof. For i = 1, 2, 3, we first construct the approximation operators as follows 
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By Lemma 1, 

( ) ( ) ( ) ( )1
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∑ , 

where rD F f= . 
Obviously, iI  is a bounded operator from Lp to Lp(1 p≤ < +∞ ). 
If we differentiate r times, then 
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So, 
( ), ,

i

r r r
i i r sD r r i pp p

s D g c f c f sω≤ ∆ ≤ .              (1) 

Clearly, 
( ), ,i r i ppf g C f sω− ≤ . 

We get 

( ) ( ), ,, ,r i r ip pK f s C f sω≤ , 

and 

( ) ( ), ,r rp pK f CW fδ δ≤ . 

Conversely, for ( ) ( ),i p ig x L G∈ , using (see [7]) 
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Thus 

( , ) ( , )r p r pW f CK fδ δ≤ . 

Theorem 2. For ( ),1pf L G p∈ ≤ < +∞ , 0>t , then 

( ) ( ), ,p pW f K fΛ Λt t . 

Proof. Noting that for pg LΛ∈ ,  

( ), p p
g gω ≤ r r

r t t D , 

we get 

( ), p p
W g gΛ

∈∂Λ

≤ ∑ r r

r
t t D . 

Writing f f g g= − +  and using the last inequality will give 

( ) ( ), ,p pW f CK fΛ Λ≤t t . 

Moreover, we construct the approximation operator as follows 
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where 
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1 2 31 1 2 2 3 3

1 2 3

, r r rN u s N u s N u s
N

s s s
=r s u . 

It easy to see that by using the boundedness of iI , i = 1, 2, 3. 
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1 1 1 2 1 2 1 2 3
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r i i pp
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It is similarly to (1), we have 

p p
D g f≤ ∆r r r

st  and ( ),
p

D g W fΛ
∈∂Λ

≤∑ r r

r
t t . 

Thus ( ) ( ), ,p pK f CW fΛ Λ≤t t . 
Remark: Theorem 1 and theorem 2 can be easily generalized to SO(n) (n > 3). 
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