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1. Introduction

In this paper, we are concerned with local existence and blow-up of the solution

for nonlinear wave equations of Higher-order Kirchhoff type with strong dissi-

pation:
u, +(-A)"u, + (a +b||D’”u||2q)(—A)m u=lu"u, (x,1)eQx[0,+0), (1.1)
u(x,1)=0, %:0, i=1,2,--,m—1, x€dQ, t €(0,+x), (1.2)
A
u(x,0)=u0(x), u,(x,0)=u1(x),er, (1.3)

where () isabounded domainin R" with the smooth boundary 0Q and v
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is the unit outward normal on O€2. Moreover, m >1 is an integer constant,
and ¢, p, a and b are some constants such that ¢>1, p>0, a>0,
b>0 and a+b>0. We call Equation (1.1) a non-degenerate equation when
a>0 and b>0, and a degenerate one when a=0 and b>0. In the case of
a>0 and b =0, Equation (1.1) is usual semilinear wave equations.

It is known that Kirchhoff [1] first investigated the following nonlinear vib-
ration of an elastic string for 0= f =0:

52 0 EhifouY , |0
Pha—;+5a—j={l70+zjo (a_z) dx}aTL;Jrf; O=xsLr=0, 4

where u =u(x,t) is the lateral displacement at the space coordinate x and
the time 7; p:the mass density; /:the cross-section area; L :thelength; E:
the Young modulus; p0: the initial axial tension; ¢ : the resistance modulus;
and [ : the external force.

When a=1,b=0,m=1, the Equation (1.1) becomes a nonlinear wave

equation:
w, —Au—Au, =[ul" u, (x,1) € Qx[0,+0), (1.5)
u(x,0) =1y (x), u,(x,0)=u(x), xeO, (1.6)
u(x,1)=0, (x,1)e0Qx[0,+w). (1.7)

It has been extensively studied and several results concerning existence and
blowing-up have been established [2] [3] [4].
When a >0, b>0, m=1, the Equation (1.1) becomes the following Kirchhoff

equation with Lipschitz type continuous coefficient and strong damping:

u,—M (”Vu"z)Au —wAu, = |u|p u, (1.8)
u(x,O):uo (x), u, (x,O):ul (x), xeQ, (1.9)
u(x,1)=0, (x,1)edQx[0,T], (1.10)

where Qe R", N>1 isabounded domain with a smooth boundary 4Q. p >
2 and M (s)=m,+bs’ is a positive local Lipschitz function. Here, m, >0,
b20, y21, s20. It has been studied and several results concerning existence
and blowing-up have been established [5].

When m =1, the Equation (1.1) becomes the following Kirchhoff equation:

u, —(a+b||D'”u |2q)Au —Au, :|u|p u, (x,t) e Qx[0,+00), (1.11)
u(x,0)=u0(x), u,(x,0)=ul(x), xeQ, (1.12)
u(x,t)=0, (x,t)eoQx[0,+x), (1.13)

where Q isabounded domainin R" with the smooth boundary 0Q and v
is the unit outward normal on 0Q. Moreover, ¢, p, a and b are some
constants such that ¢>1, p>0, a>0, b>0 and a+b>0. It has been
studied and several results concerning existence and blowing-up have been
established [6].
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When m =1, reference [7] has considered global existence and decay esti-

mates for nonlinear Kirchhoff-type equation:

u, —(o("Vu”z)Au —alu, =b|u|ﬁL2 u, (x,t) € Q><(0,+oo), (1.14)

u(x,1)=0, (x,1)el; x(0,+x), (1.15)
0 ou,

¢(||Vu||2)a—z+agzg(u,), (x,2) ey x(0,+0), (1.16)

u(x,0)=u0(x), u,(x,0)=ul(x), xeQ, (1.17)

where Q is a bounded domain of R"(n>1) with smooth boundary I :=0Q

such that I'=T T, and T'),I', have positive measures, and v is the unit

o . ..
outward normal on 0Q,and — is the outward normal derivative on 0Q.
V

In this paper we shall deal with local existence and blow-up of solutions for
nonlinear wave equations of higher-order Kirchhoff type with strong
dissipation. The equation may be degenerate or nondenerate Kirchhoff equation,
and derive the blow up properties of solutions of this problem with negative and
positive initial energy by the method different from the references [5]-[13].

The content of this paper is organized as follows. In Section 2, we give some
lemmas. In Section 3, we prove the existence and uniqueness of the local
solution by the Banach contraction mapping principle. In Section 4, we study the
blow-up properties of solution for positive and negative initial energy and esti-

mate for blow-up time 7~ by lemma of [9].

2. Preliminaries

In this section, we introduce material needed in the proof our main result. We
use the standard Lebesgue space L”(Q) and Sobolev space H"(Q) with

their usual scalar products and norms. Meanwhile we define

Hy' (Q)= {u e H"(Q): % =0,i=0,1,---,m— 1} and introduce the following
\2
abbreviations: [0 =[,mq) > Mg =gy H=Hey> M, =M~ for

any real number p>1.

Lemma 2.1 (Sobolev-Poincaré inequality [8]) Let s be a number with

2<s5<+400, n<2m and 2<s< , n>2m. Then there is a constant K

n—.om
dependingon Q and s such that
(-A)2u

"”'L <K , Yue H) (Q) 2.1)

Lemma 2.2 [9] Suppose that 6 >0 and B(r) is a nonnegative C?(0,+)

function such that

%%
035: Scientific Research Publishing

B"(1)-4(5+1)B'(t)+4(5+1)B(1)=0. (2.2)

If
B'(0)>nrB(0)+K,, (2.3)
13
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then we have V>0, B'(r)> K,. Here, K, isa constant and
r= 2(5 + 1) -2, /(5 +1)&  the smallest positive root of the equation
rP—4(5+1)r+4(5+1)=0.

Lemma 2.3 [9] If J(¢) is a non-increasing function on [f,,+o), 7, >0
such that

1
(1) za+b(1)"5, Vi, 20, (2.4)
where a >0, b e R . Then there exists a finite time 7~ such that
lim J(t) =0.
T

Moreover, for the case that 5 <0, J(to) < min{l, /ib}’ an upper bound of
@
1 Vb
In ;
N-=b a ’
o J (1)

J(t
If 5=0, we have T*St0+ﬁ;
Ja

T" is t,+

. J(to) . %é‘c =
If b>0,wehave T ST or T"<t,+2 ﬁ 1—[1+cJ(t0)}25 .

3. Local Existence of Solution

Theorem 3.1 Suppose that 0< p < (0<p<+mw if 0<n<2m) and

n—2m
for any given (uy,u,)eH™ (Q)NH (Q)xL*(Q), then there exists T >0
such that the problem (1.1)-(1.3) has a unique local solution satisying

ueC([0.T];H>" (Q)H;' (Q)), o)
u, € C"([0.7]: 2 (Q)) 2 (0.T; Hy (). '

Proof. We proof the theorem by Banach contraction mapping principle. For

T>0 and R >0, we define the following two-parameter space of solutions:
veC’ ([O,T);Hz’” (Q)nH (Q)),
Xpp =99, e C°([0.7);: 1 (Q)) L (0,T; Hy (Q)): [ (32)
e (v(t)) <R’ te [O,T],V(O) =U,,V, (0)

U

where ¢ (v(t))z"Dzmv"2 +||vt||2. Then X, is a complete metric space with

the distance

d(v,,v,) = supe, (vl (1)-v, (t)) (3.3)

0<t<T

We define the non-linear mapping S in the following way. For ve X, ,,

u=Sv isthe unique solution of the following equation:

u, +(-A)"u, + (a + b"DmV"zq )(‘A)m u= |V|p v (3.4)

14
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u(x,1)=0, %20, i=1,2,--,m—1, x€0Q, t €(0,+x), (3.5)
Y
u(x,O)zuO (x), u, (x,0)=u1(x), xeQ. (3.6)

We shall show that there exist 77>0 and R >0 such that
1) S maps X, into itself;

2) S isa contraction mapping with respect to the metric d (-, ) .

First, we shall check (i). Multiplying Equation (3.4) by 2u, +§(—A)m u, and

integrating it over ), we have

de, (u(t

D\ Ao+ 2
dt 3

i E(a b )||D2'”u||2

=(D"u ’ %(a + b||D'"v||2q ) + (|v|p v,2u, + %(—A)m u] (3.7)

=1 +1,,
2 m 124 m 2 Umom 2 2 2m
where e, (u(t)):"u," +(a+b||D v" )"D u" +§||D u” +§(u,,D u)

To proceed the estimation,we observe that for ve X, ,. By Lemma 2.1, we
have

1 = | %(a +b||Dmv||2q)
= bl o
= 2bq "l [ (Do) (338)
<2bgK> R Do |27
< 2bgK* R | D"l
< 2bgK* R*e, (u(1)).

Because of 0< p<

(0< p<+wo if 0<n<2m),then

I, = (|v|p v, 2u, +§(—A)m uj
< ZUQ |v|p vu,dx‘ + %Uﬂ |v|p 'z Dzmudx‘

p+l p+l

2p+2

<2 |Ivlg, + 2 foeml

2p+2

5 (3.9)
< 2K2])+2Rp+1 "ut " +§K2]7+2Rp+l

Dy
<2KPHRM (el (u(t)))% +§KZP*ZR"” (el (u(t)))%
<4K>PPR™ (¢ (u (z)))% :

Since %(MZ,DZ’”u)Z—%”ut”z —%"D%"Z by the Young inequality, we see

that

K3
036"
’02:.
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1 1 1
e, (u(t))z 5"% "2 +g||D2m”||2 > 54 (u(r)). (3.10)
Combining these inequalities, we get
de, (u(1)) 4 - 3
WJ?"D% " <12bgK* R, (u(t)) +12K°7 2R (e (u(2))?. 311)

Therefore, by the Gronwall inequality, we obtain

2
e (u()+ 3 as< &ez () +12K“’”R"“T} U, (3.12)

where ¢, (u(0)) =l +(a+ 7 J|oruof 5[0 + (0%

and
e (u(0) <2+ (1+a+ b0 [ )| (3.13)
So, forall ¢e[0,T], we obtain
o w0) 4] o o)
<6e, (u(2))+ 8 [Du, (s ds (3.14)

1 2
< 6|:(2 "u1 "2 + (1 +a+ b”D'”uO ||2q )"D’”L,O"2 )2 + 12K2p+2Rp+1T] elzquzqRZqT.

Therefore, in order that the map S verifies 1), it will be enough that the

parameters 7' and R satisfy

1 2
6[(2||u1 I +(1+a+b||D'"uO||2q)”D’”uo ||2)2 +12K2"*2RP”T} Q2K AT (3.15)

<R*.
Moreover, it follows from (3.14) that u, € L” (o, 0 Q) (o, T;H! (Q))
and ue L”(0,T; H™" (Q)~ H,' (Q)). It implies
ueC’ ([O,T];HZ'" (Q)nHY (Q)),

(3.16)
u, e C*([0.T]; 2 (Q)) L (0,T; Hy ().

Next, we prove 2). Suppose that (3.15) holds. We take v,v, € X;,, let

u, =Sv,, u, =8v,,and set w=u, —u,. Then w satisfies

w, +(=A)" w, +(a+b||Dmv1 ||2q)(—A)m w (3.17)
= —b("Dmvl ||2q —”Dsz ||2q )(‘A)m uy + (|V1 |p Y _|V2|p v, )’ (3.18)
(x,1) e Qx[0,T],

w(x1) :% ~0, (v.r)ednx[0.1], (3.19)
w(x,0)=0, w,(x,0)=0, xeQ. (3.20)

K2
16 0:§§: Scientific Research Publishing



G.G. Linetal.

Multiplying (3.17-3.18) by 2w, and integrating it over Q and using
Green’s formula, we have

2

%["m (o b||Dmvl||2")||me||j 2D,

o R R I R e o)

(3.21)
+2(|v1|p vy =[]’ vz,w,)
=L+1,+ 1
To proceed the estimation, by Lemma 2.1 observe that
1=l S (aso|omi[[*) < bk (w(0). G22)
A (R e R g [Ty
<abg| oo + (1-0) ][] -
x([oml+ o o (= v [ ]
< angk R [ () v () [ () -
where 0<8<1.
I = 2(|vl|p v =l vz,wt)
<2, ((l” I = valax
<2(l, +ll, ) v, A (3.24)
<4KPPR? D7 (v =, )]
<4712 o (o ()~ () [ () -
Substituting (3.22)-(3.24) into (3.21), we obtain
L i G | it P e |
< 2bgK* R* e, (w(1)) (3.25)

+(4bgK R +4K>7 2R ) e, (v, () v, (z))]; B (w(t))]%.

According to the same method, Multiplying (3.17-3.18) by 24w and inte-

grating it over Q , we get

Lo 2o, %0w) |42 oo [ Jfooof
= 2o ~2b (o[ o[ )P D) 26
+2(|vl|p v, —|v2|p vz,Dz’”w)
< 2w [ + (4K R +4K* 2R\, (3 (1) ()] [ (w(0)]
17
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Taking (3.25) +§>< (3.26) and by (3.10), it follows that

de, (w(1))
dt
<2bgK* R*e, (w(t))

+ (quKz"Rz" +8K*PT2RP )[e1 (v1 (t) -V, (t))]% [el (w(t))]% (3.:27)
<2bgK*'R*e, (w(t))
+ (72qu2"R2”1 +T72K*PR? )[e2 (v1 (£)-v, (t))ﬁ [ez (w(t))]% ,
where e, (w(t)) = ||w, ||2 + (a + b"D’"v1 ||2q )"D"’w”2 + %"Dz'"w"2 + %(Wt,Dzmw)
and e, (W(O)) =0.
Applying the Gronwall inequality, we have

e, (w(1)) = (726gK™ R* + T2K>P2R? ) T2 sup (v, (1) ~v, (¢))- (3.28)

0<t<T

So, by (3.10) we have
supe, (u, (£) —u (1)) < CT’ROs<u<p;el (v (£)=v, (1)) (3.29)

where C; , =(72V6bgK> R* + TEK* 2R | T?™ 1f <1, we
can see S is a contraction mapping. Finally, we choose suitable R is suffi-
ciently large and 7' is sufficiently small, such that 1) and 2) hold. By applying

Banach fixed point theorem, we obtain the local existence.

4. Blow-Up of Solution

In this section, we shall discuss the blow-up properties for the problem (1.1)-
(1.3). For this purpose, we give the following definition and lemmas.

Now, we define the energy function of the solution # of (1.1)-(1.3) by

E(t) _ %"ut "2 +%"Dmu”2 N qu+ - ||Dmu 2042 . _1;_ 5 "u 23 ,t2>0. (4.1)
Then, we have
E(1)=E(0)- [0, (s)] ds. (4.2)
where E(O) = %"u, ||2 +%"Dmuo"2 + 2012 ”Dmuo e . i 5 ||u0| ﬁz .

Definition 4.1 A solution u(t) of (1.1)-(1.3) is called a blow-up solution, if
there exists a finite time 7~ such that

lim jﬂ

t—>T

vl dx = 4. (4.3)

For the next lemma, we define
F(0)=F(u(0) =) + [ Jouls)f o (1.4

Lemma 4.1 Suppose that 0< p <

(0<p<+w if 0<n<2m) and

<3

K2
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p 22q hold. Then we have the following results, which are

D F'(t)=(p+4)|u[ =~(4+2p)E(0)+(4+2p)[!|D"u, (s)[ ds, for ¢ =
0;
2)If E(0)<0,weget F'( "D u0|| for t>1t", where
t* = max {0 —_ "Dmuo " }
" (4+2p)E(0) |’
3) If E(O) 0 and if F'( ||D'”u0||2, i.e.jguouldx>0 hold, then we
have F'(r)>|D" u0|| for t>0;

4) If E( )>0 and

F’(o)>[—4+p_*/m]

LF(0)+ (4+2p)E(0)+(4+ p)|D" | ]]Jf"Dmuo [

2 4+p
hold, then we get F'( "D u0|| for t>0.
Proof. Step 1: From (4.4), we obtain
F(t)=2(uu,) +[Du (1) . (4.5)
and
F”(t)

=2+ 2, )+ 0]
=2 + Z(u,—(—A)m (@ bDm] -yl u)+%"Dmu"2 (4.6)

=2 = 2(a+b|pmu Y|l + 2l

p+2
From the above equation and the energy identity and p > 2q, we obtain

F(1)=(4+ p)

—=(p+2)uf ~2(a+sDf* Yol 2]

p+2

(p+ 2)(2E(0)—2 Jolo (9 as-aloraf o+

2q+2 p+2
L)

p+2

_ 2(a +b||Dmu||2q )"D”’u"2 + 2" "'H2
=G )EO)+ s ) o () @ aplorf + 2D

> —(zp+4)E(0)+(2p+4)j;||Dmu, (s)" ds

K2
0:;5: Scientific Research Publishing

(4.7)
Therefore, we obtain 1).
Step 2:If E(0)<0, then by (i), we have
F"(1)z-(2p+4)E(0). (4.8)
Integrating (4.8) over [O,t] , we have that
F'(1)=F'(0)-(2p+4)E(0)s, 120. (4.9)
19
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2
Thus, we get F'(7) > "D"’u0 " for ¢>1t", where

F'(0)~ D", } |

- 0
L 2 E(0)

So, 2) has been proved.
Step 3:If E(0)=0,thenfor >0 we have

F'(0)2 (p+4)|u[ +(2p+4)[ [0, (s)| ds 2 0. (4.10)
Integrating (4.10) over [O,t] , we have that
F'(t)2 F'(0). (4.11)
And because of F'(0)> "D'"uO”2 , i.e.fﬂuouldx >0, then we get
2 2
F'(£)2 F'(0)=2(upot,) + [ D" | > D"

Thus, 3) has been proved.
Step 4: For the case that £(0) > 0, we first note that

2[ (D"u, D", )de = | d

ol ar=[oraff o @)

By using Holder inequality, we have

o =+ (om0 o

2 t 2 t 2 (413)
<ol + ol ace[|pa] ar
So
F'(t)=2(uu,)+ "D"'u"2
2 2 m |7
sl oo
S"u" +||ut|| +||D’”u0|| +IO Dmu” dt+j0||D"’u, dr
= F(0)+ | + |0, | + [0
Thus, we have
F"(0)=(4+ p)F'(1)+(4+ p)F (1)) + K, = p[!|D"w[f arz0,  (a15)
2
where K, =(4+2p)E(0)+(4+ p)|[D"u,] .
Set
B()=F 1)+ 150 (4.16)
p

Then B(r) satisfies (2.2). By conditions

Ff(o){w—_ S+ 4 MF(O)+<4+2p)E<o>+<4+p>||muo||2 H+||Dmuo|r

2 4+p

2
and Lemma 2.2, then F'(7)> "D'”uO" for t>0.

Lemma 4.2 Suppose that 0< p < n

(0<p<+mwo if 0<n<2m) and
n—2m

p 22q hold and that eigher one of the following conditions is satisfied:

20
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1) E(0)<0;
2) E(O):O and Iguouldx>0;
(

3) E 0)>0 and

F'(0)> {2+£_—sz+4p}
2

DWI 2
Uy

2 4+p

[F(O)+ (4+2p) E(0)+ (4+ p) |7, ﬂ .

hold.
2
Then, there exists £, >0, such that F'(7)> "DmuO" for t>1¢,.
Proof. By Lemma 4.1, 7, =¢" incase (i) and ¢, =0 in case2) and 3).

Theorem 4.1 Suppose that 0< p < (0<p<+o0 if 0<n<2m)and

n—2m
p 22q hold and that eigher one of the following conditions is satisfied:
1) E(O) <0;
2) E(O) =0 and _[Quouldx >0;
2\2
(F’(to )= [[D"uo| )
= an
8[F(t0)+(Tl — )| }

F'<o>>[—4+ﬁ—sz +4P]Hp(o>+(‘”ZP)E(OH“I’)"DM”‘)HZ ﬂ+lleuollz

2 4+p

3) 0<E(0)<

hold.
Then the solution u blow up at finite 7. And T" can be estimated by
(4.26)-(4.29), respectively, according to the sign of E (O) .
Proof. Let
r
4

1e[0,77], (4.17)

J(0)=(F () + (1 -0) |

where 7, is some certain constant which will be chosen later. Then we get

J'(1)= —%J(r)“% (F’(t)—||Dmu0||2), (4.18)
and
I (0)=-LI(0) 7 (1) (4.19)

P e R e

By the Hoélder inequality, we obtain

where (1) = F"(t)(F(t)+(n ~1)

F'(t)=2(uu,)+ "Dmu"2

=2(u,u,)+ "D'”uO”2 + ZIS(Dmu,Dmut )dt

Scientific Research Publishing

(4.20)
<2 | + D"ty ||2 +2f! D'”u||2 dr-[![p", |2 dr
= D”’uO”2 +2(«/ﬁ+\/Q_S),
where P=[u(t)[, @= [ Ju(s)[ ds, R=Ju, ()] 5 = ;. (s)] as.
21
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By 1) of Lemma 4.1, we get
F"(1)=—(4+2p)E(0)+(4+ p)(R+S). (4.21)

Then, we obtain
v(t)= [—(4+2p)E(O)+(4+p)(R-i—S)](F(t)-i—(Tl —t)"D'”uO"z)
~(4+p)(VPR + 05 |

=~ (4+2p) E(0)J (1) 7 +(4+ ) (R+5) (T, ~1)
+(4+p)[(R+S)(P+0Q) (\/ﬁ+\/_)}

D[ (4.22)

4

2p)E
>—(4+2p)E(0)J (1) 7,124,

Therefore, we get
p’ £t
J”(t)S[p+7JE(O)J(I) v, 121, (4.23)

Note that by Lemma 4.2, J'(1)<0, ¢ >, Multiplying (4.23) by J'(¢) and
integrating it from ¢, to ¢, we have

2p+4

J()Y za+pI(t) » , 121, (4.24)

pz 2p+4 , 2\2 4
where ang(tO) P {(F (to)—"D'"uO" ) —8E(O)J(to) p},and

ﬂ=€; (0)-

When E(0)<0 and E(0)=0, we obviously have a>0.When E(0)>0,
2 2
(#/(0) - |7 )
=
8[F(t0)+(T1 _to)"Dm”o" }

Then by Lemma 2.3, there exists a finite time 7" such that lim J(7)=0

=T

we also have @ >0 by condition E(0)<

and the upper bounds of T* are estimated respectively according to the sign of
E(0) . This will imply that

lim (||u )+

(T

Dm || ) (4.25)

Next, 7" are estimated respectively according to the sign of E(0) and
Lemma 2.3.

In case 1), we have

T" <t,- J,([") . (4.26)
J'(t)
Furthermore, if J ( ) < min {1, iﬂ} , then we have
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\/7

T" <t,+ \/I R A (4.27)
MEER0
-p

In case 2), we get

or T"<t,— J(I‘)). (4.28)

Ja

In case 3), we obtain

* J(to) * 3;7;4 pc 2
T gﬁ or T St0+2 ’ m 1—[1+G](t0):|p , (429)

A
+8
where ¢ :(ﬁj” . Note that in case 1), 7, =¢" is given Lemma 4.1, and in
a

case 2) and case 3) f,=0.

Remark 4.1 [10] The choice of 7, in (4.17) is possible under some conditions.

2
1) In the case E(0)=0, we can choose T; 2—16"2%" ~ . In particular, we
PPE [
2 2
choose T, =% ,then we get T~ < —16"2%" ~.
P [ PK*|u

2) In the case E(0)<0, we can choose 7, as in 1) if J.Quouldx>0 or

TIZt*—M if IuouldeO.
J'(t,) o

3) For the case E(0)>0. Under the condition E(0)<min{k,,k,},

(4 + p)l:F'(()) _4+p—— sz+4pp(()) _6+p—— W”Dmuo"z

2

(4+p—\/m)(2+p) ’
[4( J ) - 1}[1) ~ 4D

8]0

here k =

2

>

2
4o

if "D”’uo "2 < %, T, is chosen to satisfy k; <T, <k,, where k, = p—4||D'”u "2 4
0

4( jguouldx)z —8E(0)|Ju|" ~1

k, =
8E(0))|

. Therefore, we have

D7ﬂ 2
Uy
ky

\/4(jgu0uldx)2 _SE(0)k,

T<T"<

5. Conclusion

In this paper, we prove that nonlinear wave equations of higher-order Kirchhoff

Type with Strong Dissipation exist unique local solution on

K2
0:{5: Scientific Research Publishing
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ueC([0.7]; 5" (Q) N Hy (Q)), u, € C°([0.T]: L (Q)) L (0.T; Hy' (Q))

Then, we establish three blow-up results for certain solutions in the case 1):
E(0)<0, in the case 2): E(0)=0 and in the case 3): E(0)>0. At last, we
consider that the estimation of the upper bounds of the blow-up time 7" is

given for deferent initial energy.
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