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Abstract 
 
This paper presents the recursive asymptotic hybrid matrix method for acoustic waves in multilayered piezo-
electric media. The hybrid matrix method preserves the numerical stability and accuracy across large and 
small thicknesses. For discussion and comparison, the scattering matrix method is also presented in phys-
ics-based form and coherent form. The latter form resembles closely that of hybrid matrix method and helps 
to highlight their relationship and distinction. For both scattering and hybrid matrix methods, their formula-
tions in terms of eigenwaves solution are provided concisely. Making use of the hybrid matrix, the recursive 
asymptotic method without eigenwaves solution is described and discussed. The method bypasses the intri-
cacies of eigenvalue-eigenvector approach and requires only elementary matrix operations along with thin- 
layer asymptotic approximation. It can be used to determine Green’s function matrix readily and facilitates 
the trade-off between computation efficiency and accuracy. 
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1. Introduction 
 
For many years there has been considerable interest in 
the study of acoustic wave propagation in multilayered 
piezoelectric media. Many techniques have been de-
veloped for analysis of such media, including transfer 
matrix method [1], impedance/stiffness matrix method 
[2-4], scattering/reflection matrix method [5-7] and hy- 
brid matrix method [8]. A comprehensive review of 
these methods has been provided in [9] along with their 
variants, numerical stability, computational efficiency, 
usefulness and deficiency. Since the transfer matrix method 
becomes unstable toward large thicknesses, while the im-
pedance matrix method is inaccurate toward small 
thicknesses, they are not to be discussed further below. 
On the other hand, owing to their numerical stability 
and accuracy, both scattering and hybrid matrix meth-
ods deserve to be exploited further as mentioned or de- 
monstrated in some recent works [10-12]. In particular, 
the scattering matrix methods so far have been pre-
sented more in physics-based form (in terms of reflec-
tions and transmissions), which has motivated the uni-
fied matrix formalism in [10]. However, with the uni-
fied formalism therein, it is still not clear about any 
relationship or distinction with hybrid matrix method. 

Moreover, most matrix methods thus far rely on the 
eigenwaves solution in their basic building blocks. 
Since eigensolver often takes substantial computations, 
it is useful to consider other methods without the need 
for eigenwaves solution [9]. 

In this paper, we present the recursive asymptotic 
hybrid matrix method for acoustic waves in multilay-
ered piezoelectric media. The method is extended from 
the non-piezoelectric case [8] and exploits the hybrid 
matrix which preserves the numerical stability and ac-
curacy across large and small thicknesses (instead of 
stiffness matrix [13] that may become inaccurate). For 
discussion and comparison, we also present the scat-
tering matrix method in physics-based form and co-
herent form. The latter form resembles closely that of 
hybrid matrix method and helps to highlight their rela-
tionship and distinction. For both scattering and hybrid 
matrix methods, their formulations in terms of eigen-
waves solution are provided concisely. Making use of 
the hybrid matrix, the recursive asymptotic method 
without eigenwaves solution is described and discussed. 
The method bypasses the intricacies of eigenvalue-eigen- 
vector approach and requires only elementary matrix ope- 
rations along with thin-layer asymptotic approximation. 
It can be used to determine Green’s function matrix 
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readily and facilitates the trade-off between compu- 
tation efficiency and accuracy. 

 
2. Acoustic Waves in Multilayered  

Piezoelectric Media 
 
2.1. Problem Formulation 
 
Figure 1 shows a planar multilayered structure compris-
ing N piezoelectric layers stratified along ẑ  direction 
(within optional external layers 0 and N+1). For each 
layer f of thickness fh , its upper and lower interfaces/ 
boundaries are denoted by fZ   and fZ  , respectively. 
Let the fields in each layer f be described by field vector 

ff  formed by generalized stress vector fσ  (compris-
ing normal stress fτ  and normal electric displacement 

zfD ) and generalized velocity vector fυ  (comprising 
velocity fv  and the rate of change of electric potential 

f fj  ), i.e.,  

( )
( )

( )
f

f
f

z
z

z

 
  
 

σ
f

υ
               (1) 

( ) ( )
( ) , ( )

( ) ( )
f f

f f
zf f

z z
z z

D z z
   

    
   

τ v
σ υ        (2) 

Assuming plane harmonic wave with exp( )j t  time 
dependence and transverse wavenumber t tk s , the 
field vector ff  satisfies a first-order differential equa-
tion as 
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fA  consists of the material parameters of layer f speci-
fied in terms of mass density f  and various stiffness 
constants, piezoelectric stress constants and permittivity 
via f ’s (see [1]). 
 
2.2. Solution with Eigenwaves 
 
Equation (3) can be written as an eigenvalue problem  

( )f
f zf fjk  A            (5) 

whose solutions represent the eigenwaves within each 
layer f. For convenience, the normal wavenumbers zfk   

 

Figure 1. Geometry of multilayered piezoelectric media. 
 
and their associated eigenvectors f  can be grouped 
into the following matrices:  
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Here, ( )f zP  is a diagonal matrix of exp( )zfjk z  that 
is partitioned into ( )f zP  and ( )f zP . The superscripts 
‘>’ and ‘<’ stand for “upward-bounded” and “down-
ward-bounded” partitions, which correspond to upward- 
bounded and downward-bounded eigenwaves respec-
tively (cf. boundedness/radiation condition). In line with 
field vector (1), the eigenwave matrix fψ  is decom-
posed into ,f f

 σ υ  and ,f f
 σ υ  partitions. Each of 

these may be further partitioned in accordance with their 
compositions in (2) as 

,f f
f f

zf fD 

 
  

 
 
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τ v
σ υ            (8) 

(Note that our convention in (7)-(8) is that the notation 
without superscript ‘>’ or ‘<’ represents fields while the 
same notation with such superscript represents waves of 
upward-bounded or downward-bounded type.) 

Using the matrices above, the field vector solution can 
be expressed as 

( ) ( ) ( )f f f f f fz z z f ψ P c ψ w         (9) 

fc  is the coefficient vector (to be determined), while 
( ) ( )f f fz zw P c  is the wave amplitude vector that 

lumps the exponential terms together. Following the up-
ward-bounded and downward-bounded associations 
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above, these vectors can be partitioned into 

( )
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Note that ( )f zf , ( )f zP , ( )f zw  (and their decom-
positions) are functions of z, while fψ , fc  (and their 
decompositions) are not. Furthermore, the field vector 

ff  is continuous across the interface of two different 
layers, so we have 1 1( ) ( )f f f fZ Z 

 f f . However, the 
wave amplitude vector fw  is not continuous with 

1 1( ) ( )f f f fZ Z 
 w w . Thus, it is important to specify 

exactly the z location of the interface to be within which 
of the two adjacent layers.  
 
2.3. Scattering Matrix Method 
 
Using the eigenwaves in each layer f, one can proceed to 
determine the solution for a stack of multilayered media. 
To that end, we first define the local interface scattering 
matrix that better describes the physics of wave scatter-
ing (reflection/transmission) at the interface of layers f 
and f + 1: 
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, 1
l
f f r  and , 1

l
f f t  denote the local reflection and trans-

mission matrices for waves incident from layer f to f + 1, 
while 1,

l
f fr  and 1,

l
f ft  denote those for incidence 

from layer f +1 to f. These matrices can be derived di-
rectly in terms of the eigenwaves of both layers as  
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Based on the local interface scattering matrix, one can 
determine the scattering matrix for additional layers (one 
at a time) of a stack using certain recursive algorithm. In 
particular, consider the downward-bounded waves inci-
dent from layer f +1 toward layer 0. The stack reflection 
and transmission matrices, 1,0f r  and 1,0f t , can be ob- 
tained from the local interface scattering matrix and the 
preceding ,0fr  and ,0ft  using the recursive algorithm 
(cf. (23) and (25) of [9]): 
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Likewise, the stack reflection and transmission matrices 

0, 1f r  and 0, 1f t  for incidence of upward-bounded 
waves from layer 0 toward layer f +1 can also deter-
mined via recursive algorithm:  
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The form of (13)-(16) facilitates the physics-based de- 
scription of wave multiple reflections in the stack of mul- 
tilayered media.  

As an alternative, it is instructive to define the matrix 
relating the wave amplitude vectors in the form  
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Such matrix has been denoted as layer-interface scatterer 
[9], since it combines the layer scatterers ( )f fhP  and 

( )f fh P  with interface scattering matrix as 
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To be in coherent form, the stack scattering matrix 
[1: ]fS  is also defined in place of ,r t , which embeds 

(within layers 0 and f+1) the stack from layer 1 to f (de-
noted by the superscript [1:f]), i.e.  
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In terms of such stack matrix, (13)-(16) can be rewritten 
as  

[1: ] [1: 1] [1: 1] [1: 1] 1 [1: 1]
11 11 12 11 22 11 21( )f f f f f f f      S S S S I S S S   (21) 

[1: ] [1: 1] [1: 1] 1
12 12 11 22 12( )f f f f f   S S I S S S              (22) 

[1: ] [1: 1] ) 1 [1: 1]
21 21 22 11 21( )f f f f f   S S I S S S              (23) 

[1: ] [1: 1] [1: 1] 1
22 22 21 22 11 22 12( )f f f f f f f    S S S S I S S S       (24) 

Equations (21)-(24) constitute the recursive algorithm of 
the so-called generalized total scattering matrix of [10]. 
In essence, they represent a full matrix variant of algo-
rithm A3 in Table 1 of [9]. 
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3. Recursive Asymptotic Hybrid Matrix 
Method 

 
3.1. Hybrid Matrix Method 
 
The scattering matrix method in the previous section 
involves relations among wave amplitude vectors f

w  
and f

w . As mentioned earlier, since these vectors are 
not continuous across interfaces, it should be more con-
venient to work directly with field variables instead. In 
this aspect, a variety of definitions and algorithms are 
possible including the transfer and impedance matrix 
methods. These methods are not unconditionally stable 
since they may cause numerical instability or inaccuracy 
problem for very large or very small layer thickness. 
Such problem can be overcome altogether by resorting to  
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fH  is called layer hybrid matrix since it has a mixture 
of impedance, admittance and transfer elements. Using 
the eigenwaves in each layer, the layer hybrid matrix can 
be determined as  
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It can be analytically shown that fH  is still numeri-
cally stable even when the layer thickness tends to infin-
ity or zero. Indeed, assuming at least slight loss as in 
practice, when the layer thickness tends to infinity, i.e. 

fh  , ( )f fh P  and ( )f fhP  tend to zero, the hy-
brid matrix in (26) reduces to 
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On the other hand, when the layer thickness tends to zero, 
it is evident that ( ) ( )f f f fh h   P P I  with 0fh  , 
thus the hybrid matrix in (26) becomes 
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Therefore, the hybrid matrix preserves the numerical 
stability and accuracy across large and small thick-
nesses. 

For multilayered media, the stack hybrid matrix [1: ]fH  
for a stack from layer 1 to f (denoted by the superscript 
[1:f]) is defined by 
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This stack matrix can be obtained by incorporating the 
layer matrix fH  into the recursive algorithm: 

[1: ] [1: 1] [1: 1] [1: 1] 1 [1: 1]
11 11 12 11 22 11 21( )f f f f f f f      H H H H I H H H  

  (30) 
[1: ] [1: 1] [1: 1] 1
12 12 11 22 12( )f f f f f   H H I H H H       (31) 

[1: ] [1: 1] ) 1 [1: 1]
21 21 22 11 21( )f f f f f   H H I H H H      (32) 

[1: ] [1: 1] [1: 1] 1
22 22 21 22 11 22 12( )f f f f f f f    H H H H I H H H   (33) 

Notice that the form of (30)-(33) resembles closely 
that of (21)-(24), which helps to highlight their rela-
tionship and distinction. In particular, both scattering 
matrix and hybrid matrix do not differ much in their re-
cursive algorithms for a stack of multilayered media. 
However, besides relating different entities (waves fw  
vs. fields ff ), their basic matrices are distinct, i.e., fS  
involves eigenwaves of two layers in (12) and (18); while 

fH  involves eigenwaves of individual layer only in (26).  
 
3.2. Solution without Eigenwaves-Recursive 

Asymptotic Method 
 
Thus far both scattering and hybrid matrix methods rely 
on the eigenwaves (of two or one layers) as the input (for 

fS and fH ) in each recursion to arrive at [1: ]fS  and 
[1: ]fH . For such eigenwaves solution, there exist various 

intricacies of solving the eigenvalues and eigenvectors 
including complex root searching, degeneracy treatment 
and upward/downward eigenvector sorting or selection. 
To obviate the need for eigenwaves, we resort to the re-
cursive asymptotic hybrid matrix method. The method 
bypasses the intricacies of eigenvalue-eigenvector ap-
proach and requires only elementary matrix operations 
along with thin-layer asymptotic approximation as de-
scribed below.  

For each individual layer f, we geometrically subdi-
vide the layer into n+1 sublayers having thicknesses 

/ 2i
i fd h  for 1, 2,...,i n  and 1 / 2n

n fd h   as 
shown in Figure 2. For the thinnest sublayer n+1, its 
hybrid matrix is obtained directly by thin-layer asymp-
totic approximation: 
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x
z

 
Figure 2. Geometric subdivision of layer f into n + 1 sublay-
ers. 
 
Starting with this matrix, we implement self-recursions 
as 

( ) ( 1) ( 1) ( 1) ( 1) ( 1) 1 ( 1)
11 11 12 11 22 11 21( )i i i i i i i        H H H H I H H H  (35) 

( ) ( 1) ( 1) ( 1) 1 ( 1)
12 12 11 22 12( )i i i i i     H H I H H H            (36) 

( ) ( 1) ( 1) ( 1) 1 ( 1)
21 21 22 11 21( )i i i i i     H H I H H H            (37) 

( ) ( 1) ( 1) ( 1) ( 1) ( 1) 1 ( 1)
22 22 21 22 11 22 12( )i i i i i i i        H H H H I H H H  (38) 

This recursive algorithm proceeds until i = 1 and the 
layer hybrid matrix is found as (1)f H H . Throughout 
the procedure, there is no need to solve any eigenprob-
lem and the hybrid matrix can be computed stably and 
accurately even for very thick or very thin layer.  
 
4. Discussion and Numerical Results 
 
The previous sections have discussed some algorithms 
for scattering and hybrid matrix methods. For concise 
comparison, Table 1 lists each of the algorithms and its 
pertaining equations involved for each major step repre-
sented by an arrow. In each major step, there is at least 
one (dense) matrix inversion to be dealt with, which of-
ten constitutes the most time-consuming operation. For 
the scattering matrix method, we list the algorithms in 
physics-based form as well as coherent form. The latter 
form helps to bring out the close resemblance with the 
algorithm of hybrid matrix method. Also listed in Table 
1 is the input required for each algorithm. Since the scat-
tering matrix relates wave amplitude vectors across in-
terfaces, the input ought to be eigenwaves of two layers. 
As for the hybrid matrix that relates field variables, the 
input may need only the eigenwaves of individual layer. 
Through the recursive asymptotic method, the input does 
not invoke any eigenwaves at all. 

To highlight the distinctions between the hybrid ma- 

Table 1. Algorithms for scattering and hybrid matrix me- 
thods. 

Input Algorithm 
Scattering matrix method: 
 Physics-based form 

(12) (13) (16)
1, , ,l l

f f


  ψ ψ r t r t  

 Coherent form 
(12),(18) (21) (24) [1: ]

1, f f
f f


  ψ ψ S S

With eigenwaves 
(5) (7)

f f
A ψ

Hybrid matrix method: 
(26) (30) (33) [1: ]f f

f
 ψ H H  

Without eigenwaves

( fA  directly) 

Recursive asymptotic hybrid matrix method:
(34) (38) (30) (33) [1: ]f f

f
  A H H  

 
trix method with eigenwaves and the recursive asymp-
totic method without eigenwaves, we further list down 
below the key steps in their respective procedure. In par-
ticular, the procedure with eigenwaves is  

i) Solve the eigenvalue problem (5) for wavenumbers 
and eigenvectors  

ii) Perform upward/downward-bounded eigenvectors 
sorting or selection in (6)-(7), noting the boundedness/ 
radiation condition and degeneracy treatment if needed 

iii) Derive the layer hybrid matrix using (26). 
Step i) is often time-consuming, while step ii) deserves 

much careful attention and could be rather bothersome in 
practice. On the other hand, the procedure without eigen- 
waves via the recursive asymptotic method is 

i') Initialize the thin-layer asymptotic approximation 
(34) directly from fA  

ii') Perform self-recursions (35)-(38) until i = 1 
iii') The layer hybrid matrix is found as (1)f H H . 

All steps here are straightforward and involve elementary 
matrix operations only.  

To assess the accuracy of recursive asymptotic hybrid 
matrix method, we investigate the relative error changes 
with the number of geometric subdivisions n+1 or 
equivalently, the recursion number n. We arbitrarily take 
a ZnO layer of 1 μm thick at 1 GHz as an example. Fig-
ure 3 shows the average relative error versus recursion 
number n. The relative error is measured by 

-f f f
a e eH H H             (39) 

where f
aH  and f

eH represent the layer hybrid matrix 
obtained from the recursive asymptotic method and ei-
genwaves solution, respectively. The error is calculated 
by taking the average over a range of transverse wave- 
numbers. Notice that the error decreases initially due to 
smaller truncation error for smaller initial sublayer thick- 
ness nd . After certain minimum point, the error in-
creases slightly and reaches a plateau without increasing 
further.  
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Figure 3. Average relative error vs. recursion number n. 
 

To illustrate the usefulness of recursive asymptotic 
hybrid matrix method, let us consider a ZnO/ dia-
mond/Si structure at 2 GHz. The thicknesses of ZnO 
and diamond layers are 1.2 and 10 μm respectively, 
while Si substrate and vacuum are assumed semi-infi-
nite. For analysis of surface acoustic wave (SAW) on 
such structure, one can derive the generalized Green’s 
function matrix G  defined by  

( ) ( )

( )
N N N N

N N s

Z Z

Z 

 



   
   

   

v τ
G          (40) 

where s  is the charge density on the surface. G  
can be formulated using the scattering matrix with ei-
genwaves in a robust manner, see [5]. Alternatively, one 
can also determine G  using the stack hybrid matrix 

[1: ]NH  (for a stack from layer 1 to N) as 

  1

s 0

s

diag(0,0,0, | |)

diag(1,1,1, 1)
tj s   

  

G I Y

Y
     (41) 

where 0  is the permittivity for vacuum (layer N+1),  
[1: ] [1: ] [1: ] 1 [1: ]

s 22 21 sub 11 12( )f f f f  Y H H Z H H     (42) 

and subZ  is the characteristic surface impedance for Si 
substrate (layer 0)  

1
sub 0 0( )  Z σ υ              (43) 

The stack hybrid matrix [1: ]NH  can be obtained 
with or without eigenwaves solution as mentioned ear-
lier. Figure 4 shows the Green’s function element 

44| |G  computed with and without eigenwaves. In the 
latter case, we apply the recursive asymptotic hybrid 
matrix method with n=6. Although this recursion num- 
ber is rather small, the results agree quite well and the 
plots are barely distinguishable. Referring to Figure 3, 
one can select higher recursion number for better accu- 

 

Figure 4. Green function element computed with and with-
out eigenwaves (via recursive asymptotic hybrid matrix me- 
thod with n = 6). 
 
racy, although this may not be needed in many cases 
(e.g. when material data is not that accurate). In gen-
eral, the computation efficiency is improved for lower 
accuracy required and also for thinner layer with fewer 
geometric subdivisions. Therefore the method provides 
a very convenient way that facilitates the trade-off be-
tween computation efficiency and accuracy. Note that 
the efficiency improvement here is meant for every 
layer and one will gain substantial savings in the total 
computation time when there are many layers in the 
stack for modeling inhomogeneous media. Moreover, 
the method is very useful for being simple enough 
since it does not require any eigenwaves for all layers 
(even semi-infinite substrate). Thus, it may be applica-
ble even when the eigensolver package is not readily 
accessible, such as on light-weight multi-thread proc-
essors (e.g. GPUs).  
 
5. Conclusions 
 
This paper has presented the recursive asymptotic hy-
brid matrix method for acoustic waves in multilayered 
piezoelectric media. The hybrid matrix method pre-
serves the numerical stability and accuracy across large 
and small thicknesses. For discussion and comparison, 
the scattering matrix method has also been presented in 
physics-based form and coherent form. The latter form 
resembles closely that of hybrid matrix method and 
helps to highlight their relationship and distinction. For 
both scattering and hybrid matrix methods, their for-
mulations in terms of eigenwaves solution have been 
provided concisely. Making use of the hybrid matrix, 
the recursive asymptotic method without eigenwaves 
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solution has been described and discussed. The method 
bypasses the intricacies of eigenvalue-eigenvector ap-
proach and requires only elementary matrix operations 
along with thin-layer asymptotic approximation. It can 
be used to determine Green’s function matrix readily 
and facilitates the trade-off between computation effi-
ciency and accuracy. 
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