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Abstract 
Equations of the reaction-diffusion type are very well known and have been 
extensively studied in many research areas. In this paper, the prolongation 
structures for the system of the reaction-diffusion type are investigated from 
theory of coverings. The realizations and the classifications of the one-dimen- 
sional coverings of the system are researched. And the corresponding conser-
vation law of the one-dimensional Abelian coverings is concluded, which is 
closely connected with the symmetry of the system by Noether theorem. 
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1. Introduction 

Equations of the reaction-diffusion type have been widely studied in many re-
search areas [1] [2]. One of the reaction-diffusion types has received consider- 
able attention,  
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t xx

t xx
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 − + − =


+ − + =
                   (1) 

which has been applied in biological systems, chemical autocatalysis, and also in 
the gauge formulation of the (1 + 1)-dimensional gravity [3]. Moreover, the 
geometrical equivalent counterpart of the system (1) is the modified Heisenberg 
Ferromagnetic (HF) equation [4] [5].  

About the prolongation structure of the system (1), some results have been 
obtained. Alfinito et al. [1] used Wahlquist-Estabrook (WE) prolongation struc-
ture theory proposed by Wahlquist and Estabrook [6] [7] and carried out the 
detailed integrable analysis. They showed that (1) allowed an incomplete pro-
longation algebra admitting an infinite-dimensional realization of the Kac- 
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Moody type. Later following my advisor Zhao W Z’s suggestion, we investigated 
the inhomogeneous extension of the system (1) by the covariant prolongation 
structures theory [2]. We constructed ( ) ( )( )2,sl R R tρ×  prolongation struc-
ture and gave the corresponding Ablowitz-Kaup-Newell-Segur (AKNS-) type 
equations and Bäcklund transformation. In 2012 Krasil’shchik and Verbovetsky 
[8] gave an overview of the recent results on the geometry of partial differential 
equations (PDEs) in application to integrable systems. These results are essen-
tially based on the geometrical approach to partial differential equations devel-
oped since 1970s by A.M. Vinogradov and his school [9] [10] [11] [12] [13]. The 
approach is called the theory of coverings, which treats a PDE as an (infi-
nite-dimensional) submanifold in the space ( )J π∞  of infinite jets for a bundle 

: E Mπ →  whose sections play the role of unknown functions (fields). This at-
titude allows applying to PDEs powerful techniques of differential geometry and 
homological algebra. Readers can refer [8] for more information. It is noticed 
that the WE prolongation structures are an essentially special type of coverings 
[13] [15]. Cheng and He successfully gave the realizations and classifications of 
one-dimensional coverings of the MB (modified Boussinesq) system by using 
the theory. Moreover, they also gave the sufficient and necessary conditions for a 
vector to be a nonlocal symmetry of the MB system. Hence we want to apply the 
theory of coverings to the system (1) to give some new integrable information. 

The paper is organized as follows. In Section 2, we review some basic nota-
tions and theorems due to [13] [14] [15]. In Section 3, we apply the theory to the 
system (1) and obtain the realization and classifications of one-dimensional co-
verings of the system. Also we give the corresponding conservation law for one- 
dimensional Abelian coverings. In Section 4, we give a conclusion. 

2. Basic Definitions and Statements 

In this section, we mainly recall some definitions and theorems in [14] [15]. For 
an equation ε  in n independent variables ix  and m unknown dependent 
functions ju , we consider the jet space ( ),J n m∞  with the coordinates , j

ix uσ , 
where ( )1, , , 1, ,nx x j m=  , and ( )1 2, , , , 0 ki i i i nσσ = ≤ ≤

 is a multi-index 
of finite, but unlimited length iσ . Denote by ( ): , nJ n mπ ∞ →   the projec-
tion to the space of space of independent variables ( )1, , .nx x  

The vector fields  

1
,

j
i j

ji

D u
x uσ

σ σ
+

∂ ∂
= +
∂ ∂

∑                      (2) 

are called total derivatives. They commute each other, i.e., , 0i jD D  =   on 
( ),J m n∞  everywhere. , 1, ,iD i n=   span a distribution on ( ),J m n∞  which 

is called Cartan distribution and is denoted by  . 
Let a system of PDEs be given by  

( ), , , , 0,   1 ,   1 ,   1 .j
iF x u s i n j mα σ α= ≤ ≤ ≤ ≤ ≤ ≤         (3) 

Then we consider all its differential consequences, or prolongation of (3)  

0,   1 ,   0,D F sσ α α σ= ≤ ≤ ≥                  (4) 
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where ( )1 2, , , ki i iD Dσ =


 for ( )1 2, , , ki i iσ =  . The hyper surface defined by (4) is 
denoted by ( ),J n mε ∞⊂ . The vector fields iD  are tangent to ε , and their 
restriction to ε  will be denoted by the same symbol iD . They span a distribu-
tion on ε  which is called Cartan distribution of ε  and is denoted by ε . 

Consider another submanifold ( ),J n mε ∞⊂  with the same independent va-
riables ( )1, , nx x . And ε  has an integrable distribution  , i.e., , 0  = 

   . 
A smooth surjection :τ ε ε→  is called a differential covering (or simply a 
covering) of ε  by ε  if its differential takes the Cartan distribution on ε  to 
that on ε , i.e., ( ) ( )Cθ τ θτ ε∗ =  for any θ ε∈  . Coordinates in the fiber of τ  
are called nonlocal variables. 

In this paper we consider equations possessing two independent variables 
,x t  and two dependent variables ,u v , i.e., 2m n= =  in (3). The WE prolon-

gation structures correspond to the cases when τ  is a trivial bundle, i.e.,  

: ,Wτ ε ε× →                        (5) 

where W is a finite dimensional manifold. Set dim ,W l=  then the local coor-
dinates 1, , lw w  in W correspond to pseudopotentials in the WE prolonga-
tions approach [6] [7]. 

In coordinates, the above definition means that the total derivatives on 
( )2,2Jε ∞⊂  are of the form 

,    ,x x t tD D X D D T= + = +                   (6) 

where X and T are τ − vertical vector fields:  

1 1
,    

l l

i ii i
i i

X X T T
w w= =

∂ ∂
= =

∂ ∂∑ ∑                 (7) 

Since the distribution on ε  is integrable, we have  

( ) ( ) [ ], , 0x t x tD D D T D X X T  = − + = 
               (8) 

If the coefficients ,i jX T  in the vertical vector fields X and T are indepen-
dent of nonlocal variables , 1, ,iw i l=  , then the condition (8) reduces to  

( ) ( ) 0,x tD T D X− =                      (9) 

the corresponding covering is called Abelian. 

3. The Prolongation Structures of the  
Reaction-Diffusion System 

We have introduced the covering theory for prolongation structure of nonlinear 
evolution equation in the previous section. Based upon this theory, we will dis-
cuss the corresponding prolongation structure for the system (1) in this section. 
The system have two independent variables ,x t  and two dependent variables 

,u v , i.e., 2m n= =  in (3). For convenience we rewrite the system as follows: 

2

2

2 2

2 2
t xx

t xx

u u u v ku

v v uv kv

 = − +


= − + +
                   (10) 

Then the corresponding jet space is ( )2,2J ∞  with the coordinates  
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, , , ,   0,   0k jx t u v k j≥ ≥                    (11) 

and the total derivative operators are given by  

1 1
0 0

,x i i
i ii i

D u v
x u v+ +

≥ ≥

∂ ∂ ∂
= + +
∂ ∂ ∂∑ ∑                (12) 

( ) ( )2 2
2 2

0 0
2 2 2 2 ,i i

t x x
i ii i

D D u u v ku D v uv kv
t u v≥ ≥

∂ ∂ ∂
= + − + + − + −
∂ ∂ ∂∑ ∑   (13) 

where ,
k j

k jk j

u vu v
x x
∂ ∂

= =
∂ ∂

. 

Set the covering for (1) is given by (6). By the integrability condition (8), we 
have 

( ) ( ) [ ]

( )

( ) [ ]

1
0

2
1 2

0

2
2

0

0 , ,

     2 2

     2 2 ,

j j

x t x t ij j
i i

j j j
i

i xj j j
ii i

j
i
x j

i i

T TD D D T D X X T u
x uw w

T X Xv D u u v ku
v t uw w w

XD v uv kv X T
v w

+
≥

+
≥

≥

∂ ∂ ∂ ∂ = = − + = +  ∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ − − − +

∂ ∂ ∂∂ ∂ ∂

∂ ∂
− − + − +

∂ ∂

∑

∑ ∑

∑

 

 (14) 

Now we consider the WE type coverings for (1) and suppose that both X and 
T are independent of ,x t , i.e.,  

( ) ( )1 1, , , , , , ,   , , , , , , .l l
x x x xX X w w u v u v T T w w u v u v= =       (15) 

Then the equation (6) becomes  

( ) ( )

( ) ( ) [ ]

1 2 1 2
1

2 2
2 3 1 1 1

1

2 2
2 3 1 1 1

1

0

2 2 4 2 2

2 2 2 4 2 ,

i i i i

i i i i

i i

i i

i i

i i

T T T Tu u v v
u u v vw w w w

X Xu u v ku u uu v u v ku
u uw w
X Xv uv kv v u v uvv kv X T
v vw w

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − + − − − +

∂ ∂∂ ∂

∂ ∂ ∂ ∂
− − + − − − + + − +

∂ ∂∂ ∂

 

Notice that the right hand side of the above equation is a polynomial in 

3 3 2 2, , ,u v u v . Therefore the coefficients at 3 3 2 2, , ,u v u v  must vanish. Conse-
quently we get  

1 1

0,  0
i iX X

u v
∂ ∂

− = =
∂ ∂

                     (16) 

1 1

0,  0
i i i iT X T X

u u v v
∂ ∂ ∂ ∂

− = + =
∂ ∂ ∂ ∂

                 (17) 

( )

( ) [ ]

2
1 1

2

2 2

2 2 , 0

i i i

i i i

i

i

T T Xu v u v ku
u v uw w w

Xuv kv X T
v w

∂ ∂ ∂ ∂ ∂ ∂
+ + −

∂ ∂ ∂∂ ∂ ∂
∂ ∂

− − + =
∂ ∂

          (18) 

By (16), X is independent of 1 1,u v , hence ( )1, , , ,lX X w w u v= 
. By (17), T 

can be expressed in the following form:  

( )1
1 1 , , , ,lX XT u v R w w u v

u v
∂ ∂

= − +
∂ ∂

             (19) 
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Substituting (19) into (18), we get 

( )

( ) [ ]

2 2
2 2 2
1 1 1 12 2

2
1 1

0 2 2

      2 2 , , , .

X R X R Xu u v v u ku
u v uu v

X X Xuv kv u X v X X R
v u v

∂ ∂ ∂ ∂ ∂
= + − + + −

∂ ∂ ∂∂ ∂
∂ ∂ ∂   − − + − +   ∂ ∂ ∂   

     (20) 

Similarly we can regard the left hand side of the above equation as a poly-
nomial in 1 1,u v . Hence the coefficients at 1 1,u v  must vanish. Accordingly we 
get 

2 2

2 20,   0,X X
u v

∂ ∂
= =

∂ ∂
                     (21) 

, 0,   , 0R X R XX X
u u v u
∂ ∂ ∂ ∂   + = − =   ∂ ∂ ∂ ∂   

             (22) 

( ) ( ) [ ]2 22 2 2 2 , 0X Xu v ku uv kv X R
u v

∂ ∂
− − − + =

∂ ∂
          (23) 

Since 
2 2

2 20,   0.X X
u v

∂ ∂
= =

∂ ∂
 

From (21) X can be written as follows: 

,X Auv Bu Cv D= + + +                    (24) 

where A, B, C, D are only dependent on nonlocal variables 1, , lw w . Substitut-
ing (24) into (22), we get: 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2

2

, , , ,

, , , ,

R A C v A D v B C v B D
u
R B A u D A u B C u D C
v

∂
= + + +

∂
∂

= + + +
∂

            (25) 

By (25) we have  

[ ] [ ] [ ]

[ ] [ ] [ ]

2

2

2 , , ,

2 , , , .

R A C v A D B C
u v

R B A u D A B C
v u

∂
= + +

∂ ∂
∂

= + +
∂ ∂

               (26) 

Since 
2

,R R
u v v u
∂ ∂

=
∂ ∂ ∂ ∂

 we have  

[ ] [ ] [ ], 0,   , 0,   , 0A D A C B A= = =                (27) 

Putting the above condition into (25), we have  

[ ] [ ] [ ] [ ], , ,    , ,R RB C v B D B C u D C
u v
∂ ∂

= + = +
∂ ∂

          (28) 

Hence  

[ ] [ ] [ ], , , ,R B C uv B D u D C v E= + + +               (29) 

where E is only dependent on nonlocal variables, i.e., ( )1, , .lE E w w=   
Substituting (29) and (24) into (19), we have 

[ ] [ ] [ ]1 1 1 1 , , ,T Au v Av u Bu Cv B C uv B D u D C v E= − + − + + + +     (30) 

Substituting (30) and (24) into (23), we have  
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[ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

2 2 2

2 2

2

2 2 2 2 , , ,

, , , , , , ,

, , , , , , ,

, , , , , 0

Bu v Cuv kBu kCv A E uv B B C u v

B B D u B D C uv B E u C B C uv

C B D uv C D C v C E v D B C uv

D B D u D D C v D E

 − − + + +  
     + + + +     
     + + + +     
   + + + =   

      (31) 

The right hand side of the above equality is a polynomial in u, v. Thus we have  

[ ] [ ] [ ] [ ]2 , , 0,  , , 0,  , , 0,  , , 2 0B B B C B B D C D C C B C C       + = = = − =         (32) 

[ ] [ ] [ ] [ ] [ ], 2 , , 0,  2 , , , 0,  , 0B E kB D B D kC C E D D C D E   − + = + + = =     (33) 

[ ] [ ] [ ] [ ] [ ] [ ], , , , , , , , 2 , , 0.A E B D C C B D D B C A E D B C       + + + = + =         (34) 

Hence we have proved the following statement:  
Theorem 3.1. For the reaction-diffusion system (1), any WE prolongation 

type coverings  

( ) ( ) [ ], 0,x tD T D X X T− + =  

( ) ( )1 1, , , , , , ,   , , , , , ,l l
x x x xX X w w u v u v T T w w u v u v= =   

are given by  
,X Auv Bu Cv D= + + +                   (35) 

[ ] [ ] [ ]1 1 1 1 , , ,T Au v Av u Bu Cv B C uv B D u D C v E= − + − + + + +  

where the vector fields A, B, C, C, E are all depend on nonlocal variables 
1, , lw w  only and satisfy the following brackets  

[ ] [ ] [ ] [ ]2 , , 0,  , , 0,  , , 0,  , , 2 0B B B C B B D C D C C B C C       + = = = − =         (36) 

[ ] [ ] [ ] [ ] [ ], 2 , , 0,  2 , , , 0,  , 0B E kB D B D kC C E D D C D E   − + = + + = =     (37) 

[ ] [ ] [ ] [ ] [ ], 2 , , 0,  , 0,  , 0,  , 0.A E D B C A D A C B A + = = = =      (38) 

Next we will discuss about the realizations and classifications of one dimen-
sional WE coverings of (1). 

Assume 0A ≠ , then a suitable nonlocal variable w  can be chosen such that 

A
w
∂

=
∂

. Let , , ,B C D E
w w w w

β γ δ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
 , where , , ,β γ δ   are de- 

pendent on w  only. By Theorem (3.1), we can get  

0, 0, ,B C D E
w w

δ ∂ ∂
= = = =

∂ ∂
  

where ,δ   are constants. Meanwhile, when this happens, all the brackets in 
Theorem (3.1) are satisfied automatically. 

Hence the above covering is equivalent to  

( ) ( )1 1,      ,X uv T u v uv
w w

δ ∂ ∂
= + = − +

∂ ∂
             (39) 

where ,δ   are constants. 
Secondly let 0.A =  Then we will consider 0B ≠  and 0B =  respectively. 
1. Assume that 0B ≠  then we can choose a suitable variable w  in such a 

way that B
w
∂

=
∂

. By (36), we have 
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( ) ( )2 ,   ,C w w D pw q
w w

α β ∂ ∂
= − + + = +

∂ ∂
            (40) 

where , , ,p qα β  satisfying that 

2 4 0,   2 0.q pα β α+ = + =                    (41) 

Substituting (40) into (37) and (38), we have 

( ) ,E r pw q
w
∂

= +
∂

                      (42) 

where 0r >  satisfying that  

( )

2

2 2

2 0
0

2 2 0

p pr k
k q r p

k rp qr q pq p
α
β β α α β

 − + =


+ − =
 + − − − + =

            (43) 

Notice that the latter two constraints of the above formula can be deduced 

from the first one and (41). Hence, when 0, ,A B
w
∂

= =
∂

 we have: 

( ) ( ) ( )2 ,  ,  C w w D pw q E r pw q
w w w

α β ∂ ∂ ∂
= − + + = + = +

∂ ∂ ∂
     (44) 

where , , , ,p q rα β  satisfying  
2

2

4
2 0

2 0
q p

p p k

α β
α
γ

 = −


+ =
 − + =

                      (45) 

Furthermore, the above covering is equivalent to  

( )2 2X u vw wv v pw q
w

β ∂
= − + + + +

∂
              (46) 

( ) ( )

( ) ( )

2
1 1

2

2

        2 ,

T u v w w w uv

pu pw qw p v r pw q
w

α β α

β

= − − + + + − +
∂+ + − − + + +  ∂

 

where , , , ,p q rα β  satisfying (45). 
2. If 0, 0A B= = , then from Theorem (3.1), we know that 0C = . Hence the 

covering is trivial. 
In summary, we have proved the following result from the above discussion:  
Theorem 3.2. For the reaction-diffusion system (1), any WE prolongation 

type coverings are locally equivalent to one of the followings:  

( )1
1 1

0 0
: ,x i i

i ii i

D u v uv
x u v w

τ δ+ +
≥ ≥

∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂∑ ∑  

( )

( ) ( )

2
2

0

2
2 1 1

0

2 2

2 2 ,

i
t x

i i

i
x

i i

D D u u v ku
t u

D v uv kv u v uv
v w

≥

≥

∂ ∂
= + − +
∂ ∂

∂ ∂
+ − + − + − +

∂ ∂

∑

∑




 

where ,δ   are constants.  

( )2 2
1 1

0 0
: 2 ,x i i

i ii i

D u v u vw wv v pw q
x u v w

τ β+ +
≥ ≥

∂ ∂ ∂ ∂
= + + + − + + + +
∂ ∂ ∂ ∂∑ ∑  
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( ) ( )

( ) ( )

( ) ( )

2 2
2 2

0 0

2
1 1

2

2 2 2 2

        2

              2 ,

i i
t x x

i ii i

D D u u v ku D v uv kv
t u v

u v w w w uv pu

pw qw p v r pw q
w

α β α

β

≥ ≥

∂ ∂ ∂
= + − + + − + −
∂ ∂ ∂

+ − − + + + − + +
∂+ − − + + +  ∂

∑ ∑

 

where , , , ,p q rα β  satisfying (45). 
Remark 3.1. Obviously 1τ  is not dependent on nonlocal variable w , hence 

it is Abelian covering for the system (1). By Theorem (2.1), we can obtain a con-
servation law for the reaction-diffusion system (1): 

( ) ( )1 1d duv x u v uv tω δ= + + − +                  (47) 

4. Concluding Remarks 

We have investigated prolongation structure for the system (1) by using the 
covering theory. For this prolongation structure theory, the realizations and the 
classifications of the one-dimensional coverings of the system can be obtained. 
By comparison with the result by Alfinito et al. [1], we find they are actually the 
same. Here we are from the point view of tangent bundle theory, but WE pro-
longation theory is based on the cotangent bundle theory. Other than that, we 
can easily get the corresponding conservation law from the one-dimensional 
Abelian coverings. 

It should be mentioned that a lot of questions remain to be understood. Firstly, 
it should be important to try to extend the prolongation technique to the study 
of higher dimension nonlinear field equations. For example, the more general (2 
+ 1)-dimensional reaction C diffusion equations can be written as  

2 2
1 1 2 3 4 5

2 2
2 1 2 3 4 5

t

t

u D u b u v b uv b u b v b

v D v c u v c uv c u c v c

 = ∆ + + + + +


= ∆ + + + + +
           (48) 

where ( ) ( ), , , , , ,u u x y t v v x y t= = ∆  is the Laplace operator in two-dimensional 
orthonormal coordinates; 1D  and 2D  are the diffusion constants; ib  and 

, 1, 2, ,5ic i =  , are the coefficients. How to give the corresponding prolongation 
structure? Secondly, another important aspect which deserves to be explored is 
the comparison between the covering theory and covariant theory [2]. Thirdly, 
how to obtain the realizations and the classifications of higher dimensional co-
verings of the system? Some of them will be in the forthcoming publication. 
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