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Abstract 
Based on Lyapunov stability theorem, a method is proposed for feedback syn- 
chronization with parameters perturbation and external disturbances. It is 
proved theoretically that if the perturbation and disturbances are bounded, 
the synchronization error can be ensured to approach to and stay within the 
pre-specified bound which can be arbitrarily small. Some typical chaotic sys-
tems with different types of nonlinearity, such as Lorenz system and the orig-
inal Chua’s circuit, are used for detailed description. The simulation results 
show the feasibility of the method. 
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1. Introduction 

In 1990, Pecora and Carroll presented the conception of “chaotic synchroniza-
tion” and introduced a method to synchronize two identical chaotic systems 
with different initial conditions [1] [2]. Since chaos control and synchronization 
have great potential applications in many areas such as information science, 
medicine, biology and engineering, they have received a great deal of attention. 
Numerous researches have been done theoretically and experimentally [3] [4] 
[5]. Muradi and Kapitaniak expanded Corroll and Pecora’s work, presented a 
single unidirectional coupled synchronization scheme [6] [7]. Celka achieved 
chaos synchronization by using the time-delay feedback method [8]. Agiza et al. 
synchronized Rössler and Chen systems via active control method [9] and Im-
pulsive control [10]. Guo et al. proposed a simple adaptive-feedback controller 
for chaos synchronization [11]. Agrawal et al. realized the synchronization of 
fractional order chaotic systems using active control method [12]. Norelys et al. 
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presented the adaptive synchronization of fractional Lorenz systems using a re-
duced number of control signals and parameters [13]. Kajbaf et al. used sliding 
mode controller to obtain chaotic systems [14]. Wang et al. proposed a new 
feedback synchronization criterion based on the largest Lyapunov exponent 
[15]. However, most synchronization criterions were obtained under ideal cir-
cumstances. If parameters perturbation and external disturbance exist, this kind 
of criterions will take no effect. According to this practical problem, some solu-
tions have been presented. For examples, Jiang et al. proposed a LMI criterion 
[16] for chaotic feedback synchronization. Although the simulations showed 
that it is robust to a random noise with zero mean, but no rigorous mathematical 
proof was provided and we can’t determine if their method is effective for other 
kinds of noise. In Ref. [17], parameters perturbation was involved in their scheme. 
The theoretical proof and numerical simulations were given in their work, but 
external disturbance didn’t receive attention, which made their method unila- 
teral.  

Above all, these methods are effective, but still lack generality or robustness. 
In this paper, we propose a practical synchronization scheme for chaotic syn-
chronization with parameters perturbation and external disturbance. Rigorous 
mathematical proof is provided, and simulation results show the feasibility and 
robustness of our scheme. 

2. Theory and Method 

In the following scheme, a universal robust synchronization method is proposed. 
In the method, synchronization will be achieved with bounded parameter dis-
turbances and noise. 

Suppose a class of ideal chaotic systems as 

( )f= +X AX X  

where AX  is the linear part, ( )f X  is the nonlinear part, then the system 
can be described as 

( )( ) ( ) ( ) ( ),t f f t t= ∆ + + ∆ +X A+ A X X X D            (1) 

where ( )t∆A  and ( ),f t∆ X  are the parameters perturbation, ( )tD  is the 
external disturbance. Choose system (1) as the drive system, the relevant re-
sponse system can be described as 

( )( ) ( ) ( ) ( ) ( ),t f f t t′ ′ ′= ∆ + + ∆ − − +Y A+ A Y Y Y K Y X D       (2) 

where ( )t′∆A , ( ),f t′∆ Y  and ( )t′D  are the relevant disturbances in the re-
sponse system. We choose ( )1 2, , , ndiag k k k=K   (n is the dimension of the 
chaotic system). Let the error vector = −E Y X , then the error is 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ), ,

f f t t

f t f t t t

′= − + − + ∆ −∆

′ ′+ ∆ − ∆ + −

E A K E Y X A Y A X

Y X D D



        (3) 

Set a pre-defined bound ε  for the synchronization error, suppose  
[ ]T1 2, , , ne e e=E  , choose suitable K  to ensure ( )lim it

e t ε
→∞

≤  
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( )1, 2, , 1,i n n= −

, then system (1) and system (2) achieve approximate syn-
chronization, the precision is ε . When ε  is very small, we can consider sys-
tem (1) and system (2) have been synchronized. 

Choose the following Lyapunov function 2

1

1
2

n

i
i

V e
=

= ∑ , yield 
1

n

i i
i

V e e
=

= ∑

 . 

According to Equation (3), the derivative of je  can be described as 

( ) ( )
1 1

, ,
n n

j ji i j i i j j j j
i i

e a e h e g d k e
= =

= + + + −∑ ∑ X Y X Y           (4) 

jia  is the element of matrix A , ( ),jih X Y  and ( ),jg X Y  is bounded, jd  
is bounded external disturbances, jk  is feedback coefficients．When the errors go 
beyond ε , we have 

( ) ( ) ( ) ( )2 2 2 2 2 2

1 1

, ,

2 2

n nj j ji j i
j j j j j i j i j

i i

g d a h
e e e k e e e e e

ε = =

+
≤ − + + + +∑ ∑

X Y X Y
  (5) 

( ) ( ) ( ) ( )

( ) ( )

1

2 2 2 2 2 2

1 1 1

2

1 1 1 1 1

, ,

2 2

, , ( , )
.

2 2 2 2

n

j j
j

n n nj j ji ji
j j j i j i j

j i i

n n n n nj j ji ij ji i j
j j

j i i i i

V e e

g d a h
e k e e e e e

g d a a h h
k e

ε

ε

=

= = =

= = = = =

=

 +
 ≤ − + + + +
 
 
 +
 = − + + + +
 
 

∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

X Y X Y

X Y X Y X Y





(6) 

If 

( ) ( ) ( )
1 1 1 1

, , ,

2 2 2 2

n n n nj j ji ij ji ji
j

i i i i

g d a a h h
k

ε = = = =

+
> + + + +∑ ∑ ∑ ∑

X Y X Y X Y
  (7) 

we can obtain 

1
0

n

i i
i

V e e
=

= <∑

                          (8) 

That is to say, when the error is not within the bound ε , it will exponentially 
converge to zero. Hence system (1) and system (2) will achieve approximate 
synchronization, the precision is ε  at least. 

3. Numerical Simulations 

Lorenz system and the original Chua’s circuit have different types of nonlineari-
ty. Next we will adopt the two systems for detailed description. 

3.1. Taking Lorenz System as Example 

Lorenz system [18] is described as 

( )x a y x
y cx y xz
z xy bz

= −


= − −
 = −







                       (9) 

In the paper choose 10a = , 8 3b = , 28c =  so that system (9) exhibits a 
chaotic behavior [18]. The projections of Lorenz system’s attractor are shown in 
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Figure 1. Obviously we have 20, 30, 50x y z≤ ≤ ≤ . 
Choose the following Lorenz system with parameters perturbation and exter-

nal disturbances 

( )( )
( )

( )

1 2 1 1

2 1 2 1 3 2

3 1 2 3 3

a

c

b

x a x x d

x c x x x x d

x x x b x d

ξ

ξ

ξ

 = + − +


= + − − +
 = − + +







                  (10) 

as drive system, then the relevant response system is 

( )( ) ( )
( ) ( )

( ) ( )

1 2 1 1 1 1 1

2 1 2 1 3 2 2 2 2

3 1 2 3 3 3 3 3

a

c

b

y a y y d k y x

y c y y y y d k y x

y y y b y d k y x

ξ

ξ

ξ

′ ′ = + − + − −


′ ′= + − − + − −
 ′ ′= − + + − −







            (11) 

In system (10) and system (11), , , , , ,a b c a b cξ ξ ξ ξ ξ ξ′ ′ ′  are parameters perturba-
tion, 1 2 3 1 2 3, , , , ,d d d d d d′ ′ ′  are external disturbances, 1k , 2k , 3k  are feedback 
coefficients. Let  

1 1 1

2 2 2

3 3 3

e y x
e y x
e y x

= −
 = −
 = −

                         (12) 

Then 1 1 1e y x= −   , 2 2 2e y x= −   , 3 3 3e y x= −   . The error system is 

( ) ( ) ( )
( )

( )

1 2 1 2 1 2 1 1 1 1 1

2 1 2 3 1 1 3 1 1 2 1 2 2

3 3 2 1 1 2 3 3 3 3 3 3

a a

c c

b b

e a e e y y x x d d k e

e ce e y e x e y x d d k e

e be y e x e y x d d k e

ξ ξ

ξ ξ

ξ ξ

′ ′ = − + − − − + − −


′ ′= − − + + − + − −
 ′ ′= − + + − − + − −







      (13) 

Hence 

( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2
1 1 1 2 1 1 1 1 1

3 12 2 2 2 2 2 2 2 2
2 2 1 2 2 1 2 2 3 2 2 2 2

2 12 2 2 2 2 2 2
3 3 3 2 3 2 3 3 3 3 3

2

2 2 2

2 2

ae e e e ae l e k e

y xce e e e e e e e e l e k e

y x
e e be e e e e l e k e

 ≤ + − + −

 ≤ + − + + + + + −



≤ − + + + + + −








   (14) 

 

 
Figure 1. The projections of Lorenz system’s attractor. 
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where 

( ) ( )2 1 2 1 1 1
1

1 1 2 1
2

3 3 3 3
3

a a

c c

b b

y y x x d d
l

y x d d
l

y x d d
l

ξ ξ
ε

ξ ξ
ε

ξ ξ
ε

 ′ ′+ + + + +
=


 ′ ′+ + + =

 ′ ′+ + +

=


           (15) 

Choose Lyapunov function 

( ) ( )2 2 2
1 2 3

1
2

V t e e e= + +                     (16) 

We have 

( ) 1 1 2 2 3 3V t e e e e e e= + +

                       (17) 

Substitute Equation (14) into Equation (17), obtain 

3 2 32 2
1 1 1 2 1 2 2

2 2
3 1 3 3

1
2 2

.
2

c a y y a c y
V l k e l x k e

y
l b x k e

   − + + + +
= + − + − + + −   
   
 

+ − + + − 
 



 

If 

3 2
1 1

3
2 2 1

2
3 3 1

2

1
2

2

c a y y
k l

a c y
k l x

y
k l b x

 − + +
> +


 + + > − + +



> − + +


                  (18) 

is satisfied, we will obtain ( ) 0V t < . According to Lyapunov stability theorem, 
the error system (13) will converge to zero when the error is not within the 
bound ε , i.e. system (10) and system (11) will achieve approximate synchroni-
zation, the precision is ε  at least． 

When the parameters perturbation and external disturbances are small, we 
can consider the variables of system (10) and system (11) are bounded as 
shown in Figure 1. Suppose the upper bounds of these disturbances and per-
turbation are 0.5, choose 0.1ε = , substitute Equation (15) into Equation (18), 
after calculating we obtain if 

1

2

3

559
273
543

k
k
k

>
 >
 >

                         (19) 

is satisfied, Equation (18) will be always true. 
In the simulation, suppose ( )0.5sin 2a tξ = , ( )0.5cosb tξ = ,  

( )0.5cos 1c tξ = + , ( )0.5cos 3 2a tξ ′ = + , ( )0.5sin 5b tξ ′ = , ( )0.5sin 2c tξ ′ = ,  

1 2 3 1 2 3, , , , ,d d d d d d′ ′ ′  are random from −0.5 to 0.5. A time step of size 0.0001 (sec.) 
is employed and fourth-order Runge-Kutta method is used to solve Equation (10) 
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and Equation (11). Let 1 560k = , 2 280k = , 3 550k = , Figure 2 shows the his-
tory of ( )1e t , ( )2e t , ( )3e t  in the error system (13) within 0.1 sec. From Fig-
ure 2, we can see that ( )1e t , ( )2e t , ( )3e t  are steady near zero at last.  

3.2. Taking the Original Chua’s Circuit as Example 

The original Chua’s circuit [19] is described as 

( )( )x a y x f x

y x y z
z by

 = − −
 = − +
 = −







                       (20) 

where ( ) ( )( )0.5 1 1f x dx c d x x= + − + − − . In this paper choose 9.78a = ,  
14.97b = , 1.31c = −  and 0.75d = −  so that system (20) exhibits a chaotic be- 

havior [19]. The projections of the original Chua’s circuit’s attractor are shown 
in Figure 3. Obviously we have 4, 1, 5.5x y z≤ ≤ ≤ . 

Choose the following Chua’s circuit with parameters perturbation and exter-
nal disturbances 

( ) ( )( )

( )

1 2 1 1 1

2 1 2 3 2

3 2 3

a

b

x a x x f x d

x x x x d
x b x d

ξ

ξ

 = + − − +
 = − + +
 = − + +







                 (21) 

 

 
Figure 2. The history of the error (within 0.1 sec.). 

 

 
Figure 3. The projections of the original Chua’s circuit’s attractor. 



M. J. Wang et al. 
 

7 

As drive system, where  
( ) ( ) ( ) ( )( )( )1 1 1 10.5 1 1d c df x d x c d x xξ ξ ξ= + + + − + + − − , then relevant re-  

sponse system is 

( ) ( )( ) ( )
( )

( ) ( )

1 2 1 1 1 1 1 1

2 1 2 3 2 2 2 2

3 2 3 3 3 3

a

b

y a y y f y d k y x

y y y y d k y x

y b y d k y x

ξ

ξ

 ′ ′= + − − + − −
 ′= − + + − −
 ′ ′= − + + − −







           (22) 

where ( ) ( ) ( ) ( )( )( )1 1 1 10.5 1 1d c df y d y c d y yξ ξ ξ′ ′ ′= + + + − + + − − . In system 
(21) and system (22), , , , , , , ,a b c d a b c dξ ξ ξ ξ ξ ξ ξ ξ′ ′ ′ ′  are parameters perturbation,  

1 2 3 1 2 3, , , , ,d d d d d d′ ′ ′  are external disturbances, 1k , 2k , 3k  are feedback coeffi-
cients. Let 

1 1 1

2 2 2

3 3 3

e y x
e y x
e y x

= −
 = −
 = −

                        (23) 

Then 1 1 1e y x= −   , 2 2 2e y x= −   , 3 3 3e y x= −   . The error system is 

( ) ( )( )( ) ( )( ) ( )( )

( )

1 2 1 1 1 2 1 1 2 1 1 1 1 1 1

2 1 2 3 2 1 2 2

3 2 2 2 3 3 3 3

a a

b b

e a e e f y f x y y f y x x f x d d k e

e e e e d d k e
e be y x d d k e

ξ ξ

ξ ξ

 ′ ′= − − − + − − − − − + − −
 ′= − + + − −
 ′ ′= − − − + − −







(24) 

when the parameters perturbation and external disturbances are small, we can 
consider the variables of system (21) and system (22) are bounded as shown in 
Figure 4. Next we will substitute 4, 1, 5.5x y z≤ ≤ ≤  directly to simplify the 
results, so we have 

( ){ } ( ) ( )1sup 4 5d c d d cf x d c d d cξ ξ ξ ξ ξ≤ + + + + + = + + +   (25) 

( ){ } ( ) ( )1sup 4 5d c d d cf y d c d d cξ ξ ξ ξ ξ′ ′ ′ ′ ′≤ + + + + + = + + +   (26) 

Because 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

1 1 1 1

1

1 1 1 1 1 1 1 1

1 1 1 1

2 ,

y y x x y x x y

y x x y

e

+ − − − + − − = + − + + − − −

≤ + − + + − − −

=

 

we have 

( ) ( ){ } ( ) ( )1 1 1 1

1 1

sup 4 4

5 5 .
d d d d c c

d d c c

f y f x d e c d e

d e c d e

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

′ ′ ′− ≤ + + + − + + + +

′ ′= + + + − + +
(27) 

Hence 

( )

( ) ( )

( )

2 2 2 2 2 2 2
1 1 1 2 1 1 1 1 1 1 1

2 2 2 2 2 2 2
2 2 1 2 2 2 3 2 2 2 2

2 2 2 2
3 3 2 3 3 3 3 3

2
1 1
2 2

2

a
e e e e ae ad e a c d e l e k e

e e e e e e e l e k e

b
e e e e l e k e


≤ + − + + − + −


 ≤ + − + + + −



≤ + + −








       (28) 

where 



M. J. Wang et al. 
 

8 

 
Figure 4. The history of the error (within 0.5 sec.). 

 

( ) ( ) 1 1
1

2 1
2

3 3
3

5 5 5 5 5 5f a d c a d c

b b

l d c d c d d
l

d d
l

d d
l

ξ ξ ξ ξ ξ ξ
ε

ε
ξ ξ

ε

 ′ ′ ′ ′+ + + + + + + + + + + +
=


 ′ + =

 ′ ′+ + +

=


(29) 

and ( )5 5f d d c cl a ξ ξ ξ ξ′ ′= + + + . 
Choose Lyapunov function 

( ) ( )2 2 2
1 2 3

1
2

V t e e e= + +                      (30) 

We have 

( ) 1 1 2 2 3 3V t e e e e e e= + +

                        (31) 

Substitute Equation (28) into Equation (31), obtain 

2
1 1 1

2 2
2 2 1 3 3 3

1
2

1
2 2

aV ad a c d l k e

a b b
l k e l k e

− = + − − + − 
 
 +   + 

+ + − + + −   
   



 

If 

1 1

2 2

3 3

1
2

2
1

2

ak ad a c d l

a b
k l

b
k l

− > + − − +


+ > +

 +

> +


                (32) 

is satisfied, we will obtain ( ) 0V t < . According to Lyapunov stability theorem, 
the error system (24) will converge to zero when the error is not within the 
bound ε , i.e. system (21) and system (22) will achieve approximate synchroni-
zation. 

Suppose the upper bounds of these disturbances and perturbation are 0.2, 
choose 0.05ε = , substitute Equation (29) into Equation (32), after calculating 
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we obtain if 

1

2

3

576
21
16

k
k
k

>
 >
 >

                       (33) 

is satisfied, Equation (32) will be always true. 
In the above simulation, let ( )0.2sin 3a tξ = + , ( )0.2cos 8 5b tξ = + , 

( )0.2cos 3 5c tξ = + , ( )0.2sin 2d tξ = , ( )0.2sin 1a tξ ′ = + , ( )0.2cos 5 3b tξ ′ = + , 
( )0.2cos 5 1c tξ ′ = + , ( )0.2sin 3 2d tξ ′ = + , 1 2 3 1 2 3, , , , ,d d d d d d′ ′ ′  are random from 

−0.2 to 0.2. A time step of size 0.0001 (sec.) is employed and fourth-order Runge- 
Kutta method is used to solve Equation (21) and Equation (22). Let 1 580k = , 

2 30k = , 3 20k = , Figure 4 shows the history of ( )1e t , ( )2e t , ( )3e t  in the 
error system (24) within 0.5 sec. From Figure 4, we can see that ( )1e t , ( )2e t , 
( )3e t  are steady near zero at last.  

4. Conclusion 

In this paper, a practical scheme is proposed for feedback synchronization with 
parameters perturbation and external disturbances. Lorenz system and the orig-
inal Chua’s circuit are used for detailed description. The simulation results show 
the feasibility of the method. According to Ref. [15], if all the feedback coeffi-
cients are larger than the largest Lyapunov exponent, two identical systems will 
be synchronized under ideal circumstance. In the paper, our scheme proved that 
high feedback coefficients will ensure more robust synchronization theoretically. 
The practical feedback should be bounded in a proper limit, so we have to con-
trol the error within a proper bound to obtain suitable feedback. The feedback 
will be smaller when the error is smaller. It’s not hard for us to find a chance 
when the error between the drive system and the response system is small 
enough. 
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