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Abstract 
The effect of resonance on the motion of two cylindrical rigid bodies has been stu-
died in the light of Bhatnagar [1] [2] [3] and under some defined axiomatic restric-
tions. Here we have calculated variation in Eulerian angles due to resonance in terms 
of orbital elements and unperturbed Eulerian angles. 
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1. Introduction 

Russel [4] studied the motion of two spherical rigid bodies. In same way, Kopal [5] ex-
tended the previous work of Russel [4]; Cowling [6], Sterne [7] and Brouwer [8] gene-
ralized the work of previous authors by considering the lean angle and eccentricity as 
the small quantities. Johnson and Kane [9] extended the work of above authors by im-
posing some axiomatic restrictions as follows: 

1) The inertia ellipsoids of two rigid bodies andA B   for their respective mass cen-
tre andA B∗ ∗   are ellipsoids of revolution. 

2) Either the distance between andA B∗ ∗   is considerably greater than the greatest 
dimension of either body or the ellipticities of the inertia ellipsoids of andA B   are 
small. 

3) The angular velocities of andA B   in an inertial frame of reference R  are in-
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itially parallel to the symmetrical axes of andA B   respectively. 
4) The mass centers andA B∗ ∗   move in plane whose orientation is fixed in R . 
Bhatnagar [3], Elipe and Miguel [10], Choudhary and Mishra [11], Mercedes and 

Elipe [12] have discussed the problem similar to the works of the author of early thirties 
and forties. But Milution Marjanov [13] has discussed the problem on the cause of re-
sonant motions of celestial bodies in an inhomogeneous gravitational field. He has 
shown that, when eccentricities of the orbits differ from zero and cross section of the 
ellipsoids of inertia with orbital plane differs from the circle, the two-cycle resonance is 
the most stable one. Further Milution Marjanov [13] has discussed the effect of reson-
ance on the problem of two real bodies. He has shown that there are 22 periodic func-
tions and all the variables are coupled. Moreover he established that the stability of the 
orbit i.e. periodicity of the motion requires 231 resonances. 

In our present work, we have proposed to extend the work of Bhatnagar et al. [1] [2] 
[3] by taking into account the effect of resonance and imposing some modified axi-
omatic restrictions as follows: 

1) The inertia ellipsoids andA B   for their mass centers andA B∗ ∗   are considered 
as general ellipsoids only but not the ellipsoids of revolution. 

2) The angular velocities of andA B   are initially parallel to one of the principal 
axes, which is perpendicular to the orbital plane of andA B  . 

3) Only the periodic terms are taken and other terms are neglected. 
4) The two rigid bodies are symmetrical and cylindrical. 
On taking axioms second and fourth under consideration 

1 2A AI I=  for A  and 

1 2B BI I=  for B , more critical points are found than that found by Bhatnagar and 
Gupta [1] [2]. 

2. Equations of Motion 

Let ( )1 2 3, ,A A A A∗  be the mass center of the body A  in the rotating frame of refer-
ence R′  having a variable orientation in the fixed frame of reference R  which is 
shown in Figure 1. Let , ,X Y Z  be fixed right handed mutually perpendicular axes in 
R . Let us suppose that 1 2 3, ,A A A  are lines parallel to the principal axes of A  at A∗ . 
We assume that XY -plane is normal to the angular momentum of the system about 
the centre of mass. Let r  be the distance between andA B∗ ∗  , θ  be the angle between 
A B∗ ∗  and x -axis. Let us assume that , ,A A Aψ θ ϕ  be the Eulerian angle with the help 

of the principal axes 1 2 3, ,A A A  of the body A  at its centre of mass A∗  oriented with 
the fixed axes , ,X Y Z  respectively. Similarly , ,B B Bψ θ ϕ  be the Eulerian angles with 
the help of the principal axes 1 2 3, ,B B B  of the body B  at its centre of mass B∗ , 
oriented with the fixed axes , ,X Y Z  respectively.  

Let 1 2 3 4 5 6 7 8, , , , , , ,p p p p p p p p  be generalized momenta corresponding to the gene-
ralized co-ordinates , , , , , , ,A A A B B Br θ ψ θ ϕ ψ θ ϕ  respectively. Let ( )and 1, 2,3

i iA BI I i  =  be 
the principal moments of inertia, 

iAω  and ( )1, 2,3
iB iω =  be the components of the an-

gular velocities of body andA B   respectively. If Am  and Bm  be the masses of the two 
cylinders andA B   respectively then the total kinetic energy of the system is given by 
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Figure 1. Orientation of the bodies. 
 

( )trans rot 0 1 ,A B

A B

m mT T T T T
m m

+
= + = +                    (1) 

where, 0T =  kinetic energy of A  and B  due to translation. 

( ) ( )2 2 2 .
2

A B

A B

m m r r
m m

θ= +
+



                       (2) 

1T =  Sum of kinetic energy of A  and B  due to rotation about the principle axes. 

1 1 2 2 3 3 1 1 2 2 3 3

2 2 2 2 2 21 .
2 A A A A A A B B B B B BI I I I I Iω ω ω ω ω ω = + + + + +           (3) 

If , ,ψ θ ϕ  be the Eulerian angles shown in Figure 1 then the components of angular 
velocity are given by  

{ } { } { }1 2 3sin sin cos , sin sin cos , cosω ψ θ ϕ θ ϕ ω θ ϕ ψ θ ϕ ω ψ θ ϕ= +   = −   = + 

     (4) 

Thus the combination of Equations (1), (2), (3) and (4) yields 

( ) ( )

( ) ( )

( ) ( )
( )

1

2 3

1 2

3

22 2 2

2 2

2 2

2

1 sin sin cos
2 2

sin cos sin cos

sin sin cos sin cos sin

cos .

A B
A A A A A A

A B

A A A A A A A A A A

B B B B B B B B B B B B

B B B B

m mT r r I
m m

I I

I I

I

θ ψ θ φ θ ϕ

ψ θ ϕ θ ϕ ψ θ ϕ

ψ θ ϕ θ ϕ ψ θ ϕ θ ϕ

ψ θ ϕ

+ = + + +  
      + − + +

      + + + − 
      + −  

 





  

 

 

 

  (5) 

Since for cylindrical bodies 
1 2A AI I=  and 

1 2B BI I=  hence from the Equation (5), 
we get 

( ) ( ) ( )

( ) ( )

1 3

1 2

22 2 2 2 2 2

22 2 2

1 sin cos
2 2

      sin cos .

A B
A A A A A A A A

A B

B B B B B B B B

m mT r r I I
m m

I I

θ ψ θ θ ψ θ ϕ

ψ θ θ ψ θ ϕ

+ = + + + + +

+ + + + 

 

  



  

   (6) 
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The generalized momenta { }1,2, 8ip i = 
 corresponding to generalized coordinates 

{ }1,2, 8iq i = 
 are given by the relations 

,i
i

Tp
q

∂
=

∂ 
                             (7) 

where, 1 2 3 4 5 6 7 8,  ,  ,  ,  ,  ,  ,  ,A A A B B Bq r q q q q q q qθ ψ θ ϕ ψ θ ϕ= = = = = = = =  
i.e. 2

1 2,  ,p r p r θ= = 

  

( ) ( )1 3

2 2
3 sin cos cos ,A B

A A A A A A A A
A B

m mp I I
m m

ψ θ ψ θ ϕ θ+  = + +   

 

1

4 ,A B
A

A B A

m m p
m m I

θ∴ = ×
+



 

( ) ( )3 1

2
5 3 5cos , cos sin .A B A B

A A A A A A A A
A B A B

m m m mp I p p I
m m m m

ψ θ ϕ θ ψ θ+ +   = +    − =     

 

14 .A B
A A

A B

m mp I
m m

θ+
= 

 

( )
1

3 52

1 cos .
sin

A B
A A

A B A A

m m p p
m m I

ψ θ
θ

∴ = × −
+

  

From 5p , we get 

( )
3 1

5
3 52

1 cos
sin

A B
A A

A B A A A

pm m p p
m m I I

ϕ θ
θ

 ⋅
= − − 

+   


 

( ) ( )1 3

1

1

2 2
6

7

7

sin cos cos ,

    .

A B
B B B B B B B B

B A B

A B
B B

A BB

A B
B

A B B

m mTp I I
m m

m mTp I
m m

pm m
m m I

ψ θ ψ θ ϕ θ
ψ

θ
θ

θ

+∂  = = + + ∂
+∂

= =
∂

⇒ = ×
+

  









 

( )

[ ]

3

3

1

8

2
6 8

6 82

cos ,

cos sin

1                     cos .
sin

A B
B B B

B A B

A B
B B B

A B

A B
B B

A B B B

m mTp I
m m

m mp p I
m m

m m p p
m m I

ψ θ ϕ
ϕ

θ ψ θ

ψ θ
θ

+∂  = = +     ∂
+  − =  

⇒ = × −
+

 







 
From 8p , we get  

( )
3 1

8
6 82

1 cos .
sin

A B
B B

A B B B B

pm m p p
m m I I

ϕ θ
θ

 
= − − 

+   


 
Introducing iq  in the Equation (6), we get  

( ){ }

( ){ }
1

3 31

2
22 2 22

1 3 5 42 2

2 2
2 2 25 8

6 8 72

1 1 1 cos sin
2 2 sin

1 cos sin
sin

A B
A A

A B A A

B B
A BB B

p m mT p p p p
m mr I

p p
p p p

I II

θ θ
θ

θ θ
θ

   
= + + − +   +    


        + + − + +  
 

  (8) 
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Following Brouwer and Clemenc [14] the potential V  for the two bodies andA B   
is given by  

d d
,A B A B

A B

m m m mV G
m m r

+
= ∫∫                         (9) 

where r  is the distance between two elements d Am  and d Bm  of the two bodies
andA B   respectively and G  is the gravitational constant. The integration extends over 

total mass of two bodies. 
From Equation (9), we get  

( ) ( ){ }

( ) ( ){ }

3 1

3 1

2 2
3

2 2
3

1 3sin sin
2

,
1 3sin sin

2

A A A A
A

B B B B
B

V I I
r m r

I I
m r

µ µ θ θ ψ

µ θ θ ψ

 = + − − −  

        + − − −  

        (10) 

where ( )A BG m mµ = + . 
The Hamiltonian function is given by 

0 1,H T V H H= − = +  
where, 0H =  unperturbed Hamiltonian  

2
2 2
1 2

1 .
2

pp
rr
µ 

= + − 
 

                        (11) 

1H =  Perturbed Hamiltonian,  

( ){ }

( ){ }

( ) ( ){ }

( ) ( ){ }

31

31

3 1

3 1

2
2 2 2 5

3 5 42

2
2 2 2 8

6 8 72

2 2
3

2 2
3

1 1 cos sin
2 Sin

1 cos sin
Sin

1 3Sin sin
2

1 3Sin sin .
2

A B
A A

A B AA A

B B
BB B

A A A A
A

B B B B
B

pm m p p p
m m II

p
p p p

II

I I
m r

I I
m r

θ θ
θ

θ θ
θ

µ θ θ ψ

µ θ θ ψ

 
= − + + +   


    + − + + 



     − − − − 

     − − − − 

       (12) 

The Canonical equations of motion are given by 

1 2 3 4 5

6 7 8

1 2 3 4

5 6 7 8

,  ,  ,  ,  ,

,  ,  ,

,  ,  ,  ,

,  ,  ,  .

A A A

B B B

A A

A B B B

H H H H Hr
p p p p p

H H H
p p p
H H H Hp p p p
r
H H H Hp p p p

θ ψ θ ϕ

ψ θ ϕ

θ ψ θ

φ ψ θ φ

∂ ∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
= = =

∂ ∂ ∂

∂ ∂ ∂ ∂
= − = − = − = −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= − = − = − = −
∂ ∂ ∂ ∂

 

 



 

   

   

 

3. Unperturbed Solutions 

The Hamilton-Jacobi Equation for the Hamiltonian 0H  is given by 
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0 , , , , 0.s s sH t r
r r

θ
θ

∂ ∂ ∂ + = ∂ ∂ ∂   
The solution of the above equation is given by  

2

1

2
2

1 2 1 22 d .
r

r

s t r
r r

αµα α θ α = − + + + − 
 ∫                (13) 

Hence the solution of the problem can be given in term of the Keplerian elements
, , ,a e ω τ  as  

( ) ( )

( )
( ) ( ) ( )

( )

( )

1 2 1 22 2 2
1 2 1 2

2
1

1 2

3

d,  1 ,  1 ,  ,  
2 d

1 cos
1 cos ,  cos

1 cos 1 cos

sin ,  

a e r a e
a t

a e E e
r a e E

e e E

E e E n t n
a

µ θα α µ µ β τ β ω

θ ω
θ ω

µτ

−

−    = = − = − = − =     
−  − = = − = +   

− − −   

 − = − =     

  (14) 

Here , , ,a e tω  are the usual Keplerian elements, E  is the eccentric anomaly, 1α  and 

2α  are constants of integration, 1β  and 2β  are generalized momenta variables cor-
responding to 1α  and 2α  respectively. 

4. Approximate Variational Equations Corresponding to  
Perturbed Hamiltonian 

The set of approximate variational equations may be given by averaging the Hamilto-
nian 1H . The averaged value of the Hamiltonian 1H  is given by 

2π
1 10

d ,
2π

nnH H t= ∫
 

where 1H  is given by the Equation (12). 
Here, we observe that by averaging the Hamiltonian, short-periodic terms are elimi-

nated from the Hamilton-Jacobi equation. An approximate set of variational equations 
are given by 

1 1 1 1
1 2 1 2

1 2 1 2

0, 0, ,
H H H H

α α β β
β β α α

∂ ∂ ∂ ∂
= =    = =    =    = 

∂ ∂ ∂ ∂ 
 

             (15) 

From the above equations, we get 

( ) ( )0const say 1, 2 .i iα α= = =  
From Equation (14), we have 

0
1 0

2
2

0

const. ,   
2 2

e 1 const. e .

a a

a

µ µ
α α

α
µ

= − = − = =

= − = =

                   (16) 

Also,  
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( )
( ) ( )3 1 3 12 2

1 3 22 21

3 3 31 sin 1 sin ,
2 2 2 21 e

A A B B
A B

A B

I I I IH
m ma

β θ θ
α

 − −∂     = = − − − −   ∂     −  

 (17) 

( )
( ) ( )3 1 3 12 2

2 22 22

3 3 31 sin 1 sin .
2 2 2 21 e

A A B B
A B

A B

I I I IH n
m ma

β θ θ
α

 − −∂     = = − − − −   ∂     −  

 (18) 

For solving the Equations (17) and (18), we should know , , , , ,A A A B B Bψ θ ϕ ψ θ ϕ  as 
function of time. 

5. Solutions for Generalized Co-Ordinates 

, , , , , ,A A A B B Bψ θ ϕ ψ θ φ τ  and ω  are generalized co-ordinates. 
For the solution, we will use the Lagrange’s equation of motion 

d ,
d

T T V
t q q q

 ∂ ∂ −∂
− = ∂ ∂ ∂ 

                      (19) 

where T =  kinetic energy and V =  Potential energy of the system given by the Equ-
ations (8) and (10) respectively. 

From Equation (6), we get 

( ) ( ) { } ( )

{ } ( )

1 3

1 3

22 2 2 2 2 2

22 2 2

1 sin cos
2 2

     sin cos .

A B
A A A A A A A A

A B

B B B B B B B B

m m
T r r I I

m m

I I

θ ψ θ θ ψ θ ϕ

ψ θ θ ψ θ ϕ

+ = + + + + +

+ + + + 

 

  



  

 

   0,
A

T
ψ
∂

⇒ =
∂

                                                  (20) 

and  

( ) ( )

( )

1 3

1 3

2

2 2

2 sin 2 cos cos
2

sin cos cos .

A B
A A A A A A A A

A A B

A B
A A A A A A A A

A B

m mT I I
m m

m m I I
m m

ψ θ ψ θ ϕ θ
ψ

ψ θ ψ θ ϕ θ

+∂  = + + ∂
+  = + + 

  



  

       (21) 

{ }

( )
1 3 3

1 3 3

2 2d sin cos cos
d

                  sin 2 sin .

A B
A A A A A A A A

A A B

A A A A A A A A A

m mT I I I
t m m

I I I

ψ θ θ ϕ θ
ψ

ψ θ θ ϕ θ θ

  +∂ = + +  ∂ 
+ − − 

 



 

 

       (22) 

From Equation (12), we have 

( ) ( ){ }

( ) ( ){ }

( ) ( )

3 1

3 1

3 1

2 2
3

2 2
3

2
3

1 3sin sin
2

1 3sin sin
2

3  sin sin 2 .
2

A A A A
A

B B B B
B

A A A A
A A

V I I
r m r

I I
m r
V I I

m r

µ µ θ θ ψ

µ θ θ ψ

µ θ θ ψ
ψ

 = + − − − 

       + − − − 

∂  ⇒ = − − ∂

           (23) 

For .Aq ψ=  
The combination of Equations (19), (20), (21), (22) and (23) gives 
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{ }

( )

( ) ( )

{ } ( )

1 3 3

1 3 3

3 1 0

1 3 3 1 3 3

2 2

2
3

2 2

sin cos cos

sin 2 sin

3
sin sin 2

2

sin cos cos sin 2 sin

3

A B
A A A A A A A A

A B

A A A A A A A A A

A
A A A A

A

A A A A A A A A A A A A A A A A A

m m I I I
m m

I I I

I I
m r

I I I I I I

ψ θ θ ϕ θ

ψ θ θ ϕ θ θ

µ
θ θ ψ

ψ θ θ ϕ θ ψ θ θ ϕ θ θ

+  + +  

+ − −  

 = − − 

⇒ + + + − −

=

 

 

 

 

   

( ) ( )
3 1

2
3 sin sin 2 .

2
A

A A A AI I
r

µµ
θ θ ψ − − 

(24) 

This is the required Lagrange’s equation of motion in Aψ . 
Again, 

1 1

d, ,
d

A B A B
A A A A

A B A BA A

m m m mT TI I
m m t m m

θ θ
θ θ

 + +∂ ∂
=      = 

∂ ∂ 
 

 

 

( )1 3

3

2 sin 2 sin ,
2

A AA B
A A A A A A

A A B

I Im mT I
m m

ψ θ ϕ ψ θ
θ

 −+∂  = − 
∂   

  

 

( ) ( )
3 1

2
3

3 sin 2 sin .
2 A A A A

A A

V I I
m r

µ θ θ ψ
θ

∂ −  = − − ∂  
Thus the Lagrange’s equation of motion in Aθ  is  

( )

( ) ( )

1 3

1 3

3 1

2

2
3

d ,
d

. . sin 2 sin
2

3 sin 2 sin
2

A AA

A AA B
A A A A A A A A

A B

A A A A
A

T T V
t

I Im mi e I I
m m

I I
m r

θ θθ

θ ψ θ ϕ ψ θ

µ θ θ ψ

 ∂ ∂ −∂
− = 

∂ ∂∂ 
 −+  − +
  

 = − − 





    

( )

( ) ( )

1 3

1 3

3 1

2

2
3

sin 2 sin
2

3
sin 2 sin .

2

A A
A A A A A A A A

A
A A A A

I I
I I

I I
r

θ ψ θ ϕ ψ θ

µµ
θ θ ψ

−
− +

 = − − 



  

                  (25) 

Again, 
( ) ( )

3

3 3 3

1 2 cos ,
2

0, 0,

d .
d

cos sin 0,

A B
A A A

A A B

A A

A A A

A B
A A A A A A A A A

A B

m mT I
m m

T V

T T V
t

m m I I I
m m

ψ θ ϕ
ϕ

ϕ ϕ

ϕ ϕ ϕ

ψ θ ϕ ψ θ θ

+∂  = + ∂
∂ ∂

=      =
∂ ∂

 ∂ ∂ ∂
− = ∂ ∂ ∂ 

+  ⇒ + − = 

 







  

 

3 3 3
cos sin 0.A A A A A A A A AI I Iψ θ ϕ ψ θ θ⇒ + − =

                     (26) 

Similarly for , ,B B Bq ψ θ ϕ= . 



M. R. Hassan et al. 
 

563 

{ } ( )
( ) ( )

1 3 3 1 3 3

3 1

2 2

2 2
3

sin cos cos sin 2 sin
3

sin sin .
2

B B B B B B B B B B B B B B B B B

B
B B B B

I I I I I I

I I
r

ψ θ θ ϕ θ ψ θ θ ϕ θ θ
µµ

θ θ ψ

+ + + − −

 = − − 

 

   

(27) 

( ) ( )

3 1

1 3

3 1

2

2
3

sin 2 sin
2

3
sin 2 sin ,

2

B B
B B B B B B B B

B
B B B B

I I
I I

I I
r

θ ψ θ ϕ ψ θ

µµ
θ θ ψ

− 
− + 

 

 = − − 



  

             (28) 

3 3 3
cos sin 0.B B B B B B B B BI I Iψ θ ϕ ψ θ θ+ − =                  (29) 

We have assumed that the angular velocities Aω  and Bω  of bodies andA B   are 
initially parallel to one of the principal axes which is perpendicular to the orbital plane. 
If we further assume that no torque (unperturbed motion) is acting on either of the two 
bodies then both the bodies will spin at a constant rate about that axes and the orienta-
tion with the axes will be fixed.  

In terms of the Eulerian angles, we have  

Aψ =  constant 
0Aψ= , Bψ =  constant 

0Bψ= , 

Aθ =  constant 
0Aθ= , Bθ =  constant 

0Bθ= , 

Aϕ =  constant Aω= , Bϕ =  constant Bω= , 

0A A Atϕ ω ϕ= + , 
0B B Btϕ ω ϕ= + . 

In the case of perturbed motion, let us suppose that  

0 0 0

0 0 0

, ,
, ,

A A A A A A A A A A

B B B B B B B B B B

w t
w t

ψ ψ η θ θ ξ ϕ ϕ ζ
ψ ψ η θ θ ξ ϕ ϕ ξ

= +    = +    = + + 
= +    = +    = + + 

           (30) 

where 
0 0 0 0 0 0
, , , , ,A A A B B Bθ ψ ϕ θ ψ ϕ  are the constants corresponding to the torque-free so-

lutions and , , , , ,A B A B A Bξ ξ η η ζ ζ  are small quantities which are functions of time. 
Since bodies are cylinders hence  

1 2 3 1 2 3

2 22 2 2 23 4 3 4, , , ,
12 2 12 2

A B
A A A A B B B B

m a m aa l a lI I m I I I m I
′′ ′+ +

= =   =   = =   =  (31) 

where, a =  radius of body A, l =  length of body A, a′ =  radius of body B, l′ =  
length of body B. 

We replace Aϕ  and Bϕ  by their steady state value 
0Aϕ  and 

0Bϕ  respectively and 
using the Equation (30) and (31) in Equations (24), (25) and (26) and neglecting higher 
order terms, then from Equation (24), we have 

( )
( ) ( ){ } ( ){ }

3

1 0 1 0

3 1 0 0

32 3

32

3
sin 2 1 e sin

   sin sin 2 1 ecos .

A A A
A A

A A A A A

A A A A

I
I a m I

I I

ω µµ
η ξ

θ θ

ϕ θ ψ θ ω


− = − 

                                × − − + −    





(32) 

From Equation (25), we have 

( )
( ) ( ){ } ( ){ }

3 0

1 1

3 1 0 0

33 2

3. 2

sin 3

2 1 e

    sin 2 sin 1 ecos .

A A A A
A A

A A A

A A A A

I
I a m I

I I

ω θ µµ
ξ η

θ θ ψ θ ω


+ = − 

                                    × − − + −    





(33) 
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From Equation (26), we have 

0
cos 0.A A Aη θ ς+ =                         (34) 

Similarly for the body B  using Equations (30) and (31) in Equations (27), (28) and 
(29), we get 

( )
( ) ( ) ( )

3

1 0 1 0

3 1 0 0

32 3

32

3
sin 2 1 e sin 2

  sin sin 2 1 ecos ,

B B B
B B

B B B B B

B B B B

I
I a m I

I I

ω µµ
η ξ

θ θ

ϕ θ ψ θ ω


− = − 

                                × − − + −     





  (35) 

( )
( ) ( ) ( )

3 0

1 1

1 3 0

33 2

3. 2

sin 3

2 1 e

sin 2 sin 1 ecos .

B B B B
B B

B B B

B B B B

I
I a m I

I I

ω θ µµ
ξ η

θ θ ψ θ ω


+ = − 

                                         × − − + −     





 (36) 

From Equation (29), we have 

0
cos 0.B B Bη θ ς+ =                          (37) 

Integrating the Equation (36) and putting the value of Bη  in the Equation (37) and 
neglecting the secular terms, we get 

( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

0 0

0 0

0 0

2
1 2 3

4 5

6 7

8 9

cos cos 2 cos3

cos 2 cos 3 2

cos 2 cos 4 2 2

cos 5 2 3 cos 2 3

A A A A

A A

A A

A A

C C C

C C

C C

C C

ξ η ξ µ θ ω θ ω θ ω

θ ψ θ ψ ω

θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

+ = − + − + − 
                    + − + − − 


                    + − + + − − 

                    + − − + + −  






     (38) 

where 1 2 3 4 9, , , , ,C C C C C  are constants independent of t  and 3

1

A A
A A

A

I
n

I
ω

η = = . 

Considering Kepler’s equation up to the 1st order approximation ntθ = , the solu-
tion of the Equation (38) is given by  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 0 0

0 0

1 2 3
2 2 2 2 2 2

4 5 6

2 2 2 2 2 2

7 8 9

2 2 2 2

cos cos 2 cos3
cos

4 9

cos 2 cos 3 2 cos 2

4 9

cos 4 2 cos 5 2 3 c

16 25

A A A A
A A A

A A A

A A A

A A

A A

C C C
X l

n n n n n n

C C C

n n n n n n

C C C

n n n n

θ ω θ ω θ ω
ξ µ

θ ψ θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

− − −
= + + + − + − + − +

− − − − +
        + + +

− + − + − +

− − − −
        + + +

− + − +

( )0

2 2

os 2 3A

An n

θ ψ ω








− − − + 

(39) 

Here we can see that if any one of the denominator vanishes, the motion is indeter-
minate at the point. It depends on the mean motion and the angular velocity of rotation 
of the body. There are many points at which resonance will occur but for discussion we 
have consider only one point 2 An n=  and for other we can use the similar proce-
dure. We further assume that 2 An n−  is a small quantity and at the equilibrium point 
2 An n−  i.e. mean motion and angular velocity of the rigid body A  are in the ratio of 
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1:2. In order to study the behavior at this point we will follow the procedure of Brown 
and Shook [15]. 

6. Resonance at the Critical Points 

From right hand side of Equation (39), we have , 2 ,3 , 4An n n n n=  are the critical points. 
Here we consider 2An n=  for discussing resonance. Now we shall calculate the am-
plitude and period of vibration in the variable Aξ . 

We may write the Equation (39) as 

2 ,A
A A A A

A

Hnξ ξ µ
ξ

∂
+ =

∂
                          (40) 

where, 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0

0 0 0

0 0

1 2 3 4

5 6 7

8 9

cos cos 2 cos cos 2

cos 3 2 cos 2 cos 4 2 2

cos 5 2 3 cos 2 3

A A A

A A A

A A

H C C C C

C C C

C C

ξ θ ω θ ω θ ω θ ψ

θ ψ ω θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

= − + − + − + −

         + − − + − + + − −

         + − − + + −   
The solution of the equation 

2 0,A A Anξ ξ+ =                           (41) 

is periodic and given by 

( )cos , ,A A A A A A A AX l l n t n f Xξ ξ= = + = .              (42) 

Let Aξ  be the function of two independent variable andA AX l   i.e. ( ),A A A AX lξ ξ= . 
The Equation (41) may be written as 

2

2 0A
A

Al
ξ

ξ
∂

+ =
∂

.                          (43) 

Then  

d d d
.

d d d
A A A A A

A A

l X
t l t X t

ξ ξ ξ∂ ∂
= ⋅ + ⋅

∂ ∂
                    (44) 

We want to replace Aξ  from Equation (40) by two new variables AX  and Al  
which are related to Aξ  by Equation (42). As we are replacing one variable by other 
two co-relations between the new variables is at our choice. Let us choose it in such a 
way that  

d d
d d

A A A A A
A

A A A

l X n
l t X t l
ξ ξ ξ∂ ∂ ∂

⋅ + ⋅ =
∂ ∂ ∂

.                   (45) 

Using Equations (44) and (45), we get 
d

.
d

A A
A

A

n
t l

ξ ξ∂
=

∂
 

As an, dA A Al nX    are function of time t , therefore differentiating it with respect to 
t , we get  

2 2

2 2

d d d
d dd

A A A A A
A A A

A AA

l Xn n
t X l tt l

ξ ξ ξ
ξ

 ∂ ∂∂
= = ⋅ + ⋅ ∂ ∂∂  

 .            (46) 
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Using Equations (40), (43) and (46), we get 
2

2

d
d d

A A A A A
A A A A

A A AA

l X Hn n
t X l tl

ξ ξ
η µ

ξ
 ∂ ∂ ∂ ∂∂ − + ⋅ =   ∂ ∂ ∂∂    

.          (47) 

Also from the Equation (46), we get 

d
0

d
A A A A

A
A A

l Xn
l t X t
ξ ξ∂ ∂ ∂ − + ⋅ = ∂ ∂ ∂ 

.                   (48) 

Obviously the Equations (47) and (48) are linear equations in 
d d and 
d d

A A
A

l Xn
t t

 − 
 

.  

So solving these equations for these variables, we get 
d
d

A A A

A A

X H
t K l

µ ∂
= ⋅

∂
                         (49) 

d
d

A A A A A A
A A

A A A A A

l H Hn n
t K X K X

µ ξ µ
ξ

∂ ∂ ∂
= − ⋅ ⋅ = − ⋅

∂ ∂ ∂
               (50) 

where, 
2

2
A A A A

A A A
A A A AA

K n n
X l l Xl

ξ ξ ξ ξ ∂ ∂ ∂ ∂∂
= − ⋅ ∂ ∂ ∂ ∂∂ 

 is a function of AX  only. 

Also, 

{ ( ) ( )}
)( ) )( ){ }
)( ) )( ){ }

( ) ( ){ }
( ) ( ){ }

0

0 0

0

1

2

3

4

5

6

cos cos
2

cos 2 cos 2

cos3 cos3

cos cos

cos 3 2 cos 3 2

cos 2

A
A A A

A A

A A

A A A A

A A A A

A

XH C l l

C l l

C l l

C l l

C l l

C

θ ω θ ω

θ ω θ ω

θ ω θ ω

θ ψ θ ψ

θ ψ ω θ ψ ω

θ ψ ω

= − + + − −

          + − + + − −

          + − + + − −

          + − + + − −

          + − − + + − − −

          + − +( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

0

0 0

0 0

0 0

7

8

9

cos 2

cos 4 2 2 cos 4 2 2

cos 5 2 3 cos 5 2 3

cos 2 3 cos 5 2 3

A A A

A A A A

A A A A

A A A A

l l

C l l

C l l

C l l

θ ψ ω

θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

θ ψ ω θ ψ ω













+ + − + − 


          + − − + + − − + 

          + − − + + − − −


           + + − + + − − −  

.      (51) 

As ,  A An K  are function of AX  only, we can write the Equation (51) into canonical 
form with new variables and A AX R  defined by 

d d , d d dA A A A A A A A AX K K R n X n K X=      = − = −  

As ( ) ( )d d,
d d

A A
A A A A A A

A A

X lR H R H
t l t X

µ µ∂ −∂
= +    = +

∂ ∂
 so differentiating the Equation 

(50) and putting the value of d
d

AX
t

 and d
d

Al
t

, we get 

2 2 2

2

2 2

2

d
d

1 .

A A A A A A
A

A A A A A A A

A A A A A
A

A A A A A A AA

l n H H Hn
K X l l X l Xt

H H H HK
l X X X K X lK

µ

µ

 ∂ ∂ ∂ ∂
= ⋅ − − ∂ ∂ ∂ ∂ ∂ ∂ 

  ∂ ∂ ∂ ∂∂
            + ⋅ − ⋅ ⋅  ∂ ∂ ∂ ∂ ∂ ∂   
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Neglecting higher powers of Aµ , we get 
2 22

2

d
d

A A A A A
A

A A A A A A A

n H H Hl n
K X l l X l Xt
µ  ∂ ∂ ∂ ∂

= ⋅ − − ∂ ∂ ∂ ∂ ∂ ∂ 
             (52) 

Here we observe that andAl l   are present in AH  only as the sum of the periodic 
terms with argument ( ){ }Ail j nt ε− +  where andn ε   are given constants, thus we 
have 

A A

A

H Hjn
t i l

∂ ∂ = − ∂ ∂   
The Equation (53) can be written  

( ) ( )
2

2
2

d 1 0
d

A A
A

A A A A

Hl in jn
iK X in jn lt
µ   ∂∂ + − ⋅ =   ∂ − ∂   

∑ .          (53) 

Now we are considering here the case in which the critical argument is at the point 
2An n=  then the affected Hamiltonian is given by 

( )4
1 cos
2A AH C X l= .                        (54) 

Taking ( )2Al l nt ε= − +  as the critical argument in our case so the Equation (53) 
becomes 

( )
2

2 4
2

d 2 sin 0
2 2d

A A
A

A A A

C Xl n n l
K X n nt
µ   ∂

− − =  
∂ −   

.             (55) 

As the first approximation, if we put 
0 0 0
,  ,  A A A A A AX X n n K n= = =  (All constants) 

then Equation (54) becomes 

( )
0 0 0

2
2 4

2

d 2 sin 0
2 2d

A A
A

A A A

C Xl n n l
K X n nt
µ   ∂  − − =  

∂ −    
.            (56) 

This is the equation of motion of a simple pendulum. If co-efficient of sin l  is nega-
tive then 

0
2 0,  2 0 or π.A An n ε ε− = − =  

If the oscillation is small, we can take 
0 0 0

sin ,  ,  ,  A A A A A Al l n n X X K K≈ = = =  as l  
oscillates about the value of 0 or π . Then Equation (56) becomes 

( )
0 0 0

2
2 4

2

0

d 2 0
2 2d

A A
A

A A A

C Xl n n l
K X n nt
µ   ∂  − Σ − =  ∂ −      
2

2
2

d 0
d A

l P l
t

+ =
 

where 
0

0 0

2 4

0
2

A A
A A

A A

C nP X
K X

µ  ∂
=   ∂ 

 

( )
( )

( )3 0 3 1

2
1

2

4 33 2

sin 3 1 3e 1 .
2 22 1 e

A A A A A

AA

I I I
C

nI a m

ω θ µ − + = × ⋅ −  
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Its solution is given by 

( )0
sinA A Al z P l Z= +                          (57) 

where AZ  and 
0AZ  are arbitrary constants. Thus amplitude and period of vibration  

are given by AZ  and 
2π

AP
 respectively with similar approximation in the first relation  

of Equation (50) and using the Equations (54) and (57), we get. 

( )0 0
4 cos

2
A A

A A A A
A A

C X ZX X P l Z
K P

µ
 

= − + 
   

where 
0AX  can be determined from the equation 2An n=  as 

0An  is known function. 

7. Equilibrium Points for the Body A in Terms of Eulerian Angles 

Now we calculate the libration in the variables ( )or  and A A Aη ψ ϕ= . 
Integrating the Equation (33) and ignoring secular terms, we get 

( )
( ) ( )

( ) ( )

( ) ( )

3 1 0

1

0

0 0

2 2

33 2

3 2

3 3

2

3 3e 3e 1 3esin 2 sin sin 2
2 8 82 1 e

e 1 3esin 3 1 sin 2
24 4 2

3e 3e 1 3e 3e 1sin 3 2 sin 2
4 10 3 4 16

3e s
32

A
A A A A

A A

A

A A

I I
na m I

n n

n n

n

µµξ θ θ ω

θ ω θ ψ

θ ψ ω θ ψ ω

 
= − − ⋅ + − 

 −

 
        + − + + ⋅ − 

 
   

        + − ⋅ − − + − ⋅ − +   
   

        +



( ) ( )

( )

0 0

3
0 0

1

3

3

ein 4 2 2 sin 5 2 3
80

e sin 3 2 sin
16

A A

A
A A A A

A

n
I
I

θ ψ ω θ ψ ω

θ ω ψ ω θ η

− − + − −

        + − + −
 

where constants of integration are taken to be zero. 
Putting the value of Aξ  in Equation (32) and ignoring secular term, we get 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

3

0
1

0 0 0

0 0

2

1 2 3 4

5 6 7

8 9

sin sin 2 sin sin 2

sin 3 2 sin 2 sin 4 2 2

sin 5 2 3 sin 2 3 ,

A A
A A A A

A

A A A

A A

I
c c c c

I

c c c

c c

ω
η η µ θ ω θ ω θ ω θ ψ

θ ψ ω θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

 
− = − + − + −  + −   

 

+ − − + − + + − −

+ − − + + − 



 

where 1, 2,3, ,9ic =   etc. are constants. 
And the perturbed solution for Aη  is given by 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 0 0

0 0

31 2
2 2 2 2 2 2

5 64
2 2 2 2 2 2

7 8 9
2 2 2 2 2 2

cos sin sin 2 sin
4 9

sin 2 sin 3 2 sin 2
4 9

sin 4 2 2 sin 5 2 3 sin 2
16 25

A A A A
A A A

A A A
A A A

A A
A A A

cc cX l
n n n n n n

c cc
n n n n n n

c c c
n n n n n n

η µ θ ω θ ω θ ω

θ ψ θ ψ ω θ ψ ω

θ ψ ω θ ψ ω θ ψ


= + − + −  + −− + − + − +

+ −  + − − + − +
− + − + − +

+ − − + − −  + +
− + − + − +

( )0
3A ω







− 

(58) 
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Obviously in the case of one of the denominator becomes zero, the motion cannot be 
determined at that point, known as critical point and hence resonance arise at that 
point. In this case usual method fails to determine the motion, so for the present pur-
pose the present purpose we will use the method as that of Aξ . 

The equation for Aη  can be written as 

2 A
A A A A

A

Hnη η µ
η

′∂
+ =

∂


 

[ ( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }0 0

0

1

2

3

4

5

sin sin
2

sin 2 2 sin 2 2

sin 3 3 sin 3 3

sin 2 2 sin 2 2

sin 3 2

A
A A A

A A

A A

A A A A

A

XH c l l

c l l

c l l

c l l

c

θ ω θ ω

θ ω θ ω

θ ω θ ω

θ ψ θ ψ

θ ψ ω

′
′ = − + + − −

                   + − + + − −

                  + − + + − −

                  + − + + − −

                  + − − +( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

0

0 0

0 0

0 0

6

7

8

9

sin 3 2

sin 2 sin 2

sin 4 2 2 sin 4 2 2

sin 5 2 3 sin 5 2 3

sin

A A A

A A A A

A A A A

A A A A

l l

c l l

c l l

c l l

c

θ ψ ω

θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

θ ψ ω θ ψ ω

+ − − −

                  + − + + + − + −

                  + − − + + − − −

                  + − − + + − − −

                  + ( ) ( ){ }0 0
2 3 sin 2 3 .A A A Al lθ ψ ω θ ψ ω + − + + + − − 

 

On taking the first approximation, we can see that critical argument oscillates about  
π
2

 or 3π
2

. Also the solution for l  is given by 

( )0
sinA A Al Z P t Z′ ′ ′= +                        (59) 

where AZ ′  and 
0AZ ′  are arbitrary constant. 

Thus amplitude and period of vibration are given by AZ ′  and 
2π

AP′
 respectively,  

where 
0

0

2 4

2
A A

A A
A A

cP X
K X

µ η
′ ′

 ∂
=  ′∂ 

, 

2

2
A A A A

A A A
A A A AA

K n n
X l l Xl

η η η η ∂ ∂ ∂ ∂∂′ = − ⋅ ′∂ ∂ ∂ ∂∂   

( )
( )

( )
( )

3

3 1 0

2
1

3 1

1

2

4 33 2

2

32 3

3 3e 12cos 1
2 42 1 e

3 3e1 .
22 1 e

A A
A A A

AA

A A

A A

I
c I I

nI a m

I I

a m I

µω
θ

µ


 = × − × × + ×  
 −

−             + × +  
 − 

 

The solution for AX ′  is given by 

( )0 0
4

02
A A

A A A A
A A

c X ZX X P t Z
K P

µ
′ ′ 

′ ′ ′ ′= − × + ′ ′ 
                (60) 
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where AX ′  can be determined from the equation 
0

2An n=  as 
0An  is a known func-

tion. From the Equation (34) it is obvious that Aζ  depends on Aη  so that all the re-
sults of Aζ  can be found in terms of Aη .

 

8. Equilibrium Points for the Body B in Terms of Eulerian Angles 

By proceeding exactly same as above case, we can find out the libration in the variables
,  and B B Bθ ψ φ . Here, we assume that 2 Bn n−  is a small quantity and at the equili-

brium point 2 Bn n=  i.e. mean motion and angular velocity of the body B are in the 
ratio of 1:2. Therefore at this point the resonance will arise. By taking 

1 B
B A

B A

m
m m

µ µ= − =
+  

and the solution up to first order approximation of Aµ , we get 

( ) ( )

( ) ( )

( )

0

0

1 2
2 2 2 2

3 4
2 2 2 2

5
2 2

cos cos cos 2
4

cos3 cos 2
9 4

cos 3 2
9

                  

B B B B
B B

B
B B

B
B

D DX l
n n n n

D D
n n n n
D

n n

ξ µ θ ω θ ω

θ ω θ ψ

θ ψ ω


= + − + −− + − +

                                    + − + −
− + − +

                                    + − −
− +

( )

( )

( )

0

0

0

6
2 2

7
2 2

8
2 2

9
2

                 cos 2

cos 4 2 2
16

                                   cos 5 2 3
25

                            

B
B

B
B

B
B

D
n n

D
n n
D
n n

D
n

θ ψ ω

θ ψ ω

θ ψ ω

+ − +
− +

                                    + − −
− +

+ − −
− +

       +
−

( )02 cos 2 3B
Bn

θ ψ ω



















 + −  +  

  (61) 

( ) ( )

( ) ( )

( )

0

0

1 2
2 2 2 2

3 4
2 2 2 2

5
2 2

cos sin sin 2
4

sin 3 sin 2
9 4

sin 3 2
9

               

B B B B
B B

B
B B

B
B

d dX l
n n n n

d d
n n n n
d

n n

η µ θ ω θ ω

θ ω θ ψ

θ ψ ω


′= + − + −− + − +

                                     + − + −
− + − +

                                     + − −
− +

( )

( )

( )

0

0

0

6
2 2

7
2 2

8
2 2

                     sin 2

sin 4 2 2
16

                                    sin 5 2 3
25

                           

B
B

B
B

B
B

d
n n

d
n n
d
n n

θ ψ ω

θ ψ ω

θ ψ ω

+ − +
− +

                                     + − −
− +

+ − −
− +

        ( )0

9
2 2 sin 2 3B

B

d
n n

θ ψ ω



















 + + −  − +  

  (62) 

 and B BX X ′  are arbitrary constants. 
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3

1

,   B B
B B B B

B

I
l n t n

I
ω

= + ∈ = .                       (63) 

Also we see that in the libration in the variable Bθ  the critical argument variable pl   

makes oscillation about the value 0 or π   and the period of libration is given by 
2π

BP
. 

The solution of pl  for small oscillation is given by ( )0
sinP B B Bl Z P t Z= + , where 

BZ  and 
0BZ  are arbitrary constant. 

( ) ( ) ( )

( )

42 4
4 42

2
4

4

0

1 1 2
2

 

B A B A B B
B B B

B B B B B BB

B
B

B

D X D X KP X D X D
K X X K X XK

X D
D X

X

µ η µ −  − ∂∂ ∂
= + ⋅ +  ∂ ∂ ∂ ∂ 

∂
         − ∂   

2
B B B

B B B
B A B B

K n n
X l l X

ξ ξ ξ ∂ ∂ ∂∂
= ⋅ − ∂ ∂ ∂ ∂ 

 is a function of BX  only. 

( )
( )

( )
( )

3 1 3 0 3 1

0

1 1

2
2

4 3 32 2 2 3 2

2

3 3 sin1 3esin
2 42 1 e 2 1 e

3e 11 .
2 2

B B B B B B B
B

B B B B

I I I I I
D

I a m I a m

n

µ µ ω θ
θ

 − − − − = + +   ′ ′− −
 

            × +  
  

 

Solution for BX  is given by  

( )0 0
4

0

cos .
2

B B B
B B B B

B B

D X ZX X P t Z
K P

µ  
= − + 

 
 

Also when we consider the libration in the variable Bψ  we see that the critical  

argument Pl  will make oscillation about the value π 3π or 
2 2

 and the period of libra-

tion is given by 
2π

BP
. 

The solution of Pl  for small oscillation in this case will be ( )0
sinP B B Bl Z P t Z′ ′ ′= + , 

where BZ ′  and 
0BZ ′  are arbitrary constant. 

( ) ( ) ( )

( )

42 4
4 42

2

4 42
0

1 1 2
2

B A B A B B
B B B

B B B B B BB

B B
B

d X d X KP X d d X
K X X K X XK

d X X d
X

µ η µ′
′

′

 ′ − ′ ′ ∂ − ∂∂ ∂ ′= + ⋅ +   ′ ′ ′ ′∂ ∂ ∂ ∂  
∂′ ′            − 

∂   
2

2
B B B B

B B B
B B B BB

K n n
X l l Xl

η η η η ∂ ∂ ∂ ∂∂′ = ⋅ − ⋅ ′∂ ∂ ∂ ∂∂   

( )
( )

( )
( )

3 3 1 3 1

0

3 1

3 3

4 3 32 3 2 2 3

3 33e 3e 1 3e2cos 1 .
4 16 4 22 1 e 2 1 e

B B B B B B
B

B A A B

I I I I I
d

nI a m a m I

µω µ
θ

 ⋅ − −    = − ⋅ + +       ′ ′− −  

 

And the solution for BX ′  is given by 
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( )0 0
4

0

cos
2

B B B
B B B B

B B

d X ZX X P l Z
K P

µ ′ ′ 
′ ′ ′ ′= − + ′ ′ 

.                (64) 

where BX ′  can be determined from the equation 
0

2Bn n=  as 
0Bn  is a known func-

tion. 
From the Equation (37) it is obvious and Bζ  depends on Bη , so that the result of 

Bζ  can be found in term of Bη .

 
9. The Solution for the Generalized Momenta Variables  

Corresponding to Constants of Integration 

We have from Equation (16), 

0 0constant ,  constant .a a e e= = = =  

Integrating the Equation (17) with respect to t , we get 

( )1 3 22
constant

1 e

Ftβ = +
−

 

( )
( ) ( )3 1 3 12 2

3 22 2

3 3 31 sin 1 sin .
2 2 2 21 e

A A B B
A B

A B

I I I I
F

m ma
θ θ

 − −    = − − − −       −  
 

Initially at 0t =  take 1 0β τ=  and using the Equation (16), we get 

0Mtτ τ= +  

where, 
( )3 22

01 e

FM −
=

−
. 

Again from Equation (18), we have  

( )2 3 22
0

constant.
1 e

nFtβ = +
−

 

Initially at 0t =  take 2 0β ω=  and using the Equation (14), we get 

( )2 0 022
0

,
1 e

Ft Nntβ ω ω ω−
= = + = +

−
 

where, 
( )22

01 e

FN −
=

−
. 

Now we find the time t∆  that elapses between the instant at which r  attains suc-
cessive minima and θ∆  the corresponding change in θ . 

We have ( ) ( )0 01 cos 1 cosr a e E a e E= − = − . Clearly r  attains it successive mini-
ma at 0 or 2πE E= = . 

Let 0E =  when 1 and 2πt t E=   =  when 2t t= . Then from Equations (14) and (34), 
we have 

( )
2π .

1
t

n M
∆ ≅

−
 

Again from the Equations (13) and (36), we get 
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( )1
0

cos
cos

1 cos
E e

Nnt
e E

θ ω − − 
= + +  −   

Let 0E =  when 1θ θ=  and 2πE =  when 2 .θ θ=  

The corresponding change in θ  is given by 2π 1 .
1

N
M

θ  ∆ = + − 
 

10. Conclusions 

In the section of “Equations of motion”, we have derived the perturbed and unper-
turbed Hamiltonian and the canonical equations of motion with respect to the com-
plete Hamiltonian H where are generalized co-ordinates and are the corresponding ge-
neralized momenta. In Section 3, unperturbed solutions can be derived by usual course 
from the Kepler’s equation of motion. For appropriate variational equation, the required 
generalized co-ordinates have been calculated in Section 5. In section 6, the effect of 
resonance has been shown in the solutions of the equations of motion of two cylindrical 
rigid bodies. In Section 7 and 8, equilibrium points have been calculated in terms of 
Eulerian angles for both the bodies.. Finally the appropriate variational equation in Sec-
tion 4 has been completely solved in Section 9. 

The tools obtained in different sections of the manuscript can be used to discuss the 
motion of cable connected two artificial satellites. Thus, we may conclude that this ar-
ticle is highly applicable in Astrophysics and Space Science. 
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