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Abstract 
In the present study, we have obtained a new analytical solution of combined Eins-
tein-Maxwell field equations describing the interior field of a ball having static 
spherically symmetric isotropic charged fluid within it. The charge and electric field 
intensity are zero at the center and monotonically increasing towards the boundary 
of the fluid ball. Besides these, adiabatic index is also increasing towards the boun-
dary and becomes infinite on it. All other physical quantities such as pressure, densi-
ty, adiabatic speed of sound, charge density, adiabatic index are monotonically de-
creasing towards the surface. Causality condition is obeyed at the center of ball. In 
the limiting case of vanishingly small charge, the solution degenerates into Schwarz-
child uniform density solution for electrically neutral fluid. The solution joins smoothly 
to the Reissner-Nordstrom solution over the boundary. We have constructed a neu-

tron star model by assuming the surface density 17 32 10  kgmρ −= × . The mass of the 
neutron star comes 1.58 M  with radius 14.574 km. 
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1. Introduction 

An analysis of the Reissner-Nordstrom metric shows that a spherically symmetric distri- 
bution of charged dust may avoid the catastrophic gravitational collapse, a seemingly 
unavoidable feature of Schwarzschild’s [1] geometry exterior to an electrically neutral 
fluid sphere of mass bigger than certain critical limit. As in evidence we have Bonnor’s 
model [2] [3] of the equilibrium ball of charged dust in contrast to the Oppenheimer- 
Snyder [4] continually contracting ball of electrically neutral dust. Though Bonnors 
model has been found to the unstable to small radial perturbations and also to a change 
in the total charge content of the system, it initiates a general interest in the study of the 
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implications of Einstein-Maxwell field equations with reference to the general relativistic 
prediction of gravitational collapse. On the other hand, it is generally considered that a 
black hole may carry non-zero net charge, apart from its mass and angular momentum. 
Such an assumption may require the collapse of stellar masses of charged matter. It has 
been suggested by Shvartsman [5] that on account of interaction between a star and its 
surroundings, it is possible that stellar systems carrying electric charge may exist in 
nature. It is therefore not surprising that in recent years the problem of finding non- 
singular, physically meaningful solution of Einstein-Maxwell field equations for static 
ball of charged coherent perfect has received wide attention. The inclusion of charge 
seems to affect the stability of the system—the stability of Schwarzschild’s uniform 
density sphere increases by the introduction of net surface charge. It has been shown 
that the stability is more profound if the same amount of charge be distributed unifor- 
mally throughout within the sphere. 

The search for the exact solutions is of continuous interest to researcher. Buchdahl 
[6] proposed a famous bound on the mass radius ratio of relativistic fluid spheres which 
is an important contribution in order to study the stability of the fluid spheres. Delgaty- 
Lake [7] studied all the then existing solutions and established that Adler [8], Heintzmann 
[9], etc. do not satisfy all the well behaved conditions and also pointed out that only 
nine solutions are well behaved; out of which seven in curvature coordinates (Tolman 
[10], Finch and Skea [11], Patvardhav and Vaidya [12], Mehra [13], Kuchowicz [14], 
Matese and Whitman [15], Durgapal’s two solutions [16]) and only two solutions (Nariai 
[17], Goldman [18]) in isotropic coordinates. Ivanov [19] [20] [21] [22] [23], Neeraj 
Pant [24], Maurya and Gupta [25], Pant et al. [26] [27], Pant and Sah [28] [29], Tewari, 
Charan and Chandra [30], Sah, Chandra and Charan [31] studied the existing well 
behaved solutions of Einstein’s field equations. Some pioneer work in Relativity is given 
by Herrera et al. [32]-[37], Tewari and Charan [38] [39] [40] [41]. Nduka [42] [43], 
Whitman and Burch [44], Tikekar [45], Ivanov [46], Ray et al. [47], Stettner [48], Krori 
and Barua [49], Ray and Das [50], Pant and Negi [51], Florides [52], Dionysiou [53], 
Pant et al. [54] etc. gave the well behaved solution for charged fluid sphere. Pant et al. 
[55], Pant and Tewari [56], Fuloria et al. [57] gave charge analogue of Heintzmann, 
Adler, Durgapal’s relativistic exact solution respectively. Gupta and Maurya [58] gave 
charge analogue of Durgapal and Fuloria superdense star. Bijalwan and Gupta [59], 
Gupta and Kumar [60] gave charge analogue of Schwarzschild’s interior solution. 

In this paper, we present a new solution of Einstein-Maxwell field equations in sphe- 
rically symmetric coordinates which are well behaved solutions charge analogous solution 
of Sah and Chandra [61]. In our present study the paper consists of nine sections. In 
Section 2, Einstein’s field equations for charged fluid sphere in canonical coordinates 
are given. In Section 3, gravitational binding energy of a charged fluid sphere is given. 
Section 4 consists of boundary conditions for well behaved solutions. New class of 
solution of Einstein’s field equations for a charged fluid sphere in canonical coordinates 
is given in Section 5. Section 6 stipulates the properties of this new class of solution 
of Einstein-Maxwell field equations. In Section 7 the matching conditions of interior 
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metric of the charged fluid with the exterior metric are given. For better illustration of 
our physically accepted solution, the relevant physical quantities are presented by tables 
and figures in Section 8. Finally, some concluding remarks have been made in Section 
9. 

2. Field Equations for a Charged Fluid Sphere in Canonical  
Coordinates 

The Einstein-Maxwell field equations in general relativity are given by  

4
1 8π
2

GR Rg T
c

µ µ µ
ν ν ν− = −                         (1) 

where Rµ
ν , R , g µ

ν  and T µ
ν , are Ricci mixed tensor, scalar curvature, metric tensor 

and the energy momentum tensor for fluid sphere respectively. T µ
ν  is conserved quantity 

such that  

; 0T µ
ν µ =                               (2) 

The energy momentum tensor for a charged fluid sphere is defined as  

T M Eµ µ µ
ν ν ν= +                            (3) 

Here M µ
ν  is the part of the energy momentum tensor due to matter distribution of 

the system and, for a perfect fluid distribution, it is given by  

( )2M c p u u pgµ µ µ
ν ν νρ= + −                       (4) 

where ρ  and p  are the density and isotropic pressure of the fluid element measured 
locally in its proper reference frame. The density ρ  gives total matter energy in proper 
volume V as  

2 2dp V
c M c Vρ= ∫                           (5) 

uµ  is element’s time-like four-velocity vector such that  

1g u uµ µ ν
ν =                              (6) 

Eµ
ν  is the part of energy momentum tensor due to electromagnetic character of matter 

within the fluid sphere and is defined by  

1 1
4π 4

ł
łE F F F Fµ µλ µ λ

ν νλ ν λδ = − +  
                   (7) 

where the electromagnetic tensor F µν  satisfies Mexwells equations  

, , , 0F F Fµν λ νλ µ λν µ+ + =                         (8) 

( ) ( )
1 1
2 24πg F g J

x
µν µ

ν
∂  − = − ∂  

                    (9) 

J µ  is the 4-current density for a fluid of null charge conductivity and a conserved 
quantity such that  

; 0J µ
ν =                             (10) 

and is given by  
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J uµ µσ=                            (11) 

σ  being the charge density of the fluid element and gives the total charge contained in 
proper volume V as  

d
V

Q Vσ= ∫                            (12) 

The total non gravitational energy in a proper volume V is given by  
0

0 dp V
E T V= ∫                           (13) 

We consider a static spherically symmetric charged perfect fluid distribution. The 
interior space-time metric for spherically symmetric fluid distribution in canonical coordi- 
nate is given by  

( )2 2 2 2 2 2 2 2 2d d d d sin ds A t B r r θ θ φ= − − +               (14) 

where A  and B  are functions of r only. 
The electrostatic field is described by the only non-singular components 10F ,  

( )01 10F F= −  of F µν . 
In view of (8), (9) and (10) we obtain  

01
2
QcF

r AB
=                            (15) 

where Q stands for the total charge contained within the sphere of radius r and is given 
as  

2
0
4π d

r
Q r B rσ= ∫                          (16) 

In view of the metric (14) and energy momentum tensor (3), the field Equation (1) 
gives  

2

4 2 2 2 4 4
8π 1 2 1 1G A GQp

rAc B r r c r
′ = + − + 

 
                  (17) 

2

4 2 4 4
8π 1G A A B A B GQp

A rA rB ABc B c r
′′ ′ ′ ′ ′ = + − − − 

 
               (18) 

2

2 2 2 2 4 4
8π 1 2 1 1G B GQ

rBc B r r c r
ρ

′ = − + − 
 

                  (19) 

In view of Equation (17) and Equation (18), pressure isotropy gives  
2

4 4 2 2 2
2 1 1 1GQ A A A B B

A rA AB rBc r B r r
′′ ′ ′ ′ ′ = − − − − + 

 
              (20) 

The charge conservation Equation (10) is identically satisfied whereas (2) for energy- 
momentum gives rise to the following surviving equation  

( )2
44π

A QQp c p
A r

ρ
′ ′

′ = − + +                       (21) 

which is clearly contained in the field Equations (17) to (20). 
We have three equations to determine five unknown functions A , B , p , ρ  and 

σ . Thus, we find a two degree of arbitrariness in the general relativistic problem of the 
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electrically charged fluid ball, and to obtain a solution we can always choose one of 
these functions arbitrarily and correlate other to this by certain relation. The volume 
field surrounding the charged sphere is described by the Reissner-Nordstrom field  

( )
12 2

2 2 2 2 2 2 2 2
2 4 2 2 4 2

2 2d 1 d 1 d d sin dGM G GM Gs c t r r
c r c r c r c r

θ θ φ
−

   
= − + − − + − +   
   

   (22) 

01 10
2F F

r
= − =

                           (23) 

where M and E are constants. We observe that whereas in Schwarzschilds field that 
total energy 2Mc  is constant, in case of Reissner-Nordstrom field the total energy  

2
2Mc

r
 

− 
 

  increases as r increases. At large distances the Reissner-Nordstron field  

approximates to Schwarzschilds field. The junction of interior and exterior field over 
the boundary r rΣ=  of the sphere is governed by the junction conditions due to Darmois 
(1927), Viz. the continuity of the first and second fundamental forms across the boundary, 
which imply the continuity of gµν  and the fluid pressure across the boundary. For 
the junction of electromagnetic field it is sufficient to consider the continuity of F µν  
(and not its first derivatives) across the boundary. In view of (16) and (23) the continuity 
of F µν  gives  

QΣ=  

Thus the constant   measures the total charge contained within the ball. 
Also we have  

( ) ( )
2 2 4

1 2 21
m r rG G

r rB c c
µ

= − −                      (24) 

where  

( ) 24π dm r r rρ= ∫                           (25) 

and  

( )
2 2

2
2 4d 4π d

2 8π
Q Qr r r r
r r

µ = =∫ ∫                     (26) 

The continuity of g µν  over the boundary r rΣ=  demands  

( ) ( ) 2

2 2
1

2
r

m r M
rc c

µ Σ
Σ

Σ

+ = −


                     (27) 

Thus, in general, the constant M can not be identified with Euclidean mass of the 
sphere as against the case of uncharged sphere in which case ( )M m rΣ= . In view of 
(27) we have ( )M m rΣ>  we observe what the distribution of total energy within the 
charged sphere as measured by an electrically neutral test particle close to the boundary 
of the star is similar to that within a sphere of electrically neutral perfect fluid. Equation 
(27) can be rewritten as,  

2 2
2 2 2 2 2

4 40 0
4π d 4π d 4π d

8π 8π
r r rQ QMc c r r r r r r

r r
ρΣ Σ Σ

∞
= ⋅ + ⋅ + ⋅∫ ∫ ∫          (28) 
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Thus three physical quantities contribute to 2Mc  viz. 1) the total matter energy 
within the ball distributed as if the geometry is Euclidean, 2) the total electromagnetic 
energy within the ball as if the geometry is Euclidean 3) the total electromagnetic 
energy distributed over the entire exterior space-time as if the geometry there too is 
euclidean. 

The gravitational redshift of massive spherically symmetric ball is  
1
2

001 Z g
−

+ =                              (29) 

which gives central ( )0Z  and surface ( )ZΣ  gravitational redshifts  

0 1cZ
A

= −                              (30) 

and  
1

1 1rBZ
B

−

Σ

′ = + − 
 

                         (31) 

3. Gravational Binding Energy of a Charged Sphere 

In view of (11) the total non gravitational energy of a charged sphere is given  
2

2 2
40

4π d
8π

r
p

QE c r B r
r

ρΣ  
= + ⋅ 

 
∫                    (32) 

Also the total energy of the ball measured by an electrically neutral test particle close 
to the boundary is given by  

2
2 1

2
E Mc

rΣ
Σ

= −


                         (33) 

Clearly the difference pE EΣ−  is the expression for the gravitational energy of the 
charged fluid sphere as measured by an observer close to the boundary. The negative of 
this quantity is the gravitational binding energy of the system. In Newtonian limit we 
obtain from (24), (32) and (33)  

( ) ( )
2

2 2
4 40

4π .d
8π

r
p

G QE E r c m r c r r
c r

ρ µΣ

Σ

 
 − = + +   

 
∫          (34) 

For a particle at large distances from the object total energy E∞  approximates to  

2Mc . The difference 
2

2rΣ


 between the two energy measurements is the classical  

expression for the energy of vacuum electrostatic field surrounding a sphere of charge 
  and radius rΣ . In the Reissner-Nordstrom field energy is distributed in the entire 
space time. As such the set of field Equations (17) to (19) can be solved under two given 
relations or assumptions. Physically speaking, one of them has to be the equation of 
state for fluid and another a law for the distribution of charge with the sphere. The 
non-singular solution due to Naduka [42] [43] and that due to Whitman and Burch 
[44] follow the charge distribution given by σ  = constant. 1B− . 
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4. Boundary Conditions for Well Behaved Solution 

For well behaved nature of the solution in isotropic coordinates, the following conditions 
should be satisfied: 

1) The solution should be free from geometrical and physical singularities. Metric 
potentials A and B must be non-zero positive finite for free from geometrical singularities 
while central pressure, central density, should be positive and finite or 0 0ρ >  and 

0 0p >  for free from physical singularities. 
2) The solution should have maximum positive values of pressure and density at the 

center and monotonically decreasing towards the surface of fluid object i.e. 

i) 
0

d 0
d
p
r

  = 
 

 and 
2

2
0

d 0
d

p
r

 
< 

 
 such that the pressure gradient, d

d
p
r

 is negative for  

0 r rΣ≤ ≤ . 

ii) 
0

d = 0
dr
ρ 

 
 

 and 
2

2
0

d 0
dr
ρ 

< 
 

 such that the density gradient, d
dr
ρ  is negative for  

0 r rΣ≤ ≤ .  
3) At boundary pressure, p  must vanish. 
4) The pressure, p , and density ρ  should be positive. 
5) Solution should have positive value of pressure-density ratio which must be less  

than 1 (weak energy condition) and less than 1
3

 (strong energy condition) throughout  

within the fluid object and monotonically decreasing as well (Pant and Negi [51]). 
6) The casualty condition must be satisfied for this velocity of sound should be less  

than that of light throughout the model i.e. 2
d0 1
d
p

c ρ
≤ < . The velocity of sound should  

be monotonically decreasing towards the surface and increasing with the increase of  

density i.e. 
d d 0
d d

p
r ρ
 

< 
 

 or 
2

2
d 0
d

p
ρ

 
> 

 
. In this context it is worth mentioning that  

the equation of state at ultra-high distribution has the property that the sound speed is 
decreasing outwards. 

7) For realistic matter, the adiabatic index 1γ >  i.e. d
d

p p
ρ ρ
< , everywhere within the  

ball. 
8) The red shift at the center 0z  and at the boundary should be positive, finite and 

monotonically decreasing in nature with the increase of r. 
Under these conditions, we have to assume the one of the gravitational potential 

component in such a way that the field Equation (1) can be integrated and solution 
should be well behaved. 

5. New Class of Well Behaved Solution 

We present the following general analytic solution of the field Equations (17) to (20). 

( ) 121
n

A b d ar
+

= + −                           (35) 
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( )21
n

B ar= −                              (36) 

The isotropic pressures, matter-energy density, charge, charge density and red shift 
of charged fluid ball are given by  

( )
( ) ( )

( ) ( )
( )

2 12 2

4 2 11 2 22 2

1 2 1 14 18π

2 11 1

n

nn n

n ar ara n dG p
c r arar b d ar

+

++

 
+ − − −− + 

= + 
  − − + −   

    (37) 

( ) ( )

( )

2 12 2

2 2 12 2

1 10 1 18π

2 1

n

n

ar n arG
c r ar

ρ

+

+

 − − − − =  
−  

                  (38) 

( ) ( )

( )

2 12 22

4 4 2 12 2

1 2 1 12

1

n

n

ar n arGQ
c r r ar

+

+

− + + −
=

−
                    (39) 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

2 22 2 2 4 2

2 14 3 2 1 22 2 2 22

2 1 4 1 2 1 18π

1 1 2 1 1

n

n n

ar n a r n arG
c

r ar ar n ar

σ
+

+
+

− + − + + −
=

− − + + −

          (40) 

( ) ( )
( )

12

12

1

1

n

n

c b d ar
Z

b d ar

−

−

− − −
=

− −
                         (41) 

Here a, b, and d are arbitrary constants. 
In order to construct a new relativistic model, we assume 2n = −  then we have 

( ) 121A b d ar
−

= + −                             (42) 

( ) 221B ar
−

= −                               (43) 

( )
( )

32
2 2 4 3 6

4 2

8 18π 8 18 16 5
2 1

d arG ap ar a r a r
c b ar d

 − = − + − + 
− +  

            (44) 

( )2 2 4 3 6
2

8π 24 66 64 21
2

G a ar a r a r
c

ρ = − + −                    (45) 

( )
2

2 6 2 2 4
4

2 6 8 3GQ a r ar a r
c

= − +                        (46) 

( ) ( )
( )

22 2 2 4

2 1
2 2 4 2

1 36 64 308π

12 16 6

ar ar a rG a
c

ar a r

σ − − +
=

− +
                 (47) 

( ) ( )
( )

2

2

1

1

c b ar d
Z

b ar d

− − −
=

− +
                          (48) 

Here a, b, and d are arbitrary constants. 
The variation in pressure, density, charge, charge density and red shift with radial 

distance are given as  
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( ) ( ){ }
( ){ }

22 2
2 2 2 4

4 22

8 1 2 1 38π 18 32 15
1

d ar b ar dG p a r ar a r
c b ar d

 − − + ′ = − − + − 
− +  

     (49) 

( )2 2 2 4
2

8π 66 128 63G a r ar a r
c

ρ′ = − − +                   (50) 

( )
( )

2 2 2 4

2 1
2 2 4 2

18 32 15

12 16 6

ar ar a rGQ
c

ar a r

− +′
=

− +
                   (51) 

( ){ }22

2

1

cadrZ
b ar d

−′ =
− +

                        (52) 

6. Properties of the Solution 

For real values of metric potentials A and B, 2 1ar r< ∀ . Figure 1 shows that the metric 
potentials A  and B  are positive at the center which are slightly and monotonically 
increasing with r for suitable choice of constants ,a b , and d . For the positive central 
value of ( ) 0A b d+ > , 

The central value of p , ρ  and σ  are given as,  

( )
( )04

48π abG p
b dc

= −
+

                         (53) 

02
8π 12G a
c

ρ =                            (54) 

 

 

Figure 1. Variation of metric potentials with r
rΣ

. 
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0 0Q =                               (55) 

02
8π 6 3G a

c
σ =                           (56) 

0
c b dZ

b d
− −

=
+

                           (57) 

It is clear from Equation (53) to Equation (57) that for positive central values of 
physical quantities 0p , 0ρ , 0Q , 0σ  and 0Z  are positive if 0a > , b d c+ <  and  

1 0b
d

− < < . In view of Equations (49) and (50), the variation in the pressure and density  

with the distance from the center of fluid ball are identically zero at the center. 
At the center of fluid ball the second order derivatives of pressure and density with 

respect to radial distance from the center of fluid ball are  

( )
( )

( )

2 2
2

4 20

9 10 38π 2
b bd dG p a

c b d

+ −
′′ =

+
                  (58) 

The pressure is maximum at the center if ( )0 0p′′ <  i.e. 5 52 5 52
9 9

b
d

− − − +
< < .  

( ) 2
4 0

8π 66G a
c

ρ′′ = −                          (59) 

The density is maximum at the center for all constants as ( )0 0ρ′′ < . 
The central equation of state  

( )2
0 3

p b
b dc

α
ρ

 
= = −  + 

                      (60) 

α  must satisfies the condition 0 1α< ≤  which demands 0b <  and 1 0b
d

− < < . 

The central value of 2
d
d
p

c ρ
 is given by  

( )
( )

2 2

2 2
0

9 10 3d
d 33

b bd dp
c b dρ

+ − 
= − 

+ 
                   (61) 

The causality condition at the center 2
0

d0 1
d
p

c ρ
 

< ≤ 
 

 gives  

5 52 5 52
9 9

b
d

− − − +
< < . 

It is found that ρ  and σ  fall monotonically from their maximum positive values 
at the center up to non negative values at the boundary (Figure 2) and p  falls mono- 
tonically from it’s maximum positive values at the center up to zero value at the boundary 
while charge increases from zero at the center to maximum positive value at the boundary 
(Figure 3) for different values of the parameters a , b , d  satisfying  

0, 0, 0, 0 and 1 0ba b d c b d
d

> < > > + > − < <           (62) 
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Figure 2. Variation of energy density, charge density and red shift with r
rΣ

. 

 

 

Figure 3. Variation of pressure, pressure density ratio and charge with r
rΣ

. 

 

Figure 4 shows that speed of sound is less than speed of light i.e. 2
d0 1
d
p

c ρ
< ≤  and 

the ratio of speeds of sound and light 2
d
d
p

c ρ
 falls monotonically from center to the  

boundary of the fluid ball. 

7. Matching Conditions of Boundary 

The solution so obtained are to be matched over the pressure free boundary of fluid 
sphere smoothly with the Reissner-Nordstrom metric:  

( )
12 2

2 2 2 2 2 2 2 2
2 4 2 2 4 2

2 2d 1 d 1 d d sin dGM G GM Gs c t r r
c r c r c r c r

θ θ φ
−

   
= − + − − + − +   
   

   (63) 

which requires the continuity of 2A  and 2B  across the boundary r rΣ=  and  
( ) 0rp

Σ
= ; rQ

Σ
=  . Thus  
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Figure 4. Variation of adiabatic velocity of sound with r
rΣ

. 

 
1
4

2
1 1 ; 0 1a X X
rΣ

 
= − < <  

 
                      (64) 

3 1 1
4 2 4

1
4

3 1

8

X X X c
b

X

 
− − −  

 =                       (65) 

3 1 1
4 2 45 1

8
cd X X X
 

= + + +  
 

                      (66) 

where 
2

4 21 2 p
GQX S
c r

Σ

Σ

= − + ; 2p
GMS
c rΣ

= , Schwarzchild parameter. 

8. Tables of Numerical Values of Physical Quantities and Their  
Graphs 

In view of Equations (64) to (66) the values of X , b , d  and b
d

 are 0.701, −0.062c,  

0.0823c and −0.0753 respectively and the value of 2 0.085arΣ =  for 0.16pS =  and 
surface density 14 32 10  gmcm−× . For better illustration of our physically accepted solu- 
tion, the relevant physical quantities are presented by means of Table 1, Table 2 and 
Figures 1-4 for these constants. 

In order to construct a super dense star model, we prescribe the surface density of 
the star as 17 32 10  kgm−×  and the values of constants a , b  and d  can be evaluated 
for different values of pS  for describing the well behaved solutions. Thus a compact 
star model can be constructed by finding mass and radius corresponding to assumed 
surface density. The variation in the mass and radius with schwarzschild parameters for 
our model of compact star is tabulated in Table 3 and the variation of surface charge, 
Surface Density, Schwarzschild Parameter and X  with 2arΣ  showing different models 
is shown in Figure 5. 
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Table 1. 
A
c

, B , ρ , p , and 
2

p
c ρ

 for 2 0.085arΣ = . 

. .S N  
r
rΣ

 A
c

 B  2
2

8πG r
c

ρ Σ  2
4

8πGpr
c Σ  2

p
c ρ

 

1 0.0 0.76085 1.00000 1.02000 0.02768 0.02715 

2 0.1 0.76155 1.00170 1.01762 0.02737 0.02690 

3 0.2 0.76365 1.00683 1.01048 0.02644 0.02617 

4 0.3 0.76719 1.01547 0.99862 0.02490 0.02493 

5 0.4 0.77219 1.02776 0.98210 0.02277 0.02319 

6 0.5 0.77871 1.04389 0.96099 0.02009 0.02091 

7 0.6 0.78682 1.06413 0.93541 0.01690 0.01806 

8 0.7 0.79661 1.08881 0.90546 0.01323 0.01462 

9 0.8 0.80818 1.11837 0.87129 0.00915 0.01050 

10 0.9 0.82169 1.15335 0.83303 0.00471 0.00565 

11 1.0 0.83729 1.19442 0.79085 0.00000 0.00000 

 

Table 2. 
2

d
d
p

c ρ
, d

d
p

p
ρ
ρ

, σ , Q , and Z  for 2 0.218arΣ = . 

. .S N  
r
rΣ

 
2

1 d
d

p
c ρ

 d
d

p
p
ρ

ρ
 

2

8π G
c

σ  
2

4 2

GQ
c r

 Z  

1 0.0 0.13119 4.83330 0.88334 0.00000 0.31432 

2 0.1 0.13099 4.86945 0.88107 0.00021 0.31311 

3 0.2 0.13037 4.98243 0.87412 0.00085 0.30948 

4 0.3 0.12935 5.18736 0.86295 0.00188 0.30345 

5 0.4 0.12791 5.51540 0.84794 0.00331 0.29501 

6 0.5 0.12605 6.02752 0.82972 0.00512 0.28416 

7 0.6 0.12376 6.84985 0.80905 0.00728 0.27093 

8 0.7 0.12104 8.28097 0.78683 0.00979 0.25532 

9 0.8 0.11788 11.22241 0.76402 0.01265 0.23733 

10 0.9 0.11427 20.20590 0.74168 0.01582 0.21700 

11 1.0 0.11020 ∞  0.72088 0.01943 0.19433 

9. Conclusion 

We have given a new solution for spherically symmetric isotropic charged fluid ball. It 
has been observed that the physical parameters pressure, density, adiabatic speed of 
sound and redshift are positive at the centre and within the limit of realistic state 
equation and monotonically decreasing and the causality condition is obeyed through- 
out the fluid ball. The charge and electric field intensity are zero at the center and 
monotonincally increasing towards the intervening surface. Thus, the solution is well 
behaved for all values of Schwarzschild parameter pS  within the charged fluid ball. 
Our solution is useful to construct the models of compact star like Strange star family,  
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Table 3. Variation in 2arΣ , 
2

4 2

GQ
c rΣ

, pS , X , 2
2

8πG r
c

ρ Σ , ( )inKmrΣ  and M
M



 with Schwarzschild 

parameter pS . 

. .S N  2arΣ  
2

4 2

GQ
c rΣ

 pS  X  2
2

8πG r
c

ρ Σ  ( )inKmrΣ  
M
M



 

1 0.080 0.017 0.150 0.7164 0.765 14.330 1.451 
2 0.086 0.019 0.158 0.6978 0.810 14.750 1.573 
3 0.089 0.021 0.167 0.6887 0.831 14.940 1.684 
4 0.092 0.022 0.171 0.6797 0.851 15.118 1.745 
5 0.096 0.024 0.178 0.6678 0.873 15.312 1.840 
6 0.101 0.026 0.186 0.6531 0.904 15.582 1.956 
7 0.106 0.029 0.195 0.6387 0.936 15.855 2.087 
8 0.110 0.031 0.202 0.6274 0.961 16.065 2.190 
9 0.115 0.034 0.209 0.6134 0.988 16.289 2.290 

10 0.120 0.036 0.218 0.5996 1.017 16.527 2.432 
11 0.126 0.040 0.228 0.5835 1.048 16.777 2.582 
12 0.130 0.042 0.235 0.5728 1.070 16.952 2.689 
13 0.134 0.045 0.242 0.5624 1.091 17.118 2.796 
14 0.140 0.049 0.251 0.5470 1.119 17.336 2.937 
15 0.145 0.052 0.259 0.5344 1.141 17.505 3.060 

 

 
Figure 5. Variation of surface charge, surface density, Schwarzschild parameter and X  with 

2arΣ  showing different models. 



A. Sah, P. Chandra 
 

508 

Neutron star and many more. We have discussed a model of massive neutron star 
having mass 1.58 M  and radius 14.66 km with surface density 17 32 10  Kgm−×  and 
central density 17 32.6 10  kgm−× . The central pressure of neutron star is  

32 26.2 10  N m×  while the surface pressure of the star is zero. The electric field intensity 
at the center is zero and at the surface it comes 31 2 -22.37 10  C m× . Table 3 shows that 
we can construct different models for neutron star having mass lies between 1.45 M  
and 3.06 M  for different values of pS  ranging from 0.15 to 0.259. The solution 
reduces to Schwarzschild interior solution for n = −1/2 for electrically neutral fluid ball. 

References 
[1] Schwarzschild, K. (1916) On the Gravitational Field of a Mass Point According to Einstein’s 

Theory. Sitzungsberichte der koniglich Preussischen Akademie der Wissenschaften Berlin 
(Mathematical Physics), S42, 189-196.  

[2] Bonnor, W.B. (1960) The Mass of a Static Charged Sphere. Zeitschrift für Physik, 160, 59.  

[3] Bonnor, W.B. (1965) The Equilibrium of a Charged Sphere. Monthly Notices of the Royal 
Astronomical Society, 129, 443. https://doi.org/10.1093/mnras/129.6.443 

[4] Oppenheimer, J.R. and Snyder, H. (1939) On Continued Gravitational Contraction. Physical 
Review, 56, 455. https://doi.org/10.1103/PhysRev.56.455 

[5] Shvartsman, V.F. (1971) The Electric Charge of Stars. Zhurnal Eksperimental’noi i Teore-
ticheskoi Fiziki, 33, 475-648.  

[6] Buchdahl, H.A. (1959) General Relativistic Fluid Spheres. Physical Review, 116, 1027.  
https://doi.org/10.1103/PhysRev.116.1027 

[7] Delgaty, M.S.R. and Lake, K. (1998) Physical Acceptability of Isolated, Static, Spherically 
Symmetric, Perfect Fluid Solutions of Einstein’s Equations. Computer Physics Communi-
cations, 115, 395-415. https://doi.org/10.1016/S0010-4655(98)00130-1 

[8] Adler, R.J. (1974) A Fluid Sphere in General Relativity. Journal of Mathematical Physics, 
15, 727. https://doi.org/10.1063/1.1666717 

[9] Heintzmann, H. (1969) New Exact Static Solutions of Einstein’s Field Equations. Zeitschrift 
für Physik, 228, 489-493.  

[10] Tolman, R.C. (1939) Static Solutions of Einstein’s Field Equations for Spheres of Fluid.   
Physical Review, 55, 364. https://doi.org/10.1103/PhysRev.55.364 

[11] Finch, N.R. and Skea, J.E.F. (1989) A Realistic Stellar Model Based on an Ansatz of Duorah 
and Ray. Classical and Quantum Gravity, 6, 467-476.  
https://doi.org/10.1088/0264-9381/6/4/007 

[12] Patwardhan, G.K. and Vaidya, P.C. (1943) Relativistic Distributions of Matter of Radial 
Symmetry. Journal of the University of Bombay, 12, 23-26.  

[13] Mehra, A.L. (1966) Radially Symmetric Distribution of Matter. Journal of the Australian 
Mathematical Society, 6, 153-156. https://doi.org/10.1017/S1446788700004730 

[14] Kuchowicz, B. (1968) General Relativistic Fluid Spheres. II. Solutions of the Equation for 
e/sup-lambda/. Acta Physica Polonica, 34, 131-140.  

[15] Matese, J.J. and Whitman, P.G. (1980) New Method for Extracting Static Equilibrium Con-
figurations in General Relativity. Physical Review D, 22, 1270-1275.  
https://doi.org/10.1103/PhysRevD.22.1270 

[16] Durgapal, M.C. (1982) A Class of New Exact Solutions in General Relativity. Journal of 
Physics A: Mathematical and General, 15, 2637-2644.  

https://doi.org/10.1093/mnras/129.6.443
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1016/S0010-4655(98)00130-1
https://doi.org/10.1063/1.1666717
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1088/0264-9381/6/4/007
https://doi.org/10.1017/S1446788700004730
https://doi.org/10.1103/PhysRevD.22.1270


A. Sah, P. Chandra 
 

509 

https://doi.org/10.1088/0305-4470/15/8/039 

[17] Nariai, S. (1950) On Some Static Solutions of Einstein’s Gravitational Field Equations in a 
Spherically Symmetric Case. The Science Reports of the Tohoku University, 34, 160.  

[18] Goldman, S.P. (1978) Physical Solutions to General-Relativistic Fluid Sphere. Astrophysical 
Journal, 226, 1079-1086. https://doi.org/10.1086/156684 

[19] Ivanov, B.V. (2012) Collapsing Shear-Free Perfect Fluid Spheres with Heat Flow. General 
Relativity and Gravitation, 44, 1835-1855. https://doi.org/10.1007/s10714-012-1370-3 

[20] Ivanov, B.V. (2010) Evolving Spheres of Shear-Free Anisotropic Fluid. International Jour-
nal of Modern Physics A, 25, 3975-3991. https://doi.org/10.1142/S0217751X10050202 

[21] Ivanov, B.V. (2011) Self-Gravitating Spheres of Anisotropic Fluid in Geodesic Flow. Inter-
national Journal of Modern Physics D, 20, 319-334.  
https://doi.org/10.1142/S0218271811018858 

[22] Ivanov, B.V. (2016) A Different Approach to Anisotropic Spherical Collapse with Shear and 
Heat Radiation. International Journal of Modern Physics D, 25, Article ID: 1650049.  
https://doi.org/10.1142/s0218271816500498 

[23] Ivanov, B.V. (2016) All Solutions for Geodesic Anisotropic Spherical Collapse with Shear 
and Heat Radiation. Astrophysics and Space Science, 361, 18.  
https://doi.org/10.1007/s10509-015-2603-1 

[24] Pant, N. (2011) Some New Exact Solutions with Finite Central Parameters and Uniform 
Radial Motion of Sound. Astrophysics and Space Science, 331, 633-644.  
https://doi.org/10.1007/s10509-010-0453-4 

[25] Maurya, S.K. and Gupta, K. (2013) Charged Fluid to Anisotropic Fluid Distribution in 
General Relativity. Astrophysics and Space Science, 344, 243-251.  
https://doi.org/10.1007/s10509-012-1302-4 

[26] Pant, N., Fuloria, P. and Tewari, B.C. (2012) A New Well Behaved Exact Solution in Gener-
al Relativity for Perfect Fluid. Astrophysics and Space Science, 340, 407-412.  
https://doi.org/10.1007/s10509-012-1068-8 

[27] Pant, N., Fuloria, P. and Pradhan, N. (2014) An Exact Solution of Perfect Fluid in Isotropic 
Coordinates, Compatible with Relativistic Modeling of Star. International Journal of Theo-
retical Physics, 53, 993-1002. https://doi.org/10.1007/s10773-013-1892-9 

[28] Pant, D.N. and Sah, A. (1982) Class of Solutions of Einstein’s Field Equations for Static 
Fluid Spheres. Physical Review D, 26, 1254-1261.  
https://doi.org/10.1103/PhysRevD.26.1254 

[29] Pant, D.N. and Sah, A. (1985) Massive Fluid Spheres in General Relativity. Physical Review 
D, 32, 1358-1363. https://doi.org/10.1103/PhysRevD.32.1358 

[30] Tewari, B.C., Charan, K. and Chandra, P. (2015) A Well Behaved Exact Solution for Spher-
ically Symmetric Perfect Fluid Ball. Journal of Ramanujan Society of Mathematics and Ma-
thematical Sciences, 4, 77-86.  

[31] Sah, A., Chandra, P. and Charan, K. (2016) Spherically Symmetric Anisotropic Perfect Flu-
id Ball in General Relativity. South East Asian Journal of Mathematics and Mathematical 
Science, 12, 81-92.  

[32] Herrera, L. and Santos, N.O. (1997) Local Anisotropy in Self-Gravitating Systems. Physics 
Reports, 286, 53-130. https://doi.org/10.1016/S0370-1573(96)00042-7 

[33] Herrera, L., Santos, N.O. and Wang, A. (2008) Shearing Expansion-Free Spherical Aniso-
tropic Fluid Evolution. Physical Review D, 78, Article ID: 084026.  
https://doi.org/10.1103/PhysRevD.78.084026 

https://doi.org/10.1088/0305-4470/15/8/039
https://doi.org/10.1086/156684
https://doi.org/10.1007/s10714-012-1370-3
https://doi.org/10.1142/S0217751X10050202
https://doi.org/10.1142/S0218271811018858
https://doi.org/10.1142/s0218271816500498
https://doi.org/10.1007/s10509-015-2603-1
https://doi.org/10.1007/s10509-010-0453-4
https://doi.org/10.1007/s10509-012-1302-4
https://doi.org/10.1007/s10509-012-1068-8
https://doi.org/10.1007/s10773-013-1892-9
https://doi.org/10.1103/PhysRevD.26.1254
https://doi.org/10.1103/PhysRevD.32.1358
https://doi.org/10.1016/S0370-1573(96)00042-7
https://doi.org/10.1103/PhysRevD.78.084026


A. Sah, P. Chandra 
 

510 

[34] Herrera, L., Ospino, J. and Perisco, A.D. (2008) All Static Spherically Symmetric Aniso-
tropic Solutions of Einstein’s Equations. Physical Review D, 77, Article ID: 027502.  
https://doi.org/10.1103/PhysRevD.77.027502 

[35] Herrera, L., Ospino, J., Perisco, A.D., Fuenmayor, E. and Triconis, O. (2009) Structure and 
Evolution of Self-Gravitating Objects and the Orthogonal Splitting of the Riemann Tensor. 
Physical Review D, 79, Article ID: 064025. https://doi.org/10.1103/physrevd.79.064025 

[36] Herrera, L. Parisco, A.D., Hernandez, P. and Santos, N.O. (2004) Dynamics of Dissipative 
Gravitational Collapse. Physical Review D, 70, Article ID: 084004.  
https://doi.org/10.1103/physrevd.70.084004 

[37] Herrera, L., Parisco, A.D., Hernandez, P. and Santos, N.O. (1998) On the Role of Density 
Inhomogeneity and Local Anisotropy in the Fate of Spherical Collapse. Physics Letters A, 
237, 113-118. https://doi.org/10.1016/S0375-9601(97)00874-8 

[38] Tewari, B.C. and Charan, K. (2015) Horizon Free Eternally Collapsing Anisotropic Radiat-
ing Star. Astrophysics and Space Science, 357, 107.  
https://doi.org/10.1007/s10509-015-2335-2 

[39] Tewari, B.C. and Charan, K. (2014) Radiating Star, Shear-Free Gravitational Collapse without 
Horizon. Astrophysics and Space Science, 351, 613-617.  
https://doi.org/10.1007/s10509-014-1851-9 

[40] Tewari, B.C., Charan, K. and Rani, J. (2016) Spherical Gravitational Collapse of Anisotropic 
Radiating Fluid Sphere. International Journal of Astronomy and Astrophysics, 6, 155-165.  
https://doi.org/10.4236/ijaa.2016.62013 

[41] Tewari, B.C. (2013) Collapsing Shear-Free Radiating Fluid Spheres. General Relativity and 
Gravitation, 45, 1547-1558. https://doi.org/10.1007/s10714-013-1545-6 

[42] Nduka, A. (1976) Charged Fluid Sphere in General Relativity. General Relativity and Gra-
vitation, 7, 493-499. https://doi.org/10.1007/BF00766408 

[43] Nduka, A. (1977) Some Exact Solutions Charged General Relativistic Fluid Sphere. Acta 
Physica Polonica B, 8, 75-79.  

[44] Whitman, P.G. and Burch, R.C. (1982) Charged Spheres in General Relativity. Physical Re-
view D, 24, 2049-2055. https://doi.org/10.1103/PhysRevD.24.2049 

[45] Tikekar, R. (1984) Spherical Charged Fluid Distributions in General Relativity. Journal of 
Mathematical Physics, 25, 1481-1483. https://doi.org/10.1063/1.526318 

[46] Ivanov, B.V. (2002) Static Charged Perfect Fluid Spheres in General Relativity. Physical Re-
view D, 65, Article ID: 104001. https://doi.org/10.1103/physrevd.65.104001 

[47] Ray, S., Espindola, A., Malheiro, M., Lemos, J. and Zanchin, V. (2003) Electrically Charged 
Compact Stars and Formation of Charged Black Hole. Physical Review D, 68, Article ID: 
084004. https://doi.org/10.1103/physrevd.68.084004 

[48] Stettner, R. (1973) On the Stability of Homogeneous, Spherically Symmetric, Charged Fluid 
in Relativity. Annals of Physics, 80, 212-227. https://doi.org/10.1016/0003-4916(73)90325-4 

[49] Krori, K.D. and Barua, J. (1975) A Singularity Free Solution for a Charged Fluid Sphere in 
General Relativity. Journal of Physics A: Mathematical and General, 8, 508-511.  
https://doi.org/10.1088/0305-4470/8/4/012 

[50] Ray, S. and Das, B. (2004) Tolman-Bayin Type Static Charged Fluid Spheres in General Re-
lativity. Monthly Notices of the Royal Astronomical Society, 349, 1331-1334.  
https://doi.org/10.1111/j.1365-2966.2004.07602.x 

[51] Pant, N. and Negi, P.S. (2012) Variety of Well Behaved Exact Solutions of Einstein-Maxwell 
Field Equations: An Application to Strange Quark Stars, Neutron Stars and Pulsars. Astro-

https://doi.org/10.1103/PhysRevD.77.027502
https://doi.org/10.1103/physrevd.79.064025
https://doi.org/10.1103/physrevd.70.084004
https://doi.org/10.1016/S0375-9601(97)00874-8
https://doi.org/10.1007/s10509-015-2335-2
https://doi.org/10.1007/s10509-014-1851-9
https://doi.org/10.4236/ijaa.2016.62013
https://doi.org/10.1007/s10714-013-1545-6
https://doi.org/10.1007/BF00766408
https://doi.org/10.1103/PhysRevD.24.2049
https://doi.org/10.1063/1.526318
https://doi.org/10.1103/physrevd.65.104001
https://doi.org/10.1103/physrevd.68.084004
https://doi.org/10.1016/0003-4916(73)90325-4
https://doi.org/10.1088/0305-4470/8/4/012
https://doi.org/10.1111/j.1365-2966.2004.07602.x


A. Sah, P. Chandra 
 

511 

physics and Space Science, 338, 163-169. https://doi.org/10.1007/s10509-011-0919-z 

[52] Florides, P.S. (1983) The Complete Field of Charged Perfect Fluid Spheres and Other Static 
Spherically Symmetric Charged Distributions. Journal of Physics A: Mathematical and 
General, 16, 1419-1433. https://doi.org/10.1088/0305-4470/16/7/018 

[53] Dionysiou, D.D. (1982) Equilibrium of a Static Charged Perfect Fluid Sphere. Astrophysics 
and Space Science, 85, 331-343. https://doi.org/10.1007/BF00653455 

[54] Pant, N., Tewari, B. and Fuloria, P. (2011) Well Behaved Class of Exact Solutions of Eins-
tein-Maxwell Field Equations in General Relativity. Astrophysics and Space Science, 2, 
1538-1543.  

[55] Pant, N., Mehta, R.N. and Pant, M. (2011) Well Behaved Class of Charge Analogue of 
Heintzmann’s Relativistic Exact Solution. Astrophysics and Space Science, 332, 473-479.  
https://doi.org/10.1007/s10509-010-0509-5 

[56] Pant, M.J. and Tewari, B.C. (2011) Well Behaved Class of Charge Analogue of Adler’s Rela-
tivistic Exact Solution. Journal of Modern Physics, 2, 481-487.  
https://doi.org/10.4236/jmp.2011.26058 

[57] Fuloria, P., Tewari, B.C. and Joshi, B.C. (2011) Well Behaved Class of Charge Analogue of 
Durgapal’s Reltivistic Exact Solution. Journal of Modern Physics, 2, 1156-1160.  
https://doi.org/10.4236/jmp.2011.210143 

[58] Gupta, Y.K. and Maurya, S.K. (2010) A Class of Charge Analogues of Durgapal and Fuloria 
Superdense Star. Astrophysics and Space Science, 331, 135-144.  
https://doi.org/10.1007/s10509-010-0445-4 

[59] Bijalwan, N. and Gupta, Y.K. (2008) Nonsingular Charged Analogues of Schwarzschild’s 
Interior Solution. Astrophysics and Space Science, 317, 251-260.  
https://doi.org/10.1007/s10509-008-9887-3 

[60] Gupta, Y.K. and Kumar, M. (2005) A Superdense Star Model as Charged Analogue of 
Schwarzschild’s Interior Solution. General Relativity and Gravitation, 37, 575-583.  
https://doi.org/10.1007/s10714-005-0043-x 

[61] Sah, A. and Chandra, P. (2016) Spherical Anisotropic Fluid Distribution in General Relativ-
ity. World Journal of Mechanics, 6, 487-504. http://dx.doi.org/10.4236/wjm.2016.612034 

 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service 
for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ijaa@scirp.org 

https://doi.org/10.1007/s10509-011-0919-z
https://doi.org/10.1088/0305-4470/16/7/018
https://doi.org/10.1007/BF00653455
https://doi.org/10.1007/s10509-010-0509-5
https://doi.org/10.4236/jmp.2011.26058
https://doi.org/10.4236/jmp.2011.210143
https://doi.org/10.1007/s10509-010-0445-4
https://doi.org/10.1007/s10509-008-9887-3
https://doi.org/10.1007/s10714-005-0043-x
http://dx.doi.org/10.4236/wjm.2016.612034
http://papersubmission.scirp.org/
mailto:ijaa@scirp.org

	Class of Charged Fluid Balls in General Relativity
	Abstract
	Keywords
	1. Introduction
	2. Field Equations for a Charged Fluid Sphere in Canonical Coordinates
	3. Gravational Binding Energy of a Charged Sphere
	4. Boundary Conditions for Well Behaved Solution
	5. New Class of Well Behaved Solution
	6. Properties of the Solution
	7. Matching Conditions of Boundary
	8. Tables of Numerical Values of Physical Quantities and Their Graphs
	9. Conclusion
	References

