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Abstract 
This study made it possible to determine by the application of thermodynamics in fi-
nished time, the points of instruction necessary to the development of a regulation 
system for the rationalization of the power consumption in a cold store. These points 
were obtained by determining the optimal variations of temperature as well to the 
condenser and the evaporator corresponding to the minimum capacity absorptive by 
the compressor for a maximum COP. 
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1. Introduction 

Response to the demands imposed by the market, of the directives related to the ration-
al use of energy and the safeguarding of the environment, the design of the current cold 
stores requires to a certain extent, taking into account of various constraints, in partic-
ular: thermodynamic constraints (minimization of the irreversibilities); technological 
constraints (pressure losses, losses of fluid cooling) and economic constraints (value for 
money) [1]. The interaction between these multi-field constraints, poses a problem of 
optimization which can find its resolution in the application of thermodynamics in fi-
nished time, which by definition represents the thermodynamics of the real systems 
whose heat transfers with the tanks (evaporator and condenser) have external irreversi-
bilities [2]. In refrigeration industry, this problem results in the maximization of the 
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performance of the cold store in other words, the maximization of its coefficient of 
performance (refrigerating COP = production/consumption [3]). In the cold stores, the 
production of the real flow of heat is achieved by means of an evaporator; paradoxical-
ly, the ideal and reversible refrigerating cycle of Carnot whose refrigerating efficiency is 
maximum and of which the differences in temperature between the reserves and the 
fluid of the cycle are infinitesimal, delivers a null heat flow ([4] [5] [6] [7]). However, to 
deliver a heat flow not no-one, the heat-transferring surfaces and the time of contact 
with the tanks must be infinite, thus delivering a virtual refrigerating power. Obtaining 
a real refrigerating power, thus imposes heat-transferring surfaces and total coefficients 
of finished transfer, differences in temperatures with the finished tanks ([1] [8] [9]). 
Consequently, one obtains the time of contact between the fluid interns and the fi-
nished tanks. In addition, the transfer laws of heat of the two tanks make it possible to 
obtain heat flows according to the conductance and the differences in temperature; they 
easily allow the determination of the optimal values of temperature at the evaporator 
and the condenser for a minimal consumption of energy ([2] [5] [7]). 

These optimal values will make it possible for the system of regulation to adapt the 
operation of the installation to the temperature variations for a COP maximum (refri-
gerating COP = production/consumption). The COP in addition expresses the viability 
of a refrigerating cycle. Optimization will consist in determining the optimal variation 
of temperature 0θ∆  to the evaporator corresponding to a minimal consumption of 
energy to the compressor minW  for obtaining a maximum refrigerating flow [10] [11]. 
The resolution of the problem will require the development of a system of equations 
bringing into playing the equations of the energy assessment, entropy and of heat 
transfer. A transformation of the sizes dimensioned into a dimensional size will facili-
tate the mathematical treatment of optimization of the data of the system of equations 

0θ∆  and cθ∆ . 
Figure 1 presents the T-S diagram of the endoreversible ideal cycle but exoirreversi-

ble, namely that one neglects the internal irreversibilities and one considers only the ir-
reversibilities due to the differences of temperature 0θ∆  and cθ∆  with the reserves 
in heat which are respectively the evaporator and the condenser. The technological and 
scientific interest is not only the determination of the points of instruction necessary to 
the development of a system regulation for the rationalization of the power consump-
tion by the cold store using a multi-field method but especially taking into account of 
the irreversibilities inherent in its operation. 

2. Material and Method 

• Material 
The cold store Figure 2 is a group of production of indicated ice-cold water: 

STANDARD AQUACIATPOWER LD 1800BV R410A. This installation equips the re-
frigerating system with the air conditioning of the Bank of central Africa with Brazza-
ville. 

Technical data of the installation: 
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Figure 1. Diagram T-S (T: the temperature and S: entropy). 
 

 
Figure 2. Cold store AQUACIATPOWER LD 1800BV standard R410A. 

 
− Refrigerating power: 497.6 kw; 
− Power of the condenser: 666 kW; 
− Coefficient of performance COP: 2.95; 

− Total thermal conductance: 118,657 W/k; 
− Temperature of the refrigerant: 280 K; 
− Room temperature: 308 K. 

 
• Method for Calculation 

The operation of the cold stores with mechanical compression of the vapors has for 
cycle of reference, the ideal cycle of reversed Carnot. In accordance with the second 
principle of thermodynamics: heat cannot pass from the cold source of Tf temperature 
to the hot spring of temperature Ta without consuming work of the external medium. 

The ideal cycle of reversed Carnot is reversible as well internal as (Equation (1)) ex-
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ternal in other words the processes of compression and of relaxation are with constant 
entropy and the transfer of heat between the fluid and the source is carried out with in-
finitesimal differences in temperature. A multi-field analysis of the refrigerating cycle of 
Carnot highlights the increase in the surface of transfer of heat necessary to the process 
of vaporization and condensation as the differences in temperature are reduced, is: 

Q k A T= ⋅ ⋅∆                              (1) 

with: Exchanged total Q = heat; k = heat exchange coefficient; ∆T = difference in tem-
perature; A = thermal heat-transferring surface. 

When the transfer of heat takes place in extreme cases reversible of way, we have 
TT d∆ − > , then the heat-transferring surface A− > ∞ . The run time of the fluid in 

heat exchangers, (the condenser and the evaporator), tends towards the infinite one. 
Thus, for a heat-transferring surface of heat and a coefficient of exchange given, we 
note that the refrigerating power is cancelled. 

On the other hand, for an installation producing a real heat flow Q0 to the evapora-
tor, the transfer of heat supposes the existence of a finished difference ∆T in tempera-
ture, the cycle of Carnot is irreversible external and the time of contact of the fluid with 
the sources of heat of surface A limited also has a finished value. The irreversible opti-
mization of cycle will consist in maximizing its performance by the maximization of its 
coefficient of performance. 

The energy assessment of the installation is given by expression (2): 

0cW q q= −                              (2) 

And the coefficient of performance of the installation, by Equation (3): 

0 0

0

0 0

1 1COP 1
1 1

c
c cc

q q
q TW q q
q T

= = = = ≤
− − −

                (3) 

It is observed that for a mass throughput of the refrigerating agent, the energy as-
sessment can be also written in the form of Equation (4): 

0cmW m q mq= −                              (4) 

If one poses  mW W= 

 ; c cm q Q= 

 ; 0 0mq Q= 

 , the energy assessment becomes: 

0 :cW Q Q= −                              (5) 

The entropic assessment as for him is written by Equation (6): 

0

0 0 0

c cc

c

q qT q
T q T T

= => =                          (6) 

The equations of heat transfer to the evaporator and the condenser are given by ex-
pressions (7) and (8): 

0 0 0 0 ;Q k A T= ∆  

with 0 0 0K k A=  and 0 0fT T T∆ = −  
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0 0 0Q K T=> = ∆                             (7) 

;c c c cQ k A T= ∆  

with  c c cK k A= ; c c aT T T∆ = −  

c c cQ K T=> = ∆                            (8) 

From two Equations (7) and (8), it results the entropic expression (9): 

0

0

c

c

Q Q
T T

=
 

                              (9) 

The dimensional notations are declined as it follows: 

0;  ;  a o c
c

f f a

T T T
T T T

τ θ θ
∆ ∆

= = =                      (10) 

The parameters to be taken into account for the optimization of the installation are 
the following ones: 0Q� , K, oT , cT . 

0 0 0 0 0 0 0cte;  cteet f c cQ K T K T K K K A A Aθ= ∆ = = = + = = +�          (11) 

The variables to be taken into account for the optimization of the installation are the 
following ones: Independent variables: 0θ  and cθ ; Dependent variables: 0K  and cK . 
The transformation of the dimensioned sizes of the installation into a dimensioned size 
enables us to obtain the expressions of: 
• A dimensional refrigerating power (Equation (12)): 

0
0 0 0 cte

f

QQ K
KT

θ= = =


                       (12) 

( )0 0
0 0 0 with where 0 ;1f

K KQ KT K
K K
θ= =   

• A dimensional calorific power of the condenser (Equation (13)): 
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        (14) 

• A dimensional mechanical work is: 

0
0 0

0

1c c
f

QWW Q Q Q
KT

τθ
θ

 
= = − = − − 

 



                 (15) 

• The coefficient of performance becomes: 

0 0 0

1 1 1 1
COP c
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Q Q
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= = − − 

 
                    (16) 

That is to say: 
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By replacing the notations previously established in the entropic equations, we ob-
tain: 

0

0

c c

f a c

Q K T
T T T T

∆
=

− ∆ + ∆



                         (18) 

However 0 0fT T θ∆ = ; c a cT T θ∆ =  and 0cK K K= − . 
One has:  
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By simplifying the room temperature of Equation (20), then by dividing the equation 
by the coefficient of heat exchange total K, one has: 

( )
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                    (21) 

However, 0
0

f

QQ
KT

=


 and 0KK
K

= , ones has: 
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In addition, it is known that 0
0 0

0

QQ K Kθ
θ

= > ==  Equation (22) is still written: 
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                        (23) 

In other words Equation (23), can be still written in the form: 

( )0
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                      (24) 

It results from it that:  
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                      (25) 

Consequently after substitution cθ  inside Equation (17) of the coefficient of per-
formance (COP), we obtain:  
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             (26) 

where 0 and Qτ  are parameters, and 0θ  the variable.  
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After some simplifying transformations of the denominator COPc  of Equation (26): 

( ) 0 0
0

0 0 0 0 0 0 0 0

1 1 1 1 1 11 1 1 1
Q Q Q Q Q

θ θ
θ

θ θ θ
 

− − − = − − + − = − − 
 

         (27) 

We obtain a final expression COPirr
c  naturally smaller than that of the cycle of Car-

not COPr
c  which is the coefficient of performance of an ideal cycle. The maximum of 

the irreversible coefficient of performance is obtained for a minimum of consumption 
since the production of cold is imposed and thus remains invariant.  
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Let us pose 
2
0

0 0Q
θ

θ
Ψ =

−
 and let us cancel its derivative 
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The value which cancels this derivative makes it possible us to obtain the maximum 
value and consequently the coefficient of performance COPc  becomes maximum:  
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opt opt opt opt
0 0 0 0 0 0 0

1 10.25;  0.5 because 2
4 2

Q Q K K Qθ θ< = = => = = =       (31) 

By replacing opt
0 02Qθ =  in the expression of cθ  (Equation (25)), we obtain the op-

timal value opt
cθ , Equation (32): 
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We can express according to in the form: 
opt

opt 0
opt
01 2c

θθ
θ

=
+

                           (33) 

What enables us to obtain:  
• minimal a dimensional calorific power (Equation (34)): 

min opt0 0 0
opt

0 00

211 1
2 1 4 1 4c c

Q Q QQ
Q Q

τθ τ τ
θ

   = − = − =    − −  
           (34) 
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• minimal a dimensional mechanical work (Equation (35)): 

min 0
min 0 0 0

0 0

1
1 4 1 4c

Q
W Q Q Q Q

Q Q
ττ

 
= − = − = − − − 

           (35) 

The coefficient of maximum irreversible performance of the installation (Equations 
(36) or (37)): 

min
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1 1
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max

0

1>COP
1

1 4

irr
c

Q
τ

= =
−

−

                      (37) 

If 0 max
10 so COP

1cQ
τ

= =
−

, what corresponds to the output of the ideal cycle of  

Carnot. 
• and the output of the installation is the report of the performance coefficient of the 

ideal cycle of Carnot (Equation (38)): 

COPη
COP

irr

r
c

=                           (38) 

3. Results and Discussion 

Figure 3 is represented the curve of the evolution of the coefficient of performance of 
the reversible cycle of Carnot of the installation according to the a dimensional temper-
ature 0θ  [3] [7]. It is noted obviously that this curve has a constant evolution more 
especially as heat exchange with the sources of heat (evaporator condenser) are carried  
 

 
Figure 3. Evolution of the performance coefficient of the Carnot reversible 
cycle of the installation according to 0θ . 
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out in an isothermal way, [5] [6] [8]. Consequently, the coefficient of performance 
C.O.P depends only on the a dimensional report τ = When well even the value of the 
C.O.P would be maximum compared to that real as Figure 3 indicates it, the refrige-
rating flow produced by the installation under the conditions of reversibility remains 
virtual [5] [6]. In opposition to the reversible cycle of Carnot, Figure 4 presents the 
evolution of the coefficient of performance of the irreversible cycle of Carnot of the in-
stallation whose irreversibilities caused by differences in temperature have the evapo-
rator and with the condenser produces a real refrigerating flow, Figure 1 [1] [8]. The 
evolution of the COP of the installation in function de 0θ  is not constant any more. 
It presents a maximum corresponding has a minimum of energy expense Figure 5. The 
evolution of the output of the installation compared to the cycle of Carnot represented 
in Figure 6 also presents a maximum. This situation corresponds to the optimal dif-
ferences of temperature =8.38 K having the evaporator and respectively =0.0318 K with 
the condenser. The power absorptive by the compressor indicates for these same op-
timal values a minimal value for the permanent evacuation of the heat flow imposed of 
the cold room corresponding to a minimum of heat flow evacuated to Figure 7 con-
denser. Thus, a distance beyond the optimal point of instruction during the operation 
of the installation due to the temperature variations involves an increase in the losses 
(external irreversibility) and implicitly a reduction of the output of the installation. 

So that the installation produces a real heat flow 0 0 0 0Q k A T= ∆�  to the evaporator, 
the transfer of heat imposes the existence of a variation in temperature. However, 
when this variation of temperature 0 0T∆ → , we have 0 0Q =  and the coefficient of  
 

 
Figure 4. Evolution of the real performance coefficient of the installation cycle ac-
cording to 0θ . 
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Figure 5. Evolution of a dimensional minimal mechanical work. 

 

 
Figure 6. Evolution of the installation output compared to the Carnot cycle. 

 

performance 0COPc
Q
W

=


 becomes null. If this variation 0T∆ →∞ , energy consump-  

tion W to obtain is very high, the coefficient of performance is also null. To maximize 
the coefficient of performance in our case means a minimal consumption of energy 
Wmin (Equation (35)). Optimization will consist in determining the optimal variation of  
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Figure 7. Evolution of the dimensional minimal calorific power. 

 
evaporator temperature corresponding to a consumption minimal of energy for ob-
taining flow. In substituent the dimensional optimal temperature opt

0 02Qθ =  in Equa-
tions (15), (17), (25) and (28), we obtain the curve maximum of the real coefficient of 
performance (Equation (36)) and the minimum of the a dimensional mechanical work 
curve (Equation (35)); respectively Figure 4 and Figure 5. The expression (34), watch 
that the minimum of curve of a dimensional mechanical work corresponds at least of 
the dimensional calorific power curve (Figure 5 and Figure 7), since the refrigerating 
power is a constant. That is simply explained by the fact why the heating energy eva-
cuated with the condenser decreases or increases when the work consumed by the 
compressor decreases or increases. With regard to the output of the installation com-
pared to the cycle of Carnot Figure 6, its pace is similar to that of the coefficient of 
performance of the real cycle of the installation, for the simple reason that in the report, 
the denominator is invariable. 

4. Conclusion 

It goes without saying we always seek to obtain a better coefficient of refrigerating per-
formance of the installation while keeping in mind that it should not exceed its theo-
retical maximum with knowing the coefficient of performance of Carnot. It should be 
noted that in practice, it was noted that when the cold stores function out of their op-
timal operating range, they see their refrigerating power decreased because of internal 
and external irreversibilities. Those can even reduce the coefficient of performance to 
zero, thus the cold store is then likely to function without producing refrigerating pow-
er (exactly like a disconnected car). The optimal operating ranges obtained in our study 
(Table 1) are: for the evaporator and respectively for the condenser, a coefficient of  
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Table 1. Summary of the digital application of the optimization of the power station to ice-cold 
water. 

Technical data of the installation Got results of optimization 

0Q  = 497.6 kW opt
0θ  = 0.02994 

cQ  = 666 kW opt
0T∆  = 8.38 K 

K = 118.657 W/K opt
cθ  = 0.03184 

fT  = 280 K opt
cT∆  = 9.8 K 

aT  = 308 K minW  = 0.00254 

COP  = 2.95 minW  = 84.6 kW 

  COPirr max  = 5.88 

 ηi  = 58.8% 

 
performance 5.88. This coefficient of performance is largely higher than that is pre-
sented by the manufacturer 2.95, for the simple reason that in our study we do not take 
account of the losses caused by the internal irreversibilities. Lastly, to guarantee an op-
timal operation of the installation, the system of regulation of this one will have to be 
programmed according to the points of instruction of the optimal operating ranges. 
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Nomenclature 

A: Heat-transferring surface 
Ac: Surface of the condenser 
A0: Surface of the evaporator 
BEAC: Bank of the States of Central Africa 
BP: Low pressure 
COP: Coefficient of performance 
COPirr

c : Coefficient of performance of end or eversible but exoirréversible Carnot 
COPr

c : Coefficient of performance of end or eversible and exoréversible Carnot 

cT∆ : Variation in temperature to the condenser 

0T∆ : Variation in temperature with the evaporator 

scT∆ : Variation in temperature of the superheater 

srT∆ : Variation in temperature to the subcooler 
Ψ : Function 

maxΨ : Maximum of the function 
h: Enthalpy 
HR: Relative humidity 
K: Coefficient of total heat exchange by convection 

cK : Coefficient of heat exchange by convection with the condenser 

0K : Coefficient of heat exchange by convection with the evaporator 

0K : Coefficient of a dimensional heat exchange by convection with the evaporator 

0
optK : Coefficient of optimal a dimensional heat exchange by convection with the 

evaporator 
m: Mass throughput 
P: Pressure 

cP : Pressure of condensation 

maxP : Maximum power 

minP : Minimum power 

0P : Pressure of vaporization 
PMB: Dead bottom centre 
PMH: Not high dead 

cq : Calorific production 
min
cQ : Heat a dimensional minimal with the condenser 

cQ� : Calorific power with the condenser 

0q : Refrigerating production 

cθ : Heat a dimensional with the evaporator 
S∆ : Difference in entropy 

T: Temperature 
t: Time of contact of the fluid with the exchangers (evaporator and condenser) 

aT : Room temperature, outside 

aet : Inlet temperature of air 

ast : Temperature of exit of air 
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ct : Temperature of condensation 

fT : Refrigerating temperature in the cold room 

0t  or 0T : Temperature of vaporization 
v: Specific volume 
W: Consumed mechanical energy 
W� : Mechanical power 
W : Mechanical power a dimensional with the compressor 

minW : Mechanical power a dimensional minimal with the compressor 
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