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Abstract 
In Newton’s classical physics, space and time are treated as absolute quantities. Space 
and time are treated as independent quantities and can be discussed separately. With 
his theory of relativity, Einstein proved that space and time are dependent and must 
be treated inseparably. Minkowski adopted a four-dimensional space-time frame and 
indirectly revealed the dependency of space and time by adding a constraint for an 
event interval. Since space and time are inseparable, a three-dimensional space-time 
frame can be constructed by embedding time into space to directly show the inter-
dependency of space and time. The formula for time dilation, length contraction, and 
the Lorenz transformation can be derived from graphs utilizing this new frame. The 
proposed three-dimensional space-time frame is an alternate frame that can be used 
to describe motions of objects, and it may improve teaching and learning Special Re-
lativity and provide additional insights into space and time. 
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1. Introduction 

In order to describe the position of a static object, Descartes constructed three axes 
perpendicular to one another in the space using ( ), ,x y z  coordinate to represent the 
position of this static object along x-axis, y-axis, and z-axis. The coordinate is called 
Cartesian frame. 

In order to describe the position of a moving object, Galileo constructed an time axis 
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which is perpendicular to three axes in the space, which using ( ),x t , ( ),y t , and ( ),z t  
coordinate to represent the position of this moving object along x-axis, y-axis, and z-axis. 
Galileo combined these coordinates into the ( ), , ,x y z t  coordinate. This coordinate is 
called Galileo’s frame. 

In order to describe the position of a moving object in Special Relativity, Minkowski 
constructed a time axis, ct, which is perpendicular to three axes in the space simul-
taneously. First, he treated space and time independently, then added a constraint: 

( )22 2 2 const.x y z ct+ + − =  in order to make space and time dependent. He used the 
( ), , ,ct x y z  coordinate to represent the position of this moving object along x-axis, 
y-axis, and z-axis. This coordinate is called Minkowski’s frame. 

In order to describe the position of a moving object in Special Relativity, we con-
struct polar coordinate for time on x y−  plane, y z−  plane, and z x−  plane, be-
cause space and time are dependent. We use the ( ),  ,  x ct y ct z ct− − −  coordinate to 
represent the position of this moving object along x-axis, y-axis, and z-axis. The unit 
for the radius of polar coordinate is light-sec or period T, the unit for x-axis, y-axis, and 
z-axis in space is light-sec or wavelength, λ . We embed time into space directly by the 
velocity of light, c, which is equal to Tλ . It shows that space and time are dependent. 
This coordinate is called 3-d s-t frame. 

Theory of one Big Bang creating the universe is based on 4-d s-t frame. There are 
many unsolved paradoxes in this theory: Hubble’s constant should be a fixed value, but 
having wide range; There are two different methods to measure the distance of a qua-
sar, but results are very different; In order to raise up the density of the universe keep-
ing present status, there is need of dark matter; In order to explain the observation of 
acceleration of the universe, there is need of dark energy. The paper of “The Shell Mod-
el of the Universe: a universe generated from multiple big bangs” [1], which is based 
3-d s-t frame, was published in Research on Gravitation, Astrophysics and Cosmology 
Journal of Modern Physics in July 2016. This paper solves the problems raised from the 
standard model of the universe generated from Big Bang based on 4-d s-t frame. 

Any particle’s motion in space can be described by choosing a 3-d s-t frame with the 
proper velocity of a medium [2]. In Special Relativity, time dilation and length contrac-
tion can be geometrically derived using two 3-d s-t inertial frames having a constant 
relative velocity by choosing the velocity of light as a medium. In addition, the Lorentz 
transformation can also be straightforwardly obtained from the result of time dilation 
and length contraction in 3-d s-t frames. 

In order to describe the motion of micro quanta, there is uncertainty relation be-
tween its momentum and its position. When the motion of a macro object or a micro 
quantum is observed, the only difference between a macro object and a micro quantum 
is that one is visible and the other is invisible while interacting with measurement 
equipment. There are two uncertain measurements related to this measuring: the proba-
bility of hitting different spots which is inversely proportional to mass and velocity, and 
the probability of hitting either the front or the rear of the wave of the photon wave 
which is proportional to the wave length. The matter wavelength can be explained as 
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the probability of uncertainty in measuring a quantum with the unit of length. The 
second beam of photon may hit a different spot from the first one because of the rota-
tion of the particle. To verify the assumptions made previously, the Heisenberg un-
certainty relationship can be derived by multiplying these two independent probabili-
ties (matter wavelength of an object and light wavelength of measuring medium) [3]. 

For quantum entanglement, there is a medium affecting each of a pair of particles 
with a velocity much faster than light, and it might be with an infinity velocity. It is 
against the main assumption of Special Relativity: the velocity of light is the upper limit 
of particle in the universe. If we locate a particle on the platform and the other particle 
at any distance from the platform, then the medium can be treated as the moving train. 
If the moving train travels with the velocity of light, the observers on the train will 
reach the other particle at any distance from the platform with zero second. It means 
that the medium will affect both particles instantly and the distance between both par-
ticles is also zero meter measured by observers. It can apply to any force between two 
objects including gravitational force, as long as the medium between two objects trav-
eling with velocity of light. The proposed 3-d s-t frame shows the advantage of 3-d s-t 
frame [4]. 

2. Construction of a 3-d s-t Frame 

The motion of any particle in space can be decomposed into its x, y, and z directions. In 
order to describe the motion of an object in 3-dimensional space along the locations of 
x-axis, y-axis, and z-axis, we can construct a new space-time frame. Spheres with dif-
ferent radius representing different outgoing time, polar coordinates will be formed 
from circles of intersections between spheres and x-y plane, y-z plane, and z-x plane 
[4]. We are able to use the red polar coordinates of x-y plane, the blue polar coordinates 
of y-z plane, and the gray polar coordinates of z-x plane to describe the locations of a 
moving object moving along x-axis, y-axis, and z-axis. The construction of a 3-d s-t 
frame is shown in Figure 1. This kind of new coordinate frame embedding time axis 
into space axes is called three-dimensional space-time frame which saves one dimension. 
We won’t be puzzled by being not able to visualize four-dimensional space-time frame. 

Its component along the x-axis can be described as a function of time, which is 
represented by the time circles created from the intersections between the x-y plane and 
the concentric time spheres. If the velocity of an appropriate medium is mV , then the 
radius of the sphere is ( ) mr t V t=  at time t. The point with the properties,  

( )( ) ( ) ( )2 2h x t r t x t= −  and ( ) ( )cos x t r tα = , on the x-y plane can represent the 
location of the particle moving along the x-axis at time t. The component of motion 
along the y-axis can similarly be described as a function of time, which is represented 
by the time circles created from the intersection between the y-z plane and the concen-
tric time spheres. The point with the properties, ( )( ) ( ) ( )2 2h y t r t y t= −  and  

( ) ( )cos x t r tα = , on the y-z plane can represent the location of the particle moving 
along the y-axis at time t. The component of motion along the z-axis can also be de-
scribed as a function of time, which is represented by the time circles created from the  
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Figure 1. The construction of a 3-d s-t frame. h(x(t)) = (r2 − x2)1/2 and cosα = x/r on the x-y plane 
represent the location of the particle along the x-axis. h(y(t)) = (r2 − y2)1/2 and cosα = y/r on the y-z 
plane represent the location of the particle along the y-axis. h(z(t)) = (r2 − z2)1/2 and cosα = z/r on 
the z-x plane represent the location of the particle along the z-axis. 
 
intersection between the z-x plane and the concentric time spheres The point with the 
properties, ( )( ) ( ) ( )2 2h z t r t z t= −  and ( ) ( )cos z t r tγ = , on the z-x plane can repre- 
sent the location of the particle moving along the z-axis at time t. 

If messages are relayed by sound of Vm = 350 m/sec then the radius of the sphere 
representing one second is equivalent to (Vm)(1 sec) = 350 m; the radius of the sphere 
representing two seconds is equivalent to (Vm)(2 sec) = 700 m; …; and the radius of the 
sphere representing n seconds is equivalent to (Vm)(n sec) = n(350) m. 

If the message is transmitted by light of Vm ~3(108) m/sec, then the radius of the 
sphere representing one second is equivalent to (Vm)(1 sec) = 3(108) m; the radius of 
the sphere representing two second is equivalent to (Vm)(2 sec) = 6(108) m; …; and the 
radius of the sphere representing n seconds is equivalent to (Vm)(n sec) = 3n(108) m. 
Since the velocity of light is the limiting velocity, all possible motions of a particle can 
be described using this 3-d s-t frame. 

In cosmology, the expansion velocity of the universe is very high, as the recession 
velocities of some galaxies away from the earth are nearly 90% of the velocity of light 
[1]. Because all galaxies are far away from us, the interval of 1 sec would be too small to 
meaningfully describe their motion. The unit of time can be scaled up by choosing the 
light year. Hence, the radius of the sphere representing one year is equivalent to (Vm)(1 
year) = 9.46(1015) m = 1ly; the radius of the sphere representing two years is equivalent 
to (Vm)(2 year) = 1.89(1016) m = 2ly; …; and the radius of the sphere representing n 
years is equivalent to (Vm)(n year) = 9.46n(1015) m = nly. 

In high energy physics, if a particle’s velocity approaches the velocity of light, the in-
terval of 1 sec would be too large to meaningfully describe its motion. The units can be 
scaled down by choosing the period ( )T  of any selected frequency of light as the unit 
of time and its corresponding wavelength ( )l  as the unit of length of the space axes, 
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because the ratio of the wavelength and wave period is equal to the velocity of light [5]. 
The radius of the time sphere representing 1T is chosen to equal ( )( )( )1mV t c Tλ λ= = ; 
the radius of a sphere representing 2T is chosen to equal ( )( )( )2 2 2 ; ;mV t c Tλ λ= =   
and the radius of the sphere representing nT is chosen to equal  

( )( )( )mn V t c nT nλ λ= = . The period of an event measured in units of time is equal to 
t Tτ = ; and the coordinates of a particle’s location measured in units of length are 

equal to ,  x yw x w yλ λ= = , and zw z λ= . With this transformation for particles 
moving velocity closed to the velocity of light and the time interval of traveling being 
small, the coordinates ( ),  ,  ,  x y z t  with sec and m as units in a 4-d s-t frame can be 
converted to the coordinate ( ), , ,x y zw w w τ  with T and λ  selected as units in this 3-d 
s-t frame [6]. 

The proposed new coordinate frame can also be used to describe the motion of the 
object moving along the x-axis in various trajectories and at different speeds using the 
methods described above. In Figure 2, OA represents an object remaining stationary at 
O; OB represents an object moving with a relatively slow, constant velocity; OC represents 
an object moving with a relatively fast, constant velocity; OD represents an object mov-
ing with a constant acceleration; OE represents an object moving with a constant dece-
leration; and FG represents an object remaining stationary at F. 

A 3-d s-t frame, created by embedding time into space directly, reveals the depen-
dency of space and time. Although the space coordinates are bi-directional, time cannot 
be given a negative value thus, because it only has one outgoing direction in this 3-d s-t 
frame. 

3. Time Dilation and Length Contraction 

Before describing time dilation and length contraction, we will first define some terms. 
If two frames have a constant relative velocity between them, two frames are called a 
pair of inertial frames which are inertial to each other [7]. For this discussion, we will 
have a train passing by a station platform at constant velocity. Theoretically, we are al-
lowed to choose any one frame of the two frames to be the stationary (inertial) frame 
and the other frame to be the moving (inertial) frame. For convenience, we construct a 
stationary frame S on the platform and a moving frame S’ on the train. 

In Figure 3, a rod is laid along the side of the station platform. There is an observer 
on the platform and another observer on the train and both measure the rod’s length  
 

 
Figure 2. The object stays still at O by OA and at F by FG, moves with a constant slow velocity by 
OB, a constant fast velocity by OC, a constant acceleration by OD, a constant deceleration by OE 
along x-axis. 
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Figure 3. A stationary rod is measured by a moving 
train. It is laid along the side of the platform. 

 
using a sensor attached to the front of the train, i.e. the origin O’ of the moving frame 
S’. The length of the rod as measured by an observer in the stationary frame S, is de-
fined as proper length, 0l , while the length of the rod as measured by an observer in 
the moving frame S’, is defined as regular length, l′ . When the sensor touches the left 
edge of the rod, the time is recorded as 0 for both observers. When the sensor touches 
the right edge of the rod, the time is recorded t for the observer in the stationary frame 
S and 0t′  for the observer in the moving frame S’. The event where the sensor moves 
from one end of the rod to the other can be described by the two different observers. 
This event occurs at the same location for the observer in the moving frame S’, then the 
period of the event as measured by this observer is defined as the proper time, 0t′ . This 
event happens at different locations for the observer in the stationary frame S, then the 
period of the event measured by this observer is defined as the regular time, t. The 
proper length of the rod is calculated by multiplying the train’s velocity by regular time, 

0l vt= , and regular length is calculated by multiplying the train’s velocity by proper 
time, 0l vt′ ′= . 

At the same time the sensor touches the left end of the rod, the observer in the mov-
ing frame S’ sends a pulse of light towards the ceiling of the car, where a mirror is 
placed. To the observer in the moving frame S’, the light travels vertically up towards 
the ceiling and is then reflected vertically down. The ceiling height of the boxcar is ad-
justable, such that the pulse of light reaches the ceiling at the same time that the sensor 
reaches the right end of the rod. In Figure 4, if it takes the time 0t′  for light to reach 
the ceiling then the height of ceiling is equal to the distance traveled by light is 

0h r ct′ ′= = , as measured by the observer in the moving frame O’. To the observer in 
the stationary frame O, the light travels diagonally upwards to the ceiling and is then 
reflected diagonally downwards. If it takes the time t for light to reach the ceiling then 
the distance traveled by light on each diagonal leg is r ct= , as measured by the ob-
server in the stationary frame O, where 

( ) ( ) ( ) ( )22 2 22 2 2 2
0 .r l h vt h vt r vt ct′ ′= + = + = + = +            (1) 

From Figure 4, we can derived the following property for θ, where  

( ) ( ) ( )2 2 22 2sin 1 .h r r l r ct vt ct v cθ = = − = − = −            (2) 

From the previous discussion, we know that r ct=  and  
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Figure 4. The height of the ceiling is adjustable. The pulse of 
light reaches the ceiling at the same time as the sensor touches 
the right side of the rod. 

 

0 0sin h r r r ct ct t tθ ′ ′ ′= = = = ; therefore, 0t t′≥ . This equation shows that the regular 
time, t, is larger than or equal to the proper time, 0t′ . This result says that the time in-
terval measured by the observer in the stationary frame is longer than that measured by 
the observer in the moving frame. This difference is referred to as time dilation. Since 

0 0 0sin t t vt vt l lθ ′ ′ ′= = = , then 0l l′ ≤ . This equation shows that the regular length, 
l′ , is less than or equal to the proper length, 0l . This result says that the length of a rod 
measured by the observer in the moving frame is shorter than that measured by the 
observer in the stationary frame. This difference is referred to as length contraction [8]. 

4. Geometric Lines Representing Time Dilation and Length  
Contraction 

When an observer on the train moves to the right with velocity v  with respect to an 
observer on the platform, a moving 3-d s-t frame can be constructed on the train with 
the observer at the origin O’ of the frame S’ and a stationary 3-d s-t frame can be con-
structed on the platform the observer at the origin O of the frame S. The location of the 
observer at O’ on the train as described by the observer at O is OQ as shown in Figure 
5, while the location of the observer at O as described by the observer at O’ is O’Q as 
shown in Figure 5. 

The two equations, 

( ) ( ) ( )2 2 2sin 1h r ct vt ct v cθ = = − = −                 (3) 

and 

( ) ( ) ( )2 2 2sin 1h r ct vt ct v cθ ′ ′ ′ ′ ′ ′= = − = −               (4) 

are derived from Figure 5, which imply that θ θ ′= . It also shows that since 

sin sin ,   h r r r ct ct t t t tθ θ ′ ′ ′ ′ ′= = = = = ≥ .              (5) 

The event where the sensor attached to the observer on the train moves from the left 
of the rod to the right of the rod can be described by two the different observers. To the 
observer at the origin of the moving frame S’, the event occurred at the same location, 
and the duration of the event is called the proper time, 0t′  equal to t′ , which is pro-
portional to the length of r′  ( )0r ct ct h′ ′ ′= = =  in Figure 5. To the observer at the 
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origin of the stationary frame S, the event occurred at different locations, and the pe-
riod of the event is called the regular time t, which is proportional to the length of r (r = 
ct) in Figure 5. Since 0t t′≥ , this difference is referred to as time dilation. 

Since 0sin t t vt vt l lθ ′ ′ ′= = = , then 0l l′ ≤ . The length of a rod as measured from 
an observer in the stationary frame O is called the proper length, 0l , which is equal to 
OO vt′ =  in Figure 5. However, the length of the same rod as measured by an observer 
in the moving frame S’ is called the regular length, l′ , which is equal to 0OO vt′′ ′=  in 
Figure 5. Since 0l l′ ≤ , this phenomenon is called length contraction. 

5. Lorentz Transformation 

In the next discussion, we designate the occurrence of an event at the coordinate x on 
the x-axis of a stationary frame S, by laying a rod on the x-axis from 0 to x. The proper 
length 0l  of the rod is equal to x measured by an observer at the origin of the statio-
nary frame S. In Figure 6, the moving frame S’ moves to the right of the stationary 
frame S with a velocity v, and the time is set to 0 sec when O’, passed O. The regular 
length of the rod as measured by the observer at the origin of the moving frame S’ is  
 

 
Figure 5. The geometric meaning of time dilation and the length contraction. The origin O’ 
moves to the right with the velocity v with respect to the origin O. l = l0 = OO’ = vt, l' = OO” = vt' = 

0vt′  and r = ct, r' = ct' = 0ct′  = h. 

 

 
Figure 6. If the event happens in the coordinate x on the 
x-axis on the stationary frame S, then we can assume there 
is a rod laid on the x-axis from 0 to x. 
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equal to ( )21x v c−  due to length contraction, thus the relationship between these 
two coordinates is  

( )21x v c vt x′ ′− = +                          (6) 

In order to check that the time xt ′′  on the clock at the coordinate x' on the x'-axis is 
or not synchronized with the time 0t′  on the clock at the origin of the moving frame S' 
with the velocity v, we can designate there is a box laid on the x'-axis from 0 to x'. 1) to 
observers in the moving frame S’: When the light is emitted from the wall at 0 to the 
wall at x', the time 0t′  is recorded on the clock on the wall at 0 and time xt ′′  is recorded  

on the clock on the wall at x'. When the light reaches the wall at x', the time 0
xt
c
′

′ +  

should be recorded on the clock on the wall at 0 and time x
xt
c′

′
′ +  should be recorded 

on the clock on the wall at x', because it takes x
c
′

 for light to travel for the observers at  

both walls on the moving frame S’. In the moving frame S’, if 

0x
x xt t
c c′

′ ′
′ ′+ = +                            (7) 

then the time xt′  on the clock on the wall at x' is synchronized with the time 0t′  on the 
clock on the wall at 0 by letting 0xt t′′ ′= . 2) to observers in the stationary frame S: In 
Figure 7, when the light is emitted from the wall at 0 to the wall at x', he sees that the 
time 0t′  is recorded on the clock on the wall at 0 and time xt ′′  is recorded on the clock  

on the wall at x'. When the light reaches the wall at x', the time 
( )

0

v x cxt
c c

′′
′ + +  should  

be theoretically recorded on the clock on the wall at 0 because it takes extra time  
( )v x c

c
′

 for light to travel the extra distance ( )v x c′ ′  but time x
xt
c′

′
′ +  is actually  

recorded on the clock on the wall at x'. To observers in the stationary frame S, if  

( )
0x

v x cx xt t
c c c′

′′ ′
′ ′+ = + +                         (8) 

 

 
Figure 7. If the event happens in the coordinate x' on the 
x'-axis on the moving frame S’, then we can assume there 
is a box laid on the x'-axis from 0 to x'. 
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then the time xt′  on the clock on the wall at x' is synchronized with the time 0t′  on the 
clock on the wall at 0 by letting  

( )
0x

v x c
t t

c′

′
′ ′= +                             (9) 

in the moving frame S’. This means that the proper time is adjusted by 
( )v x c

t
c
′

′ +  at  

the coordinate x' when the proper time is 0t t′ ′=  at the coordinate 0 in the moving 
frame S’. The regular time t  measured by observers in the stationary frame S is adjusted  

by 
( ) ( )21

v x c
t v c

c
′ 

′ + − 
 

 due to time dilation, thus the relationship between these  

two coordinates is 

( ) ( )21
v x c

t t v c
c
′ 

′= + − 
 

                     (10) 

Combining all relationships between coordinates of the stationary frame S and the 
moving frame S’ forms the following Lorentz transformation: 

( )21x v c vt x′ ′− = +                          (11) 

y y′=                                (12) 

z z′=                                (13) 

( ) ( )21
v x c

t t v c
c
′ 

′= + − 
 

                     (14) 

In order to derive the reverse Lorentz transformation, we can construct a stationary 
frame S’ on the moving train, and a moving frame S on the platform which is moving to 
the left with respect to the train with the constant velocity v−  from the discussion in 
the section 3. If an event occurs on coordinate x' on the x'-axis of the stationary frame 
S’, then we can designate there is a rod laid on the x'-axis from 0 to x'. The proper 
length 0l′  of the rod is equal to x' measured by the observer in of the stationary frame 
S’. In Figure 8, the moving frame S moves to the left with the velocity v− , and the time 
was set to 0 sec when O’ passed O. The regular length of the rod measured by the observer  
 

 
Figure 8. If the event happens in the coordinate x' on the 
x'-axis on the stationary frame S’, then we can assume 
there is a rod laid on the x'-axis from 0 to x'. 
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in the moving frame S is equal to ( )21x v c′ −  due to length contraction, thus the re-
lationship between these two coordinates is 

( )21x v c x vt′ − = −                         (15) 

In order to check that the time xt  on the clock at the coordinate x on the x-axis is or 
not synchronized with the time 0t  on the clock at the origin of the moving frame S 
with the velocity v− , we can designate there is a box laid on the x-axis from 0 to x. 1) 
to observers in the moving frame S: When the light is emitted from the wall at 0 to the 
wall at x, the time 0t  is recorded on the clock on the wall at 0 and time xt  is recorded  

on the clock on the wall at x. When the light reaches the wall at x, the time 0
xt
c

+  

should be recorded on the clock on the wall at 0 and time x
xt
c

+  should be recorded 

on the clock on the wall at x, because it takes x
c
′

 for light to travel for the observers at  

both walls on the moving frame S. In the moving frame S, if  

0x
x xt t
c c

+ = +                            (16) 

then the time xt  on the clock on the wall at x is synchronized with the time 0t  on the 
clock on the wall at 0 by letting 0xt t= . 2) to observers in the stationary frame S’: In 
Figure 9, when the light is emitted from the wall at 0, he sees that the time 0t  is rec-
orded on the clock on the wall at 0 and time xt  is recorded on the clock on the wall at  

x'. When the light reaches the wall at x, the time 
( )

0

v x cxt
c c

+ −  should be theoreti-

cally recorded on the clock on the wall at 0, because it takes less time 
( )v x c

c
 for light 

to travel the less distance ( )v x c  but time x
xt
c

+  is actually recorded on the clock on  

the wall at x. To observers in the stationary frame S’, if  

( )
0x

v x cx xt t
c c c

+ = + −                        (17) 

 

 
Figure 9. If the event happens in the coordinate x on the 
x-axis on the moving frame S, then we can assume there is 
a box laid on the x-axis from 0 to x. 

xO

O’
vt

          
             

       

x’

-v
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then the time xt  on the clock on the wall at x is synchronized with the time 0t  on the 
clock on the wall at 0 by letting  

( )
0x

v x c
t t

c
= −                            (18) 

in the moving frame S. This means that the proper time is adjusted by 
( )v x c

t
c

−  at  

the coordinate x when the proper time is 0t t=  at the coordinate 0 in the moving 
frame S. The regular time t′  measured by observers in the stationary frame S’ is adjusted  

by 
( ) ( )21

v x c
t v c

c
 
− − 

 
 due to time dilation, thus the relationship between these 

two coordinates is 

( ) ( )21
v x c

t t v c
c

 
′ = − − 

 
                     (19) 

Combining all relationships between coordinates of the moving frame S and the sta-
tionary frame S’ forms the following reverse Lorentz transformation: 

( )21x v c x vt′ − = −                         (20) 

y y′ =                               (21) 

z z′ =                               (22) 

( ) ( )21
v x c

t t v c
c

 
′ = − − 

 
                      (23) 

6. An Example of Length Contraction and Time Dilation 

Length contraction and time dilation between two inertial frames was discussed in the 
section IV. In the following example, we particularly select a blue light as the median to 
transmit message with wavelength 

( )
0

3 10 75000 5 10 10  m 5 10  mAλ − −= = × × = ×                 (24) 

as the unit of length and period 
7

15
8

5 10  m 1.667 10 sec
3 10  m sec

T
c
λ −

−×
= ≈ ≈ ×

×
                 (25) 

as the unit of time to construct 3-d s-t frames [9]. 
For a rod of length 0 70 ml =  laid on the platform of a station and a train moving 

with velocity 0.6v c= , the proper length of the rod measured from observers on the 
stationary frame S is 0 70 ml = , and the regular length of the rod measured from ob-
servers on the moving frame S’ 

( )22 2 2
0 1 70 m 1 0.6 70 m 0.8 56 ml l v c c c= − = − = × =          (26) 

by length contraction.  
In order to draw length into graph, we can change the unit of length from m to λ , 
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then  

( )7 7 70
07

70 m 14 10 14 10 14 10
5 10  m

l
l λ λ

λ −= = × → = × = ×
×

           (27) 

and  

( )7 7 7
7

56 m 11.2 10 11.2 10 11.2 10
5 10  m

l l λ λ
λ −= = × → = × = ×

×
         (28) 

These values with new units satisfies the formula of length contraction  

( )( ) ( ) ( )22 2 7 2 7
0 1 14 10 1 0.6 11.2 10l l v c c cλ λ= − = × − = ×         (29) 

It takes regular time  

8
8

70 m 70 m 38.89 10 sec
0.6 0.6 3 10  m / sec

lt
v c

−= = = = ×
× ×

             (30) 

for the origin O’ of the moving frame S’ to pass from the left to the right ends of the rod 
measured by observers on the stationary frame S, thus the proper time measured from  

observers on the moving frame S’ is 0t′  where 0

2 21

t
t

v c

′
=

−
 from time dilation  

formula. We can calculate the proper time  

( ) ( )22 2 8 2 8
0 1 38.89 10  sec 1 0.6 31.11 10  sec.t t v c c c− −′ = − = × − = ×     (31) 

In order to draw time into graph, we change the unit of time from sec to T. Because  
8

7
15

38.89 10  sec 23.33 10
1.667 10  sec

t
T

−

−

×
= = ×

×
                   (32) 

then 

( )723.33 10t T= ×                           (33) 

and 
8

70
15

31.11 10  sec 18.66 10
1.667 10  sec

t
T

−

−

′ ×
= = ×

×
                   (34) 

then  

( )7
0  18.66 10t T′ = ×                          (35) 

These values with new units also satisfy the length contraction equation  

( ) ( ) ( )22 2 7 2 7
0 1 18.66 10 1 0.6 23.33 10t t v c T c c T′= − = × − = ×      (36) 

From Figure 10, it also shows that θ θ′ = . Because  
sin 18.66 23.33 0.799828546θ = =                   (37) 

then 

( )1 0 0sin 0.799828546 53.1137 53.11θ −= = ≈               (38) 

and 

sin 14.925 18.66 0.799839228θ ′ = =                   (39) 
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Figure 10. A 3-d s-t stationary frame and a 3-d s-t moving frame λ = 
5(10−7) m as the unit of length and T = 1.667(10−15) sec as the unit of time. 

 

then  

( )1 0 0sin 0.799839228 53.1147 53.11θ −′ = = ≈               (40) 

This example shows that the actual value of time dilation and the actual value of 
length contraction can be measured simultaneously in this 3-d s-t frame by selecting λ  
as the unit for length and T  as the unit for time [9]. 

7. Conclusions 

In classical physics, time and space are treated independently. Einstein demonstrated 
the inseparability of time and space. The realistic difference between time and space is 
the single direction of time and the two directions of space. In the proposed 3-d s-t 
frame, time is represented by spheres of different radii with the origin of the space axes 
as their center and time can only have a single direction. 

In Special Relativity, two 3-d s-t inertial frames can be constructed by choosing light 
as a medium for transmitting messages. The geometric meaning of time dilation of an 
event occurring at the same location in the moving frame for an observer in the statio-
nary frame and length contraction of a rod lying still in the stationary frame for an ob-
server in the moving frame can be clearly illustrated in this 3-d s-t. The Lorenz trans-
formation can also be derived from graphs of time dilation and length contraction. The 
universe generated from multiple big bangs based on a 3-d s-t frame solves the prob-
lems which are unsolved by the universe generated from Big Bang. Time contraction 
and length contraction on the moving train helps us explain quantum entanglement. 
These demonstrate the value of 3-d s-t frames. 
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