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Abstract 
The global phase portrait describes the qualitative behaviour of the solution set for all 
time. In general, this is as close as we can get to solving nonlinear systems. The ques-
tion of particular interest is: For what parameter values does the global phase portrait 
of a dynamical system change its qualitative structure? In this paper, we attempt to 
answer the above question specifically for the case of certain third order nonlinear 
differential equations of the form ( ) 0x ax g x cx+ + + =   . The linear case where 

( )g x bx=   is also considered. Our phase portrait analysis shows that under certain 

conditions on the coefficients as well as the function g , we have asymptotic stability 
of solutions. 
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1. Introduction 

A line connecting the plotted points in their chronological order shows temporal evolu-
tion more clearly on the graph. The complete line on the graph (i.e. the sequence of 
measured values or list of successive iterates plotted on a phase space graph) describes a 
time path or trajectory [1]. A trajectory that comes back upon itself to form a closed 
loop in phase space is called an orbit [2]. 

An orbit for a system usually indicates that the dynamical system under considera-
tion is conservative. We also note that each plotted point along any trajectory has 
evolved directly from the preceding point. As we plot each successive point in phase 
space, the plotted points migrate around. Orbits and trajectories therefore reflect the 
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movement or evolution of the dynamical system. Thus, an orbit or trajectory moves 
around in the phase space with time. The trajectory is a neat, concise geometric picture 
that describes part of the system’s history. When drawn on a graph, a trajectory must 
not always be smooth; instead, it can zigzag all over the phase space, mostly for discrete 
data [3] [4] [5]. 

The phase space plot is a world that shows the trajectory and its development. De-
pending on various factors, different trajectories can evolve for the same system. The 
phase space plot and such a family of trajectories together are a phase space portrait, 
phase portrait, or phase diagram. 

A phase space with plotted trajectories ideally shows the complete set of all possible 
states that a dynamical system can ever be in.  

2. The Flow Defined by a Differential Equation 

We next describe the notion of the flow of a system of differential equations. We begin 
with the linear system 

( ) 0,   0 ,   .nx Ax x x x= = ∈
                        (1) 

The solution to the initial value problem associated with (1) is given by 

( ) 0e .Atx t x=  

The set of mappings e :At n n→   may be regarded as describing the motion of 
points 0

nx ∈  along trajectories of (1). This set of mappings is called the flow of the 
linear system (1).  

2.1. Remark 

The mapping eAt
tφ =  satisfies the following basic properties for all nx∈ : 

1) ( )0 x xφ = ; 
2) ( )( ) ( )s t s tx xφ φ φ += , for all ,s t∈ ; 
3) ( )( ) ( )( )t t t tx x xφ φ φ φ− −= =  for all t∈ . 

For the nonlinear system  
( )x f x=                              (2) 

we define the flow tφ  and show that it satisfies the above basic properties. Subse-
quently we introduce the notion of maximal interval of existence ( ),a b  of the solution 
( )0,t xφ  of the initial value problem 

( ) ( ) 0,   0 ,   nx f x x x x= = ∈
                       (3) 

by ( )0I x  since the end points a and b of the maximal interval generally depends on 

0x . 

2.2. Definition 

Let E be an open subset of n
  and let ( )1f C E∈ . For 0x E∈ , let ( )0,t xφ  be the 

solution of the initial value problem (3) defined on its maximal interval of existence 
( )0I x . Then for ( )0t I x∈ , the set of mappings tφ  defined by 
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( ) ( )0 0,t x t xφ φ=                            (4) 

is called a flow of the differential Equation (2). tφ  is also referred to as the flow of the 
vector field ( )f x . 

2.3. Remark 

1) We can think of the initial point as being fixed and let ( )0I I x= , then the map-
ping ( )0., :x I Eφ →  defines a solution curve or trajectory of the system (2) through 
the point 0x E∈ . Naturally the mapping is identified simply with its graph in I E×  
and a trajectory is visualized as a motion along a curve Γ  through the point 0x E∈  
of the phase space n

  (Figure 1(a)). On the other hand, if we think of the point 0x  
as varying throughout K E⊂ , then the flow of the differential Equation (2), 

:t K Eφ →  can be viewed as the motion of all points in the set K (Figure 1(b)). 
 

 
Figure 1. (a) A trajectory Γ  of the system (2); (b) The flow tφ  
of the system (2). 

 
2) If we think of the differential Equation (2) as describing the motion of a fluid, then 

a trajectory of (2) describes the motion of an individual particle in the fluid while the 
flow of the differential Equation (2) describes the motion of the entire fluid. 

3) It can be shown that the basic properties (i)-(iii) of linear flows are also satisfied by 
nonlinear flows [6]. 

4) The following theorem, provides a method of computing derivatives in coordinates. 

2.4. Theorem 

Given : n nf →   is differentiable at 0x , then the partial derivatives  
,  , 1, , ,i jf x i j n∂ ∂ = …  all exist at 0x  and for all nx∈ , 

( ) ( )0
0

1
.

n

j
j j

f x
Df x x x

x=

∂
=

∂∑                         (5) 
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Thus, if f is a differentiable function, the derivative Df  is given by the n n×  Jaco-
bian matrix. 

i

j

f
Df

x
 ∂

=  
∂  

                            (6) 

2.5. Definition 

An equilibrium x∗  of the system ( )x f x=  is called hyperbolicif all eigenvalues of 
the Jacobian ( )Df x∗  have non-zero real part. 

2.6. The Hartman-Groβman Theorem 

The Hartman-Groβman Theorem [7] is another very important result in the local qua-
litative theory of ordinary differential equations. The theorem shows that near a 
hyperbolic equilibrium point 0x , the nonlinear system 

( )x f x=                               (7) 

has the same qualitative structure as the linear system 

x Ax=                                (8) 

with ( )0A Df x= . Throughout this section we shall assume that the equilibrium point 

0x  has been translated to the origin. 

2.7. Definition 

Two autonomous systems of differential equations such as (7) and (8) are said to be 
topologically equivalent in a neighborhood of the origin or to have the same qualitative 
structure near the origin if there is a homeomorphism Φ  mapping an open set U 
containing the origin onto an open set V containing the origin which maps trajectories 
of (7) in U onto trajectories of (8) in V and preserves their orientation by time in the 
sense that if a trajectory is directed from 1x  to 2x  in U, then its image is directed 
from ( )1xΦ  to ( )2xΦ  in V. If the homeomorphism Φ  preserves the parameteri-
zation by time, then the systems (7) and (8) are said to be topologically conjugate in a 
neighborhood of the origin. 

 

 
Figure 2. (a) Phase portrait of x Ax= ; (b) Phase portrait of y By= . 
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2.8. Example 

Consider the linear systems x Ax=  and y By=  with 
1 3 2 0

,  .
3 1 0 4

A B
− −   

= =   − − −   
 

Let ( )x RxΦ = , where 11 1
2 2

1 1 1 1
,  

1 1 1 1
R R−−   
= =   −   

. 

Then one can easily check that 1B RAR−= , and letting ( )y x Rx= Φ =  or 
1x R y−=  

1   .y RAR y By−⇒ = =  

It then follows that if ( ) 0eAtx t x=  is a solution of the first system through 0x , then 
( ) ( )( ) ( ) 0 0e eAt Bty t x t Rx t R x Rx= Φ = = =  is the solution of the second system passing 

through 0Rx . In other words Φ  maps trajectories of the first system onto trajectories 
of the second system and preserving the parametrization, since 

e e .At BtΦ = Φ                             (9) 

The phase plane portraits of the two systems are shown in Figure 2. It clearly shows 
that the mapping ( )x RxΦ =  is simply a rotation through 45˚ and thus it is a ho-
meomorphism. 

2.9. Theorem (Hartman-Groβman) 

Let E be an open subset of n
  containing the origin, suppose ( )1f C E∈ , and tφ  

the flow of the nonlinear system ( )x f x= . Let ( )0 0f =  and the matrix ( )0A Df=  
has no eigenvalue with zero real part. Then there exists a homeomorphism Φ  of an 
open set U containing the origin onto an open set V containing the origin such that for 
each 0x U∈ , there is an open interval 0I ⊂   containing zero such that for all 

0 0x I∈  and 0t I∈  
( ) ( )0 0eAt

t x xφΦ = Φ                        (10) 

i.e. Φ  maps trajectories of the nonlinear system ( )x f x=  onto trajectories of 
x Ax=  near the origin and preserves the parametrization by time. 

3. Main Results 

In [8] Okereke demonstrated very clearly the veracity of the Hartman-Groβman theo-
rem by considering the simulation of the nonlinear and linearized system of ordinary 
differential equations in terms of their phase portrait analysis.  

Consider the nonlinear system; 

1 1 1 2 2 1 2 22 ,         3x x x x x x x x= − = −  . 

The equilibria of the above system is obtained by setting 1 2 0x x= =   to get 

1 1 2 1 2 22 0,         3 0.x x x x x x− = − =  

Solving the above equations we obtain the equilibria as (0, 0) and ( )1
23, . 

To obtain the linearization at the origin, we begin by computing the Jacobian: 

( ) 2 1

2 1

1 2 2
3

x x
Df x

x x
− − 

=  − 
. 
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Evaluating the Jacobian at the first equilibrium gives 

( )
1 0

0,0
0 3

Df  
=  − 

, 

and therefore the linearization of our system at (0, 0) is 

1 1

2 2

1 0
.

0 3
x x
x x
    

=    −    





 

Since ( ) 1 3 2 0,  3 0Tr A A= − = − < = − < , we immediately see that the origin is a sad-
dle for the linearized system. Evaluating the Jacobian at the second equilibrium gives 

( )1
2 1

2

0 6
3,

0
Df

− 
=  
 

, 

and therefore the linearization of our system at ( )1
23,  is 

1 1
1

2 22

0 6
.

0
x x
x x

−    
=     

    





 

Here ( ) 0,  3 0Tr A A= = > , thus the equilibrium point is a centre for the linearized 
system. 

In the simulation which follows we will consider only the nontrivial equilibrium 
point ( )1

23, .  

3.1. MathCAD Simulation 

a) The given nonlinear system 1 1 1 2 2 1 2 22 ,   3x x x x x x x x= − = −   can be recast in 
MathCAD [9] format as follows. Solution matrix is given in Figure 3. 

( ) 0 1

0 1 1

2
, :

3
Y Y

D t Y
Y Y Y

− ⋅ 
=  ⋅ − ⋅ 

 Vector of derivatives. 

0 : 5t = −  Initial value of independent variable. 

1 : 5t =  Terminal value of independent variable. 

0

2.95
:

0.46
Y  

=  
 

 Vector of initial values. 

 

 
Figure 3. Solution matrix for the system 

1 1 1 2 2 1 2 22 ,   3x x x x x x x x= − = −  . 



R. N. Okereke, S. O. Maliki 
 

2330 

: 1500N =  Number of solution values in [ ]0 1t , t . 
( )0 0 1kadap ,t: R , , ,S Y t t N D=  Solution matrix. 

0:t S=  Independent variable values. 
1

1 :x S=  First solution function values. 
2

2 :x S=  Second solution function values. 
The solution profiles are depicted in Figures 4(a)-(c). 

 

   
(a)                                            (b) 

 
(c) 

Figure 4. (a) Trajectory of ( )1x t ; (b) Trajectory of ( )2x t ; (c) Phase portrait of system near 

( )1
23, . 

 
b) The phase portrait of the linearized system near the origin ( )0,0  is now consi-

dered. The linearized system 1
1 2 2 126 ,   x x x x= − =   can be recast in MathCAD format 

as follows. Solution matrix is given in Figure 5. 

( ) 1

0

6
, :

0.5
Y

D t Y
Y

− ⋅ 
=  ⋅ 

 Vector of derivatives. 

0 : 5t = −  Initial value of independent variable. 

1 : 5t =  Terminal value of independent variable. 

0

2.95
:

0.46
Y  

=  
 

 Vector of initial values. 

: 1500N =  Number of solution values in [ ]0 1t , t .  
:S R=  kadapt ( )0 0 1, , , ,Y t t N D  Solution matrix. 

0:t S=  Independent variable values. 
1

1 :x S=  First solution function values. 
2

2 :x S=  Second solution function values. 
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Figure 5. Solution matrix for the system 

1
1 2 2 2 16 ,   x x x x= − =  . 

 
The solution profiles are depicted in Figures 6(a)-(c). 

 

 
(a)                                            (b) 

 
(c) 

Figure 6. (a) Trajectory of ( )1x t  of linearized system; (b) Trajectory of ( )2x t  of linearized 

system; (c) Phase portrait of linearized system near ( )0,0 . 

3.2. Observation 

The phase portraits of the nonlinear system near ( )1
2  3,  and linearized system about 

the origin, show stability but not asymptotic stability. This is because the graph is a 
centre, and as a result, we conclude that the system is conservative. In each case we see 
that the phase portraits for the nonlinear and linearized system are topologically the 
same near the equilibrium point ( )1

23,  and ( )0,0  respectively. 

4. Phase Portrait Analysis for Stability of Third Order ODE 

In this section we consider a third order linear equation 



R. N. Okereke, S. O. Maliki 
 

2332 

0x ax bx cx+ + + =                            (11) 
which is equivalent to the system 

1 2

2 3

3 3 2 1

x x
x x
x ax bx cx

=
 =
 = − − −







                        (12) 

where a, b, c are all positive constants. 
We study the asymptotic properties of the above system with the help of MathCAD 

simulation. The constants a, b, c are chosen such that ( ) 0x ab c− > . 

4.1. Simulation 

a : 4    b : 6    c : 10= = = . 

( )
1

2

2 1 0

, :
Y

D t Y Y
a Y b Y c Y

 
 =  
 − ⋅ − ⋅ − ⋅ 

 Vector of derivatives. 

0 : 4t =  Initial value of independent variable. 

1 : 15t =  Terminal value of independent variable. 

0

2
: 3

1
Y

 
 =  
  

 Vector of initial values. 

: 1500N =  Number of solution values in [ ]0 1, .t t  
( )0 0 1kadap ,t: R , , ,S Y t t N D=  Solution matrix. 

0:t S=  Independent variable values. 
1

1 :x S=  First solution function values. 
2

2 :x S=  Second solution function values. 
3

3 :x S=  Third solution function values. 
The solution matrix for the above system is given in Figure 7, while the solution pro-

files are depicted in Figures 8(a)-(d). 
 

 
Figure 7. Solution matrix for 3rd order ODE. 
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Figure 8. (a) Trajectory of ( )1 .x t ; (b) Trajectory of ( )2x t ; (c) Trajectory of ( )3x t ; (d) Phase portrait of 0x ax bx cx+ + + =   . 

4.2. The General Nonlinear Third Order ODE 

We now consider the more general nonlinear third order ODE given by 

( ) ( ) ( ) ( )x h x x x x k x x p tµ+ + + =                       (13) 

where ( ), , ,h k Cµ ∈   , [ ]( )0, ,p C∈ ∞  . 
We have the following theorem. 

4.3. Theorem 

Given that  
1) ( ) 0 0;k x x> ∀ ≠  
2) ( ) 0;h y a> >  

3) ( ) ( )( ) ;a y xk xµ ′≥  

4) ( )
0

d .p t t
∞

< ∞∫  

Then every solution ( )x t  of Equation (13) satisfies  

( ) ( ) ( )lim 0,   lim 0,  and lim 0.
t t t

x t x t x t
→∞ →∞ →∞

= = = 
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The proof follows that given by Omeike [10]. 
Finally, when ( ) ( ),  h y a y bµ= =  and ( )k x c=  are all constants, Equation (13) 

reduces to the linear equation 

( ).x ax bx cx p t+ + + =                          (14) 

We have the following result following immediately from the above theorem. 

4.4. Corollary 

Given that 
1) 0,  0,  0a b c> > > ; 
2) ab c> ; 

3) ( )
0

dp t t
∞

< ∞∫ . 

Then every solution ( )x t  of Equation (13) satisfies  

( ) ( ) ( )lim 0,   lim 0,  and lim 0.
t t t

x t x t x t
→∞ →∞ →∞

= = =                (15) 

4.5. Remark 

1) We note that (1) and (2) are the well known Routh-Hurwitz conditions [6] for the 
asymptotic stability of the following third-order homogeneous linear differential equa-
tion 0x ax bx cx+ + + =   . 

2) For the third order differential equation 4 6 10 0x x x x+ + + =   , the conditions of 
corollary 4.4 are clearly satisfied and from the simulation (Figures 8(a)-(c)) we can see 
the truth in the limit conditions (15). Figure 8(d) depicts a spiral sink in the simula-
tion, and this further stresses the asymptotic nature of the solutions.  

5. Conclusion 

In this study, we investigated the stability analysis of certain third order linear and non-
linear ordinary differential equations. We employed the method of phase portrait anal-
ysis. We showed, using simulation that the Hartman-Groβman Theorem is verified, for 
a second order linearized system as an example, approximates the nonlinear system 
preserving the topological features. In the case of the third order nonlinear system 

( ) 0x ax g x cx+ + + =   , we stated appropriate theorems guaranteeing asymptotic stabil-
ity of solutions. For the linear case where ( )g x bx=  , our phase portrait analysis shows 
that under certain conditions on the coefficients as well as the function g , we have 
asymptotic stability of solutions. 
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