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Abstract 
In this article, the restricted almost unbiased ridge logistic estimator (RAURLE) is 
proposed to estimate the parameter in a logistic regression model with exact linear 
restrictions when there exists multicollinearity among explanatory variables. The 
performance of the proposed estimator over the maximum likelihood estimator 
(MLE), ridge logistic estimator (RLE), almost unbiased ridge logistic estimator 
(AURLE), and restricted maximum likelihood estimator (RMLE) with respect to dif-
ferent ridge parameters is investigated through a simulation study in terms of scalar 
mean square error. 
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1. Introduction 

Multicollinearity inflates the variance of the maximum likelihood estimator (MLE) in 
the logistic regression. As a result, one may not obtain an efficient estimate for the pa-
rameter β  in the logistic regression model. To combat the multicollinearity in logistic 
regression, several alternative techniques have been proposed in the literature. One of 
the most famous techniques is to consider suitable biased estimators in place of Maxi-
mum likelihood estimator. The biased estimators proposed in the literature, are the 
Ridge Logistic Estimator (RLE) (Schaefer et al., 1984 [1]), Liu Logistic Estimator (LLE) 
(Liu, 1993 [2], Urgan and Tez, 2008 [3], and Mansson et al., 2012 [4]), Principal Com-
ponent Logistic Estimator (PCLE) (Aguilera et al., 2006 [5]), Modified Logistic Ridge 
Estimator (MLRE) (Nja et al., 2013 [6]), Liu-type estimator (Inan and Erdogan, 2013 
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[7]), and Almost Unbiased Liu Logistic Estimator (AULLE) (Xinfeng, 2015 [8]). Mo-
rever, Asar (2015) [9], proposed some new methods to solve the multicollinearity in lo-
gistic regression by introducing new methods of estimating the shrinkage parameter in 
Liu-type estimators. Only the sample information was used in all the above estimation 
procedures. An alternative technique suggested to solve the multicollinearity problem is 
to consider parameter estimation with some linear restrictions on the unknown para-
meters, which are generally based on prior information of the sample data, and further 
they may be in the exact or stochastic form. By incorporating linear restrictions to the 
sample information, different types of biased estimators were introduced in the litera-
ture, and some researchers have incorporated these estimators with the logistic regres-
sion estimator to improve its performance. In the presence of exact linear restrictions in 
addition to sample logistic regression model, Duffy and Santer (1989) [10] introduced 
the restricted maximum likelihood estimator (RMLE) by incorporating the restricted 
least squares estimator based on exact linear restriction to the logistic regression. Later, 
the Restricted Logistic Ridge Estimator (Asar et al., 2016 [11]), Restricted Logistic Liu 
Estimator (RLLE) (Şiray et al., 2015 [12]), Modified Restricted Liu Estimator (Wu, 2016 
[13]), Restricted two parameter Liu type estimator (Asar et al., 2016 [14]) were intro-
duced to the logistic regression with exact linear restrictions. In the presence of sto-
chastic linear restrictions in addition to sample logistic regression model, Nagarajah 
and Wijekoon (2015) introduced the Stochastic Restricted Maximum Likelihood Esti-
mator (SRMLE). Following Nagarajah and Wijekoon (2015) [15], the Stochastic Re-
stricted Ridge Maximum Likelihood Estimator (SRRMLE) was proposed by Varathan 
and Wijekoon (2016) [16] by incorporating Ridge Logistic Estimator (RLE) with the 
SRMLE. 

Wu and Asar (2016) [17] has proposed a new biased estimator called Almost Un-
biased Ridge Logistic Estimator (AURLE), and shown its performance over the other 
available estimators. In this article, we further improve the logistic regression estimator 
by combining AURLE with RMLE, and name it as the Restricted Almost Unbiased 
Ridge Logistic Estimator (RAURLE). Further, the performance of RAURLE based on 
estimated ridge parameters using different methods given in the literature was consi-
dered, and compared each of these cases with MLE, RLE, AURLE and RMLE. The pro-
ceeding sections of the article are organized as follows. The model specification and es-
timation are discussed in Section 2. The proposed estimator and its asymptotic proper-
ties are given in Section 3. Section 4 describes the existing methods related to some 
ridge parameters. In Section 5, the performance of the proposed estimator by consi-
dering different ridge parameters is compared with respect to the scalar mean squared 
error (SMSE) with MLE, RLE, AURLE and RMLE by performing a Monte Carlo simu-
lation study. Finally, conclusions of the study are presented in Section 6. 

2. Model Specification and Estimation 

Consider the following logistic regression model  

,  1, ,i i iy i nπ ε= + =                            (1) 
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which follows Bernoulli distribution with parameter iπ  as  

( )
( )

exp
,

1 exp
i

i
i

x
x
β

π
β

′
=

′+
                           (2) 

where ix  is the ith row of X, which is an ( )1n p× +  data matrix with p predictor 
variables and β  is a ( )1 1p + ×  vector of coefficients, iε  are independent with mean 
zero and variance ( )1i iπ π−  of the response iy . The maximum likelihood estimator 
(MLE) of β  can be obtained as follows:  

1ˆ ˆ ,MLE C X WZβ − ′=                            (3) 

where ˆC X WX′= ; Z is the column vector with ith element equals  

( ) ( )
ˆˆlogit

ˆ ˆ1
i i

i
i i

y ππ
π π

−
+

−
 and ( )ˆ ˆ ˆdiag 1i iW π π = −  , which is an unbiased estimate of  

β . The covariance matrix of ˆ
MLEβ  is  

( ) { } 1ˆ ˆ .MLECov X WXβ
−

′=                         (4) 

In the presence of multicollinearity, Schaefer et al. (1984) [1] proposed to incorporate 
the Logistic Ridge Estimator (LRE), in place of the MLE in the logistic regression model 
(1)  

( ) ( )
1 1ˆ ˆ ˆ ˆˆ ˆ

LRE MLE MLE k MLEX WX kI X WX C kI C Zβ β β β
− −′ ′= + = + =           (5) 

where ( ) 1
kZ C kI C−= +  and k is the ridge parameter, 0k ≥ . 

The asymptotic properties of LRE:  

ˆ ˆ
LRE k MLE kE E Z Zβ β β   = =                          (6) 

( ) ( ) ( )

1

1 1 1

ˆ ˆ
LRE k MLE k k

k

Cov Cov Z Z C Z

C kI C C kI Z C kI

β β −

− − −

    ′= =   

= + + = +
             (7) 

However the LRE is a biased estimator which produces inconsistent estimates for the 
parameter (Wu and Asar, 2016 [17]). Consequently, the Almost Unbiased Ridge 
Logistic Estimator (AURLE) was introduced by Wu and Asar (2016) [17] and it is 
defined as  

( ) 22ˆ ˆ ˆˆ
AURLE MLE k MLEI k X WX kI Fβ β β

− ′= − + =  
              (8) 

where ( ) 22 ˆ
kF I k X WX kI

−
′= − + . 

And the asymptotic properties of AURLE:  

ˆ ˆ
AURLE k MLE kE E F Fβ β β   = =                        (9) 

1ˆ ˆ
AURLE k MLE k kCov Cov F F C Fβ β −    ′= =                   (10) 

As another remedial action for multicollinearity, one may use the exact linear 
restrictions in addition to the sample logistic regression model (1). The resulting esti- 
mator is called as Restricted estimator. 
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Suppose that the following exact restriction is given in addition to the general logistic 
regression model (1).  

H hβ =                             (11) 

where H is a ( )( )1q p× +  known matrix and h is an ( )1q×  vector of known con- 
stants. 

In the presence of the above restriction (11) in addition to the logistic regression 
model (1), Duffy and Santner (1989) [10] proposed the following Restricted Maximum 
Likelihood Estimator (RMLE).  

( ) ( )11 1ˆ ˆ ˆ
RMLE MLE MLEC H HC H H hβ β β

−− −′ ′= − −               (12) 

The asymptotic mean and variance of ˆ
RMLEβ  are  

( ) ( )
( ) ( )

11 1

11 1

ˆ ˆ ˆ
RMLE MLE MLEE E C H HC H H h

C H HC H H h

β β β

β β

−− −

−− −

   ′ ′= − −    

′ ′= − −
          (13) 

and  

( ) ( ) ( )
11 1 1 1ˆ .RMLECov C C H HC H HC A sayβ
−− − − −′ ′= − =           (14) 

Consequently the bias of ˆ
RMLEβ ,  

( ) ( ) ( )
11 1ˆ .RMLEBias C H HC H H hβ β
−− −′ ′= − −               (15) 

3. The Proposed Estimator 

To improve the performance of the estimators further, in this section, by combining 
AURLE and RMLE, we propose a new estimator which is called as the Restricted 
Almost Unbiased Ridge Logistic Estimator (RAURLE) and defined as 

( ) 22ˆ ˆ ˆˆ
RAURLE RMLE k RMLEI k X WX kI Fβ β β

− ′= − + =  
            (16) 

where ( ) 22 ˆ
kF I k X WX kI

−
′= − + . Note that this estimator is based on the ridge para- 

meter k, and its performance is based on the choice of k. 
The asymptotic properties of ˆ

RAURLEβ  are  

( ) ( )
11 1ˆ ˆ ,RAURLE k RMLE kE E F F C H HC H H hβ β β β
−− −     ′ ′= = − −      

     (17) 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ,RAURLE RAURLE k RMLE k RMLE k k kD Cov Cov F F Cov F F AFβ β β β ′ ′= = = =  (18) 

and  

( ) ( ) ( ) ( )
11 1ˆ ˆ .RAURLE RAURLE kBias E F C H HC H H h sayβ β β β β β δ
−− −   ′ ′= − = − − − =    

(19) 

Consequently, the mean square error can be obtained as,  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
RAURLE RAURLE RAURLE RAURLE k kMSE D Bias Bias F AFβ β β β δδ′ ′ ′= + = +   (20) 



N. Varathan, P. Wijekoon   
 

1080 

4. Some Ridge Estimators 

Now we consider the existing methods to obtain an estimated value for the ridge 
parameter k, since RAURLE depends on k. Many researchers suggested various 
methods of estimating the ridge parameter in the ridge regression approach and 
recently this estimation method is added to the logistic regression. In this research, we 
have considered the following existing ridge parameter estimation methods to compare 
the performance of the proposed estimator with some existing estimators in logistic 
regression. 

1) Hoerl and Kennard (1970) [18];  
2

2
max

ˆ
HKk σ

α
=                             (21) 

where 2
maxα  is the maximum element of ˆ

MLEγβ , γ  is the eigen vector of ˆX WX′ . 
2) Hoerl et al. (1975) [19]; 

2ˆ
ˆ ˆHKB

MLE MLE

pk σ
β β

=
′

                          (22) 

where p is the number of predictor variables in the model (1). 
3) Lawless and Wang (1976) [20];  

2ˆ
ˆ ˆˆLW

MLE MLE

pk
X WX
σ

β β
=

′ ′
                       (23) 

4) Lindley and Smith (1972) [21];  

( ) ( )
( )

22 ˆ
ˆ ˆ2LS

MLE MLE

n p p pk
n

σ
β β

− +
=

+ ′
                   (24) 

5) Schaefer et al. (1984) [1];  

2
max

1
HKk

α
=                            (25) 

5. Simulation Study 

It is difficult to compare the mean square error of the estimators theoretically, since 
none of the estimators MLE, RLE, AURLE, RMLE and RAURLE are not always 
superior. So, we use Monte Carlo simulation to examine the performance of the 
proposed estimator over the existing estimators under different levels of multicolli- 
nearity. Following McDonald and Galarneau (1975) [22] and Kibria (2003) [23], the 
explanatory variables are generated using the following equation.  

( )1 22
, 11 , 1, 2, , ,  1, 2, ,ij ij i px z z i n j pρ ρ += − + = =             (26) 

where ijz  are independent pseudo standard normal random numbers and 2ρ  repre- 
sents the correlation between any two explanatory variables. The n observations for the 
response variable are obtained from the Bernoulli ( iπ ) distribution in (1). Four explana- 
tory variables are generated using (26) and four different values of ρ  corresponding 
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to 0.80, 0.90, 0.95 and 0.99 are considered. Further for the sample size n, three different 
values 25, 60, and 100 are also considered. The parameter values of 1 2, , , pβ β β  are 
chosen so that 2

1 1p
jj β

=
=∑  and 1 2 pβ β β= = = , which is common restrictions in 

many simulation studies. Further for the ridge parameter k, five different choices are 
used as defined in the Equations (21)-(25). The simulation is repeated 2000 times by 
generating new pseudo-random numbers and the simulated SMSE values of the 
estimators are obtained using the following equation.  

( ) ( ) ( )
2000

*

1

1ˆ ˆ ˆ ˆ
2000 r r

r
SMSE β β β β β

=

′= − −∑                (27) 

where ˆ
rβ  is any estimator considered in the rth simulation. The simulation results are 

given in Tables 1-3. It can be noticed from the Tables 1-3 that the scalar mean square 
error of the proposed estimator RAURLE is smaller compared to MLE, RLE, AURLE 
and RMLE, with respect to all the selected values of n, ρ, and k, considered in this 
research. Further, the new estimator RAURLE has better performance when SRWk  is 
used. 

6. Concluding Remarks 

In this paper, we proposed a restricted almost unbiased ridge logistic estimator 
(RAURLE) in logistic regression with exact linear restrictions when the explanatory 
variables are highly correlated. Through a Monte Carlo simulation study, we examined  
 
Table 1. The estimated SMSE values for different k, when 25n = . 

ρ  Estimator HKk  SRWk  HKBk  LWk  LSk  

0.80 MLE 2.7913 2.7913 2.7913 2.7913 2.7913 

 RLE 2.1156 1.7907 2.5850 2.3325 2.5182 

 AURLE 2.6754 2.5265 2.7811 2.7393 2.7733 

 RMLE 0.7946 0.7946 0.7946 0.7946 0.7946 

 RAURLE 0.7727 0.7420 0.7919 0.7850 0.7911 

0.90 MLE 5.3804 5.3804 5.3804 5.3804 5.3804 

 RLE 3.2110 1.1707 3.2801 3.7876 2.8573 

 AURLE 4.7335 2.5165 4.7767 5.0440 4.4847 

 RMLE 1.3230 1.3230 1.3230 1.3230 1.3230 

 RAURLE 1.2127 0.7413 1.2202 1.2680 1.1662 

0.95 MLE 10.5921 10.5921 10.5921 10.5921 10.5921 

 RLE 3.3890 1.0535 3.1522 5.6636 2.4171 

 AURLE 6.6049 2.6589 6.2946 8.8763 5.2217 

 RMLE 2.0985 2.0985 2.0985 2.0985 2.0985 

 RAURLE 1.4868 0.7045 1.4316 1.8598 1.2326 

0.99 MLE 52.3691 52.3691 52.3691 52.3691 52.3691 

 RLE 3.2128 0.5469 11.0650 12.1737 8.0410 

 AURLE 9.1283 1.5910 24.7708 26.5211 19.5062 

 RMLE 4.1985 4.1985 4.1985 4.1985 4.1985 

 RAURLE 1.0587 0.2943 2.3991 2.5345 1.9761 
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Table 2. The estimated SMSE values for different k, when 60n = . 

ρ  Estimator HKk  SRWk  HKBk  LWk  LSk  

0.80 MLE 1.0027 1.0027 1.0027 1.0027 1.0027 

 RLE 0.9559 0.7576 0.8381 0.9900 0.7688 

 AURLE 1.0014 0.9640 0.9860 1.0026 0.9677 

 RMLE 0.3818 0.3818 0.3818 0.3818 0.3818 

 RAURLE 0.3814 0.3698 0.3767 0.3818 0.3710 

0.90 MLE 1.9144 1.9144 1.9144 1.9144 1.9144 

 RLE 1.5371 1.1484 1.3535 1.8586 1.1580 

 AURLE 1.8685 1.7054 1.8081 1.9134 1.7111 

 RMLE 0.6081 0.6081 0.6081 0.6081 0.6081 

 RAURLE 0.5961 0.5518 0.5799 0.6079 0.5534 

0.95 MLE 3.7477 3.7477 3.7477 3.7477 3.7477 

 RLE 3.1236 1.9762 2.1164 3.4727 1.6703 

 AURLE 3.6853 3.1647 3.2627 3.7361 2.9106 

 RMLE 0.9656 0.9656 0.9656 0.9656 0.9656 

 RAURLE 0.9522 0.8360 0.8585 0.9631 0.7775 

0.99 MLE 18.4345 18.4345 18.4345 18.4345 18.4345 

 RLE 8.3450 2.8305 5.5908 12.9410 3.7151 

 AURLE 14.4989 7.0897 11.4944 17.4029 8.6919 

 RMLE 2.0647 2.0647 2.0647 2.0647 2.0647 
 RAURLE 1.6809 0.8901 1.3698 1.9668 1.0678 

 
Table 3. The estimated SMSE values for different k, when 100n = . 

ρ  Estimator HKk  SRWk  HKBk  LWk  LSk  

0.80 MLE 0.5813 0.5813 0.5813 0.5813 0.5813 

 RLE 0.5721 0.5497 0.5668 0.5784 0.5230 

 AURLE 0.5812 0.5803 0.5811 0.5813 0.5779 

 RMLE 0.2734 0.2734 0.2734 0.2734 0.2734 

 RAURLE 0.2732 0.2730 0.2731 0.2733 0.2720 

0.90 MLE 1.1084 1.1084 1.1084 1.1084 1.1084 

 RLE 0.9929 0.6402 0.9460 1.0985 0.9585 

 AURLE 1.1015 0.9746 1.0945 1.1084 1.0966 

 RMLE 0.4193 0.4193 0.4193 0.4193 0.4193 

 RAURLE 0.4170 0.3744 0.4147 0.4193 0.4154 

0.95 MLE 2.1685 2.1685 2.1685 2.1685 2.1685 

 RLE 1.8938 1.1041 1.6649 2.1269 1.8481 

 AURLE 2.1486 1.8086 2.0982 2.1681 2.1412 

 RMLE 0.6627 0.6627 0.6627 0.6627 0.6627 

 RAURLE 0.6574 0.5631 0.6437 0.6626 0.6553 

0.99 MLE 10.6602 10.6602 10.6602 10.6602 10.6602 

 RLE 5.4949 0.9743 4.8691 9.6580 5.3288 

 AURLE 8.9707 2.7172 8.4656 10.6080 8.8449 

 RMLE 1.4734 1.4734 1.4734 1.4734 1.4734 

 RAURLE 1.2608 0.4198 1.1957 1.4670 1.2446 
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the performance of the proposed estimator over some existing estimators MLE, RLE, 
AURLE and RMLE in terms of scalar mean square error. Also, five different choices of 
existing ridge parameter estimates were used to compare the estimators. The results 
show that the newly proposed estimator outperforms all the other estimators 
considered in this study under the selected values of n, ρ, and k by means of SMSE. 
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