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Abstract 
In this paper, we propose DQMR algorithm for the Drazin-inverse solution of con-
sistent or inconsistent linear systems of the form Ax b=  where N NA ×∈  is a 
singular and in general non-hermitian matrix that has an arbitrary index. DQMR al-
gorithm for singular systems is analogous to QMR algorithm for non-singular sys-
tems. We compare this algorithm with DGMRES by numerical experiments. 
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1. Introduction 
Consider the linear system  

,Ax b=                                (1) 

where N NA ×∈  is a singular matrix and ( )ind A  is arbitrary. Here ( )ind A , the 
index of A is the size of the largest Jordan block corresponding to the zero eigenvalue of 
A. We recall that the Drazin-inverse solution of (1) is the vector DA b , where DA  is 
the Drazin-inverse of the singular matrix A. For the Drazin-inverse and its properties, 
we can refer to [1] or [2]. In the important special case ( )ind A , this matrix is called the 
group inverse of A and denoted by gA . The Drazin-inverse has various applications 
in the theory of finite Markov chains [2], the study of singular differential and 
difference equations [2], the investigation of Cesaro-Neumann iterations [3], 
cryptography [4], iterative methods in numerical analysis, [5] [6], multibody system 
dynamics [7] and so forth. The problem of finding the solution of the form DA b  for 
(1) is very common in the literature and many different techniques have been developed 
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in order to solve it. 
In [6] [8] [9] [10] [11], authors presented some Krylov subspace methods [9] to solve 

singular linear system with some restriction. However, the treatment of singular linear 
inconsistent system by Krylov subspace has been proved extremely hard. In [12], Sidi 
had not put any restrictions on the matrix A and the system (1). In his paper, the 
spectrum of A can have any shape and no restrictions are put on the linear system (1). 
The only assumption is that ( )index A  is known. Although the ( )index A  of A is 
overestimated, the method is valid. 

In [12], Sidi proposed a general approach to Krylov subspace methods to compute 
Drazin-inverse solution. In addition, he presented several Krylov subspace methods of 
Arnoldi, DGCR and Lancoze types. Furthermore, in [13] [14], Sidi has continued to 
drive two Krylov subspace methods to compute DA b . One is DGMRES method, which 
is the implementation of the DGCR method for singular systems which is analogues to 
GMRES for non-singular systems. Other is DBI-CG method which is Lanczos type 
algorithm [13]. DGMRES, like, GMRES method, is a stable numerically and economical 
computationally, which is a storage wise method. DBI-CG method, also like BI-CG for 
non-singular systems, is a fast algorithm, but when we need a high accuracy, the algo- 
rithm is invalid. DFOM algorithm is another implementation of the projection method 
for singular linear systems is analogues to Arnoldi for non-singular systems. DFOM 
algorithm may be less accurate but faster than DGMRES, and more precise and slower 
than DBI-CG [15]. 

In the present paper, the Drazin-Quasi-minimal residual algorithm (DQMR here- 
after) is another implementation of the projection method for singular linear systems is 
analogues to Lanczos algorithm for non-singular systems. DGMRES algorithm, in prac- 
tice, cannot afford to run the full algorithm and it is necessary to use restart. For dif- 
ficult problems, in most cases, this results in extremely slow convergence, While DQMR 
algorithm can be implemented using only short recurrences and hence it can be com- 
puted with little work and low storage requirements per iteration. 

The outline of this paper is as follows. In Section 2, we will provide a brief of sum- 
mary of the review of the theorem and projection method in [12] which is relevant to us. 
We shall discuss the projection methods approach to solve (1) in general and DQMR 
particular. In Section 3, we will drive the DQMR method. We design DQMR when we 
set ( )ind 0A =  throughout, DQMR reduces to QMR. In this sense, DQMR is an 
extension of QMR that archives the Drazin-inverse solution of singular systems. In Sec- 
tion 4, by numerical examples, we show that the computation time and iteration number 
of DQMR algorithm is substantially less than that of DGMRES algorithm. Section 5 is 
devoted to concluding remarks. 

2. Some Basic Theorem and Projection Methods for ADb 

The method we are interested in starts with an arbitrary initial vector 0x  and generate 
sequences of vector 1 2, ,x x   according to  

( )0 1 0 0 0, ,m mx x q A r r b Ax−= + = −                   (2) 
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where ( )1mq λ−  is a polynomial in λ  of degree at most 1m − , given by  

( ) ( )1
1

1
, ind .

m a
a i

m i
i

q c a Aλ λ
−

+ −
−

=

= =∑                   (3) 

Let us define  

( ) ( )1 1
1

1 1 .
m a

a i
m m i

i
p q cλ λ λ λ

−
+

− −
=

= − = − ∑                 (4) 

We call ( )mp λ  the thm  residual polynomial since  

( ) ( )1 0 0.m m m mr b Ax I q A r p A r−= − = − =                  (5) 

Note that  

( ) ( ) ( )0 1 and 0 0, 1, 2, ,i
m mp p i a= = =                 (6) 

The condition (6) is due to Eiermann et al. [5]. 
For convenience we denote by mΠ  the class of polynomials of degree at most m and 

define  

( ) ( ) ( ){ }0 : 0 1 and 0 0, 1,2, , .i
m m m mp p p i aΠ = ∈Π = = =          (7) 

Thus, the polynomial mp  described above is in 0
mΠ . 

The projection methods of [12] are now defined by demanding that the vector a
mA r  

to be orthogonal to a given W subspace of dimension m a− . In addition, If we denote 
by W the ( )N m a× −  matrix whose columns span the subspace W, then this ortho- 
gonality demand is equivalent to 0 0aW A r∗ = . As we have 0 01

m a i a
m iir r c A r− +

=
= +∑  from 

(4), 0a
mW A r∗ =  amounts to the requirement that 1 2, , , m ac c c −  satisfy the linear system  

1
0 ,a aW A Vc W A r∗ + ∗=                      (8) 

where ( )N m aV × −∈  and m ac −∈  are given by  

[ ]T1
0 0 0 1 2| | | and , , , .a a m a

m aV A r A r A r c c c c+ −
− = =          (9) 

We see that unique solution for c exists provided det ( )1 0aW A V∗ + ≠ , and when it 
does we have ( ) 11

0 0
a a

mx x V W A V W A r
−∗ + ∗= + . 

As we choose different W, we have a different algorithm: for DGMRES, we choose  
( )1 ,aW A V+=  for DBI-CG, we choose ( ) ( ){ }2

0 0 0span , , , .
m a

W A r A r A r
−∗ ∗ ∗=   

  

In this paper, for DQMR, we choose  

( ) ( ){ }0 0 0span , , , .
m aa a aW A r A A r A A r
−∗ ∗=   

We will mention several definitions and theorems, which have projection method 
converge below. 

We will denote by ̂  the direct sum of the variant subspaces of A corresponding to 
its non-zeros eigenvalues, and by  , its invariant subspaces corresponding to its zeros 
eigenvalue. Thus, ̂  is ( )aR A , the range of aA , and   is ( )aN A , the null space 
of aA . So every vector in N  can be expressed as the sum of two vector, one in ̂  



A. Ataei 
 

107 

and other in  .  
Definition 1 [12]. Let A be singular and ( )ind A a= , and let ˆû∈  be given. Then 

a polynomial ( )p λ  will be called the minimal a—incomplete polynomial of A with 
respect to the vector û  if ( ) 0

mp λ ∈Π  and m is the smallest possible one so that  
( ) ˆ 0.p A u =   
The following theorems will ensure the success of projection method.  
Theorem 1 [12]. ( )p λ  exists and is unique. Furthermore, its degree m satisfies 

q m q a≤ ≤ + , where q is the degree of the minimal polynomial of A with respect to û .  
The following result that is the justification of the above-mentioned projection 

approach is Theorem 4.2 in [12].  
Theorem 2 Let 0 0 0ˆx x x= +  , where 0

ˆx̂ ∈  and 0x ∈ 

  , are the initial vector in the 
projection method to compute DA b . Moreover, Let also ( )P λ  the minimal 
a—incomplete polynomial of A with respect to 0ˆ

Dx A b+ , and let m be its degree. 
Finally, let mx  be the vector generated by the projection method through (2)-(8) with 

( )1det 0aW A V∗ + ≠ . Then 0
D

mx A b x= +  .  
Obviously, of Theorem 2 if ( )1det 0aW A V∗ + ≠ , the projection method will terminate 

successfully in a finite number of steps, this number being at most N. If we pick 0 0x = , 
which also forces 0 0x = , they produce the Drazine-inverse solution DA b  for (1) 
upon termination.  

Theorem 3 [14]. The vector mx  exists uniquely and unconditionally for all 0m m≤ , 

0m  being the degree of the minimal a-incomplete polynomial of A with respect to 

0
ˆˆ Dx A b− ∈ . Furthermore, ˆm m mx x x= +   with ˆˆmx ∈  and 0mx x=   for all m. 

3. DQMR Algorithm 

In this section, we will introduce a different implementation of projection method. The 
algorithm is analogous to QMR algorithm. We must note that in spite of the analogy, 
DQMR seems to be quite different from QMR, which is for non-singular systems. 

As 1
0 0

1

m a
a i

m i
i

x x c A r
−

+ −

=

= + ∑ , we start with 1 1 0 0 2

a av w A r A r= = , the lanczos  

algorithm [16] generates two sequences of vectors 1 2, , , nv v v  and 

1 2, , , , 1, 2, ,nw w w n =   that satisfy  

{ } { } ( )
{ } ( ) ( ){ } ( )

1 1
1 2 0 0 0 0

1

1 2 0 0 0 0

span , , , span , , , ;

span , , , span , , , ; .

a a a k a
k k

a ka a a a
k k

v v v A r A r A r K A A r

w w w A r A A r A A r K A A r

+ + −

+ −∗ ∗ ∗

= =

= =

 

 

 (10) 

where they are clear that ( )0; a
kK A A r  and ( )0; a

kK A A r∗  denote the Krylov subspaces  

{ } ( ){ }11 1
0 0 0 0 0 0span , , ,   and  span , , , ,

a ka a a k a a aA r A r A r A r A A r A A r
+ −+ + − ∗ ∗

   

respectively. 
If we define that N k×  matrix k̂V  by  

[ ]1 2
ˆ     ,    1, 2,k kV v v v k= =   

then, we can write for 0m m≤   
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0
ˆ , for some .m a

m m a m mx x V Cζ ζ −
−= + ∈  

Therefore, it is obvious that we need to determine mζ . Since 0
ˆ

m m a mr r AV ζ−= −  we 
have  

1 1
0 1 1

ˆ ˆ ,a a a a
m m a m m a mA r A r A V v A Vζ γ ζ+ +

− −= − = −              (11) 

where 1 0 2

aA rγ = . 
Moreover, provided that 1k q≤ − , from (11) we can write  

11 12 1, 2

21 22 2, 2 2, 3

32

2,1 2, 2

3,2 3, 2 2 1,

2 ,

1 2 3, 2

,

1,

ˆ ˆ ˆ 0 0
ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ 0

ˆ ˆ ˆ0
ˆ0

ˆ ˆ ˆ ˆ= ,
ˆ

ˆ

ˆ0 0

a

a a

a a a

a a a m a m a

m a m a

k k k m a a

m a m a

m a m a

t t t
t t t t

t
t t

t t t
t

AV V T T t
t

t

t

+

+ +

+ + +

+ + + − − −

− −

+ + +

− −

− + −

=

 

  

     

   

  

    

    

   

  

   

  

 

     1,

.

m m a+ −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (12) 

Note that ( ) ( )1ˆ m m a
mT C + × −∈ . Since the vectors 1 2 kAv Av Av  are linearly inde- 

pendent when 1k q≤ − , we have ( )ˆrank kAV k= . Since ( )1
ˆrank 1kV k+ = + , and  

( ) ( ) ( ){ }ˆ ˆrank min rank , rankk k kAV V T≤ , we also have that ( )rank kT k= . In other words,  

kT  has full rank. In additon, if we apply (12) to 1 ˆa
m aA V+
− . Provided that 1m q≤ − , 

we have:  
1 1

1 2 1

1 1

ˆ ˆ ˆ 
ˆ ˆ ˆ, .

a a a
m a m a m a m a m a m a

m m m m m m a

A V A V T A V T T

V V V T T T

+ −
− − + − − + − + −

+ − −

= =

= = ≡ 

 

Consequently, provided 1m q≤ − , from (11) we can write:  

1 1 1
ˆ ˆa

m m m mA r v V Tγ ζ+= −  

and since 1 1 1m̂v V e+= , where [ ]T 1
1 1,0, , 0 me C += ∈ , hence  

( )1 1 12 2
ˆ ˆa

m m m mA r V e Tγ ζ+= −  

If the column vectors of 1m̂V +  were orthonormal, then we would have:  

1 12 2
ˆa

m m mA r e Tγ ζ= −  

as in GMRES. Therefore, a least, squares solution could be obtained from the krylove 
space ( )0; a

mK A A r  by minimizing 1 1 2m̂e Tγ ζ−  over ζ . In the Lanczos algorithm, 
the iv ’s are not orthonormal. However, it is still a reasonable idea to minimize the 
function  

( ) 1 2m̂T e Tζ β ζ= −  
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over ζ  and compute the corresponding approximate solution 0
ˆ

m m a mx x V ζ−= + . The 
resulting solution is called the Drazin-Quasi-minimal residual (hereafter DQMR) 
approximation. Since ( )1m m

mT C + ×∈  is a tridiagonal matrix, Therefore, the 
( ) ( )1ˆ m m a

mT C + × −∈  is a matrix with 2 3a +  diagonal to form (12). 
Similar to [14], 1m̂T +  can be obtained as a simple update of m̂T  by first appending a 

row of zeros at the bottom of m̂T  and following that by appending the ( )1m + -vector 
T

, 1 1 2 , 1 2, 1
ˆ ˆ ˆ, , ,m a m a m a m a m m at t t− + − + − + − + + −    as the ( )1 thm a+ −  column as follows. 
Let us define  

( )0 ,  1, 2,k kG T k= =                          (13) 

( ) ( )1
1 ,  1, 2,  ;  1, 2,j j

k k kG T G k j j j−
−= = + + =              (14) 

where ( ) ( ) ( )1j k k j
kG C + × −∈  also ( ) ˆa

m mG T=  for each 1m a≥ + . 
Since m̂T  is tridiagonal matrix we have: 

( )

( )

1 2

02
1

1 1 0T
1

1 1

2

,
0

m m
m m

m m
m m

m

T g
T

α β
δ

β
αδ α

δ

+
+ +

+
+ +

+

 
 
   
   = =
     
  

 

 
 

where, certainly, ( ) [ ]T0 1
1 1 10 0  m

m m mg Cβ α +
+ + += ∈ , 0k  denotes the k-dimensional 

(column) zeros vector, and ( )0
1 2m mα δ+ +=  that is scalar. 

Supposed that ( )
( ) ( )

( )

1 1
11

1 1T
1 1

,  2.
s s

m ms
m s

m s m

T g
T m s

O α

+ +
++

+ +
− − +

 
 = ≥ +
  

                  (15) 

( ) ( ) ( ) ( )1 0
1 1,s s s

m m m m mg T g gα+
+ += +                       (16) 

From [14], we have: ( ) ( ) ( )1 0
1 1 .s s

m m mα α α+
+ +=                         (17) 

Equation (16) can be simplified as follows:  

( )

( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

1 1, 2 2,
1 2

1, 2 1, 2 2, 3 3,2 2

3 2, 3 2, 3 3, 4 4,

, 1, ,

1 ,

0

0

0 0

s s
m m

s s s s
m m m m

s s s s
s m m m m

m m
m

s s s
m m m m m m m m m

sm
m m m

g g

g g g g

g g g g
T g

g g g

g

α βα β
δ α βδ α

δ δ α β
β
α δ α
δ δ

−

+

 +   
     + +
     
    + + = =     
     
     +       ⋅ 

 

 

  

  
 

  

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

2 2,
1 1,

3 3,
2 1, 2 2,

3 2, 3 3,
,

,
1, ,

1 ,

0

0
0

0

s
s m
m s

s s m
m m

s s
m sm

m m m
s

s s m m m
m m m m m m

s
m m m

g
g

gg g
g g

g

gg g
g

β
α

βδ α
δ α

β

αδ α
δ

−

+





 ⋅   ⋅  
     ⋅⋅   ⋅  
     ⋅ ⋅     = + + ⋅     
     ⋅⋅     ⋅
     ⋅        

 







   (18) 
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By using the Hadamard product Equation (18) is reduced. For this purpose, we first 
introduce the concepts of Hadamard matrix product.  

Definition 2 Let A and B be m n×  matrices with entries in C. The Hadamard 
product of A and B is defined by as follows 

11 11 12 12 1 1

1 1 2 2

.
n n

m m m m mn mn

a b a b a b
A B

a b a b a b

 
 =  
 
 



   



 

Let us denote  

[ ]T2 3 1   ,m mδ δ δ +∆ =   [ ]T1 2   ,m mα α α α=   [ ]T2 3   ,m mβ β β β=   

( ) ( ) ( ) ( ) T

1, 2, ,   ,s s s s
m m m m mg g g g =    ( ) ( ) ( ) ( ) T

2, 3, ,   .s s s s
m m m mm

g g g g =    

Now, we can be simplified (18) as follows 

( )
( )

( )
( )

0
0

0 0

s
m ms

s m m
m m s

m m

g
gT g

g

β
α

 
    

= + +     
∆      

  







           (19) 

For solution system  

1m̂T eζ β=                            (20) 

We must reduce the band matrix, m̂T , into upper triangular by using Givens rotation. 

m̂T  matrix has bandwidth 2 3a + . To reduce the matrix m̂T  to a upper triangular 
matrix we need to ( ) ( )1m a a− +  Givens rotations matrix. We denote with 0 1g eβ=  
right-hand side (20), and we multiply both sides of (20) from left by Givens rotations. 
To update the mth column of matrix m̂T , we must first multiply the previous Givens 
rotations by this column and then we annihilate the main subdiagonal elements with 
appropriate rotations. It should be noted that number of the previous rotations is 

( ) ( )min 1, 2 2 1m a a− + × + , and the number of the rotations to annihilate the main 
subdiagonal elements is ( )1a + . Finally, the mth end step we have an upper triangular 
matrix as follows  

1,1 1,2 1,2 3

2,2 2,2 3 2,2 4

2 3,2 3

2 4,2 4 3 2,

1,

,

ˆ ˆ ˆ 0 0
ˆ ˆ ˆ0 0

ˆ 0
ˆ ˆ

ˆ

ˆ
ˆ

0

0 0

a

a a

a a

a a m a m a

m

m a m a

m a m a

r r r
r r r

r
r r

R
r
r

+

+ +

+ +

+ + − − −

− − −

− −

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

  

  

     

  



  

 







           (21) 
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Generally, if we define ( )m a−Ω  the product of matrices ( )
1,

m
i i+Ω , then  

( ) ( ) ( ) ( )
1, , 1 1,  , 1, , ,m a m a m a m a

m a m a m m m m i m m m a− − − −
− + − − +Ω = Ω Ω Ω = + −   

where ( )
1,

m
i i+Ω  be the Givens matrices use to transform m̂T  into an upper triangular 

ˆ
mR  and the vector of ( ) ( )1

m a
mg eγ−= Ω . Finally , the approximate solution is given by  

1
0

ˆ ,m m a m a m ax x V R g−
− − −= +  

where m aR −  and m ag −  are obtained by removing the 1a +  row of the matrix ˆ
mR  

and right-hand side mg . The approximation solution mx  can be updated at each step 
by the relation,  

1 .m m m a m ax x p γ− − −= +                         (22) 

Since if we assume [ ]1m a m aP p p− −= 
, then we have: 

1ˆ .m a m a m aP V R−
− − −=  

Consequently,  

[ ] [ ]1 1 ,m a m a m ap p R v v− − −= 
 

and  
1

, ,
3 2

ˆ ˆ ,
m a

m a m a i i m a m a m a
i m a

p v p r r
− −

− − − − −
= − −

 = − 
 

∑  

where m ap −  is the last column of m aP − . Therefore, it can be written  

[ ] 1
0 0 1, m a

m m a m a m a m a
m a

g
x x P g x P p

γ
− −

− − − − −
−

 
= + = +  

 
 

or  

1 .m m m a m ax x p γ− − −= +                         (23) 

Thus, mx  can be updated easily at each step, via the relation (23) using 1mx − . 
This gives the following algorithm, which we call the Drazin-QMR for Drazin- 

inverse solution of singular nonsymmetric linear equations. 
Algorithm 4.1 DQMR Algorithm 

0 0 0 01.      =   .aPick x and compute r b Ax and A r−  

1 0 1 0 12
2.   =  a   = ( ) / γ .a aCompute A r nd set v A rγ  
3.   = 1,2,3, , .For i m  

1 1 1 14.  , ,  a  ,i i i i iCompute nd v wα δ β+ + + +  as in ([17], Algorithm 7.1). 

( 1)5.   = 1,2, ,  f      a  :n k k k
kkFor k m orm the matrices V R nd T R× + ×∈ ∈



  

1 2

2 2 3

3

1 2

1

0 0

0 0
     = [    ] a  = .

0 0

kk k m

m

m

V v v v nd T

α β
δ α β

δ
β
α
δ +

 
 
 
 
 
 
 
 
 
  

 

 

 



   

 


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16.     =   b   m m m m aCompute the matrix T T T T y using− −


 (15).  

7.       , . ,mUpdate the QR factorization of T i e


 

18.  = min ( 1,2 2).Set i m a− +  

( )
19.    , = : 1 t   ( )th   .i

mApply i i m a o the m a column of TΩ − + −


 
10.  = 1: 1.For i a +  

2 , 111.     , ,     .m a
i i m i m iCompute the rotation coefficients s c of rotation matrix −

+ − + −Ω
 

( )
2 , 112.      ( )th    a  .m a

mm i m i mApply rotation to the m a column of T nd g−
+ − + −Ω −



 

13. EndFor. 

1

, ,
= 3 2

14.    = ( ) / .
m a

i m a m a m am a m a i
i m a

Compute p v p t t
− −

− − −− −
− −

− ∑
 

 

115.    = .m m m a m aCompute x x p γ− − −−  

16. End Do. 

4. Numerical Examples 

In this section, we will compute the linear system Ax b=  by discretization Poisson 
equation with Neumann boundary conditions:  

( ) ( ) ( ) [ ] [ ]

( ) ( )

2 2

2 2 , , , , 0,1 0,1

, , , .

u x y f x y x y
x y

u x y x y x y
n

ϕ

 ∂ ∂
+ = ∈Ω = ×  ∂ ∂ 

∂ = ∈∂Ω∂

 

This linear system has also been computed by Sidi [14] for testing DGMRES 
algorithm. The problem has also been considered by Hank and Hochbruck [18] for 
testing the Chebyshev-type semi-iterative method. The numerical computations are 
performed in MATLAB (R213a) with double precision. The results were obtains by 
running the code on an Intel (R) Core (TM) i7-2600 CPU Processor running 3.40 
GHz with 8 GB of RAM memory using Windows 7 professional 64-bit operating 
system. The initial vector 0x  is the zero vector. All the tests were stopped as soon as  

8Relative Error 10 .
D

n

D

x A b

A b
−∞

∞

−
= ≤  

Let M be an odd integer, we discretize the Poisson equation on a uniform grid of 
mesh size 1h M=  via central differences, and then by taking the unknowns in the 
red-black order we obtain the system Ax b= , where the ( ) ( )2 21 1M M+ × +  non- 
symmetric matrix A is as follows  



A. Ataei 
 

113 

1

2

1

2

1

2

2

1

2

1

4   2
4   

  
   

  
  

 4
4 2

2 4   
4   

  
 

I o o T I o o
o I I T I o

o I T I o
o I T I o

o
I o o I T I

o o I o o I T
A

T I o o I o o
I T I o o I

o I T I o
o I T I o

−
− −

− −
− −

− −
−

=
−

− −
− −

− −

        

  

     

      

           

         

  

        

        

  

     

   

2

1

.

 
  

  
 4

2 4

o
o I T I I o

o o I T o o I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 − 

  

           

         

  

        

 (24) 

Here, I and 0 denote, respectively, the ( ) ( )1 2 1 2M M+ × +  identity and zero 
matrices and the ( ) ( )1 2 1 2M M+ × +  matrices 1T  and 2T  are given by 

1 2

2 1 1
1 1 1

,        .
1 1 1
1 1 2

o o o o
o

T To o
o

o o o o

− − −   
   − − −   
   = =
   

− − −   
   − − −   

  

    

       

  

 

 

The numerical experiment was performed for 31,63M = . 
It should be noted A is singular with 1D null space spanned by the vector  
[ ]T1, ,1e =  . Furthermore, ( )ind 1A = , as mentioned in [13] [14] [15] [18]. Even if 

continues problem has a solution, the discretized problem need not be consistent. In 
the sequel we consider only the Drazin-inverse solution of the system for arbitrary right 
side b, not necessarily related to f and ϕ . 

 We first construct a consistent system with the known solution ( )ŝ R A∈  via 
ŝ Ay= , where [ ]T0, , 0,1y =  . Then we perturb ˆAs , the right-hand side of  

ˆˆAx As b= = , with a constant multiple of the null space vector e and we obtain the 
right-hand side  

2

ˆ .eb b
e

δ= +  

Consequently the system 
2

ˆ eAx b
e

δ= +  is solved for x. The perturbation para-  

meter δ  is selected as 10−2 in our experiments. The solution we intend to obtain is the 
vector ŝ , whose components are zeros except  

( )2 2 2 2ˆ ˆ ˆ ˆ ˆ2 2 1 2 4
ˆˆ ˆ ˆ ˆ1, 1, 2, 4, where 1 2.

M M M M M
s s s s M M

− −
= − = − = − = = +  

In Table 1, Table 2, we give the number of iterations (Its), the CPU time (Time)  
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Table 1. Application of DQMR implementation to the consistent singular system. 

Size of A  1024 × 1024  4096 × 4096   

Method Its Time RE Its Time RE 

DQMR 155 0.61 5.9674e−09 267 7.39 8.8234e−09 

DGMRES 165 0.88 3.0294e−09 307 10.89 8.1578e−09 

 
Table 2. Application of DQMR implementation to the inconsistent singular system. 

Size of A  4096 × 4096  16384 × 16384   

Method Its Time RE Its Time RE 

DQMR 155 0.53 5.9674e−09 267 6.88 8.8234e−09 

DGMRES 165 0.81 3.0294e−09 307 10.34 8.1578e−09 

 
required for convergence, the relative error (RE), for the DGMRES and DQMR methods. 
As shown in Table 1, Table 2 the DQMR algorithm is effective and less expensive than 
the DGMRES algorithm. 

5. Conclusion 

In this paper, we presented a new method, called DQMR, for Drazin-inverse solution of 
singular nonsymmetric linear systems. The DQMR algorithm for singular systems is 
analogous to the QMR algorithm for non-singular systems. Numerical experiments indi- 
cate that the Drazin-inverse solution obtained by this method is reasonably accurate, 
and its computation time is less than that of solution obtained by the DGMRES method. 
Thus, we can conclude that the DQMR algorithm is a robust and efficient tool to com- 
pute the Drazin-inverse solution of singular linear systems.  
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