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Abstract 
In this paper, we study the longtime behavior of solution to the initial boundary val-
ue problem for a class of strongly damped Higher-order Kirchhoff type equations: 

( ) ( ) ( ) ( )
2qm mm

tt tu u D u u g u f x+ −∆ + −∆ + = . At first, we prove the existence and 

uniqueness of the solution by priori estimation and the Galerkin method. Then, we 
obtain to the existence of the global attractor. At last, we consider that the estimation 
of the upper bounds of Hausdorff and fractal dimensions for the global attractors are 
obtained. 
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1. Introduction 

In this paper, we are concerned with the existence of global attractor and Hausdorff and 
Fractal dimensions estimation for the following nonlinear Higher-order Kirchhoff-type 
equations:  

( ) ( ) ( ) ( ) ( ) [ )
2

, , 0, ,
qm mm

tt tu u D u u g u f x x t+ −∆ + −∆ + = ∈Ω× +∞         (1.1) 

( ) ( ) ( ) ( )0 1,0 , ,0 , ,tu x u x u x u x x= = ∈Ω                       (1.2) 

( ) ( ), 0, 0, 1, , 1, , 0, ,
i

i

uu x t i m x t
v
∂

= = = − ∈∂Ω ∈ +∞
∂

               (1.3) 

How to cite this paper: Gao, Y.L., Sun, 
Y.T. and Lin, G.G. (2016) The Global At-
tractors and Their Hausdorff and Fractal Di- 
mensions Estimation for the Higher-Order 
Nonlinear Kirchhoff-Type Equation with 
Strong Linear Damping. International Jour- 
nal of Modern Nonlinear Theory and Appli- 
cation, 5, 185-202. 
http://dx.doi.org/10.4236/ijmnta.2016.54018  
 
Received: October 10, 2016 
Accepted: November 20, 2016 
Published: November 23, 2016 
 
Copyright © 2016 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/ijmnta
http://dx.doi.org/10.4236/ijmnta.2016.54018
http://www.scirp.org
http://dx.doi.org/10.4236/ijmnta.2016.54018
http://creativecommons.org/licenses/by/4.0/


Y. L. Gao et al. 
 

186 

where 1m >  is an integer constant, and 0q >  is a positive constant. Moreover, Ω  
is a bounded domain in nR  with the smooth boundary ∂Ω  and v is the unit outward 
normal on ∂Ω . ( )g u  is a nonlinear function specified later. 

Recently, Marina Ghisi and Massimo Gobbino [1] studied spectral gap global solutions 
for degenerate Kirchhoff equations. Given a continuous function [ ) [ ): 0, 0,m +∞ → +∞ , 
they consider the Cauchy problem:  

( ) ( )( ) ( ) ( ) [ )2
, , d , 0, , 0, ,ttu t x m u t x x u t x t x T

Ω
+ ∇ ∆ = ∀ ∈Ω×∫          (1.4) 

( ) ( )0 10 , 0 ,tu u u u= =                          (1.5) 

where nRΩ ⊆  is an open set and u∇  and u∆  denote the gradient and the Lapla-
cian of u with respect to the space variables. They prove that for such initial data 
( )0 1,u u  there exist two pairs of initial data ( ) ( )0 1 0 1ˆ ˆ, , ,u u u u  for which the solution is 
global, and such that 0 0 0 1 1 1ˆ ˆ, .u u u u u u= + = +  

Yang Zhijian, Ding Pengyan and Lei Li [2] studied Longtime dynamics of the Kir-
chhoff equations with fractional damping and supercritical nonlinearity:  

( ) ( ) ( ) ( )2 , , 0,tt tu M u u u f u g x x tα− ∇ ∆ + −∆ + = ∈Ω >              (1.6) 

( ) ( ) ( ) ( )0 10, ,0 , ,0 ,tu u x u x u x u x∂Ω = = =                   (1.7) 

where 
1 ,1
2

α  ∈ 
 

, Ω  is a bounded domain NR  with the smooth boundary ∂Ω ,  

and the nonlinearity ( )f u  and external force term g will be specified. The main re-
sults are focused on the relationships among the growth exponent p of the nonlinearity 
( )f u  and well-posedness. They show that (i) even if p is up to the supercritical range,  

that is, 
( )

41
4

Np
N

α
α +

+
≤ <

−
, the well-posedness and the longtime behavior of the so- 

lutions of the equation are of the characters of the parabolic equation; (ii) when  

( ) ( )
4 4

4 4
N Np
N N

α
α + +

+ +
≤ <

− −
, the corresponding subclass G of the limit solutions exists  

and possesses a weak global attractor. 
Yang Zhijian, Ding Pengyan and Liu Zhiming [3] studied the Global attractor for the 

Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity:  

( ) ( ) ( ) ( )2 2 in ,tt tu u u u u f u h xσ φ +− ∆ ∆ − ∆ ∆ + = Ω×            (1.8) 

( ) ( ) ( ) ( ) ( )0 1, 0, ,0 , ,0 , .tu x t u x u x u x u x x
∂Ω

= = = ∈Ω              (1.9) 

where Ω  is a bounded domain in NR  with the smooth boundary ∂Ω , ( )sσ , ( )sφ  
and ( )f s  are nonlinear functions, and ( )h x  is an external force term. They prove 
that in strictly positive stiffness factors and supercritical nonlinearity case, there exists a 
global finite-dimensional attractor in the natural energy space endowed with strong 
topology. 

Li Fucai [4] studied the global existence and blow-up of solutions for a higher-order 
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nonlinear Kirchhoff-type hyperbolic equation:  

( ) ( )
2

d , , 0,
q

r pmm
tt t tu D u x u u u u u x t

Ω
+ −∆ + = ∈Ω >∫             (1.10) 

( ), 0, 0, 1, 2, , 1, , 0,
i

i

uu x t i m x t
v
∂

= = = − ∈∂Ω >
∂

               (1.11) 

( ) ( ) ( ) ( )0 1,0 , ,0 ,tu x u x u x u x= =                     (1.12) 

where 1, , , 0m p q r≥ ≥ , Ω  is a bounded domain nR , with a smooth boundary ∂Ω  
and a unit outer normal v. Setting ( ) ( )

( )2 12 2

22 2

1 1 1 .
2 2 1 2

q pm
t pE t u D u u

q p
+ +

+
= + −

+ +
 

Assume that p satisfies the condition:  

2 , for 2 ; 0, for 2 .
2

p N m p N m
N m

≤ > > ≤
−

             (1.13) 

Their main results are the two theorems: 
Theorem 1. Suppose that p r≤  and condition (1.13) holds. Then for any initial 

data ( ) ( ) ( ) ( )2
0 1 0 0, ,m m mu u H H H∈ Ω ∩ Ω × Ω  the solution of (1.10) - (1.12) exists glo-

bally. 
Theorem 2. Suppose that { }max , 2p r q>  and condition (1.12) holds. Then for any 

initial data ( ) ( ) ( ) ( )2
0 1 0 0, ,m m mu u H H H∈ Ω ∩ Ω × Ω  the solution of (1.10) - (1.12) blows 

up at finite time in 2pL +  norm provided that ( )0 0E < . 
Li Yan [5] studied The Asymptotic Behavior of Solutions for a Nonlinear Higher 

Order Kirchhoff Type Equation:  

( ) ( ) ( ) ( )
2

d 0, in 0, ,
q

mm
tt tu D u x u u g u Qβ

Ω
+ −∆ + + = = Ω× +∞∫        (1.14) 

( ) ( ), 0, 0, 1, 2, , 1, on 0, ,
i

i

uu x t i m
v
∂

= = = − Σ = Γ× +∞
∂

             (1.15) 

( ) ( ) ( ) ( )0 1,0 , ,0 , in ,tu x u x u x u x x= = ∈Ω                  (1.16) 

where Ω  is an open bounded set of ( )1nR n ≥  with smooth boundary Γ  and the 
unit normal vector. The function 1g C∈  satisfies the following conditions:  

( ) ( ) ( )2 0
lim inf 0, d ;

s

s

G s
G s g r r

s→∞
≥ = ∫                    (1.17) 

( )
lim inf 0,
s

g s

s γ→∞

′
=                          (1.18) 

where ( ) ( ) ( )0 1,2 ,0 2 3 , 0 4n n nγ γ γ≤ < +∞ = ≤ < = = ≥ . Furthermore, there exists 

1 0C >  such that  

( ) ( )1
2lim inf 0.

s

sg s C G s
s→∞

−
≥                      (1.19) 

At last, Li Yan studied the asymptotic behavior of solutions for problem (1.14) - 
(1.16). 

For the most of the scholars represented by Yang Zhijian have studied all kinds of 
low order Kirchhoff equations and only a small number of scholars have studied the 
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blow-up and asymptotic behavior of solutions for higher-order Kirchhoff equation. So, 
in this context, we study the high-order Kirchhoff equation is very meaningful. In order 
to study the high-order nonlinear Kirchhoff equation with the damping term, we bor-
row some of Li Yan’s [5] partial assumptions (2.1) - (2.3) for the nonlinear term g in 
the equation. In order to prove that the lemma 1, we have improved the results from 
assumptions (2.1) - (2.3) such that 20 1C< ≤ . Then, under all assumptions, we prove  
that the equation has a unique smooth solution ( ) ( ) ( ) ( )( )2

0, 0, ; m m
tu u L H H∞∈ +∞ Ω × Ω   

and obtain the solution semigroup ( ) ( ) ( ) ( ) ( )2 2
0 0: m m m mS t H H H HΩ × Ω → Ω × Ω  has 

global attractor  . Finally, we prove the equation has finite Hausdorff dimensions and 
Fractal dimensions by reference to the literature [7]. 

For more related results we refer the reader to [6] [7] [8] [9] [10]. In order to make 
these equations more normal, in section 2 and in section 3, some assumptions, nota-
tions and the main results are stated. Under these assumptions, we prove the existence 
and uniqueness of solution, then we obtain the global attractors for the problems (1.1) - 
(1.3). According to [6] [7] [8] [9] [10], in section 4, we consider that the global attractor 
of the above mentioned problems (1.1) - (1.3) has finite Hausdorff dimensions and 
fractal dimensions. 

2. Preliminaries 

For convenience, we denote the norm and scalar product in ( )2L Ω  by .  and ( ).,. ; 
( )f f x= , ( )p pL L= Ω , ( )k kH H= Ω , ( )0 0

k kH H= Ω , 2L⋅ = ⋅ , .pp L⋅ = ⋅  
According to [5], we present some assumptions and notations needed in the proof of 

our results. For this reason, we assume nonlinear term ( ) ( )1g u C∈ Ω  satisfies that 
(H1) Setting ( ) ( )

0
d ,

s
G s g r r= ∫  then  

( )
2lim inf 0;

s

G s
s→∞

≥                               (2.1) 

(H2) If  

( )
lim sup 0,rs

g s

s→∞

′
=                              (2.2) 

where ( ) ( ) ( )0 1,2 ,0 2 3 , 0 4 .r n r n r n≤ < +∞ = ≤ < = = ≥  
(H3) There exist constant 0 0C > , such that  

( ) ( )0
2lim inf 0.

s

sg s C G s
s→∞

−
≥                          (2.3) 

(H4) There exist constant 1 0C > , such that  

( ) ( )1 1 ,pg s C s≤ +                             (2.4) 

( ) ( )1
1 1 ,pg s C s −′ ≤ +                            (2.5) 

where 1
2

np
n m

≤ ≤
−

; 
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For every 0γ > , by (H1)-(H3) and apply Poincaré inequality, there exist constants 
( ) 0C γ > , such that  

( ) ( ) ( )
2

0, ,m mJ u D u C u Hγ γ+ + ≥ ∀ ∈ Ω                   (2.6) 

( )( ) ( ) ( ) ( )
2

2, 0, ,m mg u u C J u D u C u Hγ γ− + + ≥ ∀ ∈ Ω             (2.7) 

where ( ) ( ) 2d ,0 1J u G u x C
Ω

= < ≤∫  is independent of γ . 
Lemma 1. Assume (H1)-(H3) hold, and ( ) ( ) ( ) ( ) ( )2 2

0 1 0, ,mu u H L f x L∈ Ω × Ω ∈ Ω . 
Then the solution ( ),u v  of the problem (1.1) - (1.3) satisfies 
( ) ( ) ( ) ( )( )2

0, 0, ; ,mu v L H L∞∈ +∞ Ω × Ω  and  

( ) ( )2
2

2 2 2 1

2

0 e 2 1 .
1

C tm q qC qD u v y
C q

ε

ε
− + ++ ≤ + + −

+



            (2.8) 

where tv u uε= + , 
( )2

2 1 211

1

2 16 21 4 1
0 min , ,

2 41 2

mmm

m

C Cλλλ
ε

λ

 + + − −+ − < <  
+  

, 1λ   

is the first eigenvalue of −∆  in ( )1
0H Ω , and 

( ) ( ) ( )
2 2 22

1 0 0 0 0 2
10 2 2

1 1
qm m qy u u D u D u J u C

q q
ε ε γ

+
= + − + + + +

+ +
, 

( ) ( )2
1 2 22

1 2 2
1

qwC f C q C C
q

ε γ ε ε γ
ε

= + + + +
+

 , 1
1 0
2 2 m

εγ ε
λ

= − − > , 2
1 0

2
εγ −

= > , 

( ){ }2
1min 2 2 2 , 1mw qλ ε ε ε= − − + . Thus, there exists 0E  and ( )0 0 0t t= Ω > , such 

that  

( ) ( ) ( ) ( )2
0

22 2
0 0, , .m

m
H L

u v D u v E t t
Ω × Ω

= + ≤ >                (2.9) 

Proof. We take the scalar product in 2L  of equation (1.1) with tv u uε= + . Then  

( ) ( ) ( )( ) ( )( )2
, , .

qm mm
tt tu u D u u g u v f x v+ −∆ + −∆ + =           (2.10) 

After a computation in (2.10), we have  

( ) ( )2 2 21 d, , ,
2 dttu v v v u v

t
ε ε= − +                    (2.11) 

( )( ) 2 2 22d, ,
2 d

m m m m
tu v D u D v D u

t
ε ε−∆ = − + −              (2.12) 

( )( ) ( )
2 2 2 2 21 d, ,

2 1 d
q q qmm m mD u u v D u D u

q t
ε

+ +
−∆ = +

+
          (2.13) 

( )( ) ( ) ( )( )d, , .
d

g u v J u g u u
t

ε= +                     (2.14) 

Collecting with (2.11) - (2.14), we obtain from (2.10) that  

( ) ( )

( )( ) ( )( )

2 2 22 2 2

2 2 2 22

1 d 1 2 ,
2 d 1

, , .

qm m

qm m m

v D u D u J u v u v
t q

D v D u D u g u u f x v

ε ε ε

ε ε ε

+

+

 
− + + − + + 

+ − + + =

        (2.15) 
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Since tv u uε= +  and  

( )2
2 1 211

1

2 16 21 4 1
0 min , ,

2 41 2

mmm

m

C Cλλλ
ε

λ

 + + − −+ − < <  
+  

, by using Hölder in- 

equality Young’s inequality and Poincaré inequality, we deal with the terms in (2.15) 
one by one as follow:  

( )
2 2 2 222 2 22

1

, ,
2 2 22

m
mu v u v D u vε ε ε εε

λ
≥ − − ≥ − −             (2.16) 

2 2
1 .m mD v vλ≥                            (2.17) 

By (2.7), we can obtain  

( )( ) ( ) ( )
2 22

2 1
1

, ,
2 2

m
mg u u C J u D u Cε εε ε ε ε γ

λ
 

≥ − − − − 
 

          (2.18) 

where 1
1

1 0.
2 2 m

εγ ε
λ

= − − >  

Because of ( ) ( )2f x L∈ Ω , we can obtain  

( )( )
2 2

2
2, .

22
f

f x v f v vε
ε

≤ ≤ +                    (2.19) 

By (2.16) - (2.19), it follows from that  

( ) ( )

( ) ( )

2 2 22 22
1

2 2 2 2
2 12

d 1 2 2 2 2
d 1

12 2 2 .

qm m m

qm m

v D u D u J u v
t q

D u D u C J u f C

ε λ ε ε

ε ε ε ε γ
ε

+

+

 
− + + + − − + 

− + + ≤ +

     (2.20) 

By Young’s inequality and 1

1

0 1
1 2

m

m

λ
ε

λ
< < <

+
, we have  

( )
2 2 2 21 1 0,

1 1
qm m mqD u D u D u

q q
ε ε

+
− + ≥ − ≥

+ +
             (2.21) 

2 2 2
0.

qm mD u D u qε ε ε
+
− + ≥                     (2.22) 

By (2.22), we get  

( ) ( )

( ) ( )

( ) ( )

( )

( )

2 2 222
1 2

2 222
1

2 2 2

2

2 22
2

2 2 22
2

2 2 2 2 2

12 2 2 1
1

2

1 2
1

1 2 ,
1

qm m m

qm m

qm m

qm

qm m

v D u D u C J u q

v q D u
q

D u D u q C J u

w v D u C J u
q

w v D u D u C J u
q

λ ε ε ε ε ε ε

λ ε ε ε

ε ε ε ε

ε

ε ε

+

+

+

+

+

− − − + + +

 
= − − + +  + 

+ − + +

 
≥ + + + 

 
≥ − + + + 

        (2.23) 

where ( ){ }2
1min 2 2 2 , 1 .mw qλ ε ε ε= − − +  
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By (2.21) and substituting (2.23) into (2.20), we receive  

( )

( )

( )

2 2 22

2 2 22
2

2
12

d 1 2
d 1 1

1 2
1 1

1 2 .
1

qm m

qm m

qv D u D u J u
t q q

qw v D u D u C J u
q q

qwf C q
q

ε

ε ε

ε γ ε
ε

+

+

 
− + + + + + 

 
+ − + + + + + 

≤ + + +
+

           (2.24) 

Since 
( )2

2 1 22 16 2
0

4

mC Cλ
ε

+ + − −
< <  and 20 1C< < , we get  

( ){ }2
1 2min 2 2 2 , 1 .mw q Cλ ε ε ε ε= − − + ≥                      (2.25) 

By (2.6) and (2.21), we have  

( ) ( )

( ) ( ) ( )

2 2 2

2

2

2

1 2 2
1 1

1 2 2 0,

qm m

m

qD u D u J u C
q q

D u J u C

ε γ

ε γ

+
− + + + +

+ +

≥ − + + ≥

              (2.26) 

where 2
1 0

2
εγ −

= > . 

Combining with (2.25) and (2.26), formula (2.24) into  

( ) ( )

( ) ( )

( ) ( )

2 2 22
2

2 2 22
2 2

2
1 2 22

d 1 2 2
d 1 1

1 2 2
1 1

1 2 2 .
1

qm m

qm m

qv D u D u J u C
t q q

qC v D u D u J u C
q q

qwf C q C C
q

ε γ

ε ε γ

ε γ ε ε γ
ε

+

+

 
− + + + + + + 

 
+ − + + + + + + 

≤ + + + +
+

        (2.27) 

We set ( ) ( ) ( )
2 2 22

2
1 2 2

1 1
qm m qy t v D u D u J u C

q q
ε γ

+
= − + + + +

+ +
. Then, (2.27) 

is simplified as  

( ) ( )2
d ,
d

y t C y t C
t

ε+ ≤                          (2.28) 

where ( ) ( )2
1 2 22

1 2 2 .
1

qwC f C q C C
q

ε γ ε ε γ
ε

= + + + +
+

  

From conclusion (2.26), we know ( ) 0y t ≥ . So, by Gronwall’s inequality, we obtain  

( ) ( ) 2

2

0 e ,C t Cy t y
C

ε

ε
−≤ +



                      (2.29) 

where ( ) ( ) ( )
2 2 22

1 0 0 0 0 2
10 2 2 .

1 1
qm m qy u u D u D u J u C

q q
ε ε γ

+
= + − + + + +

+ +
 

By generalized Young’s inequality, we have 
( )

1
2 2 2

1

1 2 .
12 1

q
qm m q

q

qD u D u
qq

+
+

+≤ +
++

 

Then, we get  

( )

2 2 1
2 2 211 2 2 .

1 1

q q
qm q m q qD u D u

q q

+ +
+ +≥ −

+ +
               (2.30) 
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By (2.26) and (2.30), we have  

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
{ }( ) ( )

( ) ( )

2

2

2

2

2 2 22
2

2 22 1

2 1

2

22 1 2 1

221 2 1

22 2 1

1 2 2
1 1

1 2 1

2 2 2
1 1

2 1 1 2
1

min 1,2 1 1 2
1

1 2 .
1

qm m

m q m

q q

q m q q

q m q q

m q q

qy t v D u D u J u C
q q

v D u D u

q q J u C
q q

qv D u
q

qv D u
q

qv D u
q

ε γ

ε

γ

+

+

+ +

+ + +

+ + +

+ +

= − + + + +
+ +

≥ + − + −

− + + +
+ +

≥ + − + −
+

≥ − + + −
+

= + + −
+

       (2.31) 

Combining with (2.29) and (2.31),we obtain  

( ) ( )2
2

2 2 2 1

2

0 e 2 1 ,
1

C tm q qC qD u v y
C q

ε

ε
− + ++ ≤ + + −

+



           (2.32) 

Then,  

( ) ( ) ( ) ( )2

2
0

22 2 2 1

2

lim , 2 1 .
1m

m q q
H Lt

C qu v D u v
C qε

+ +

Ω × Ω→∞
= + ≤ + −

+



        (2.33) 

So, there exist 0E  and ( )0 0 0t t= Ω > , such that  

( ) ( ) ( ) ( )2
0

22 2
0 0, , .m

m
H L

u v D u v E t t
Ω × Ω

= + ≤ >              (2.34) 

Lemma 2. In addition to the assumptions of Lemma 1, (H1) - (H4) hold. If (H5):  
( ) ( )0

mf x H∈ Ω , and ( ) ( ) ( )2
0 1 0, m mu u H H∈ Ω × Ω . Then the solution ( ),u v  of the pro- 

blems (1.1) - (1.3) satisfies ( ) ( ) ( ) ( )( )2
0, 0, ; m mu v L H H∞∈ +∞ Ω × Ω , and  

( )
1

2

322 22

1

1
0

e .

m

tm m
D f Cz

D u D v
T T

α ε
α

−
+

+ ≤ +               (2.35) 

where ( ) ( ) ( )m m m
tv u uε−∆ = −∆ + −∆ , 1λ  is the first eigenvalue of −∆  in ( )1

0H Ω , 

and ( ) ( )2 2 22
1 0 0 00

qm m m mz D u D u D u D uε ε= + + − ,  { }2
1 1min 2 2 ,m Mα λ ε ε= − − ,  

{ }2

0
min 1,inf

qm

t
T D u ε

≥
= − . Thus, there exists 1E  and ( )1 1 0t t= Ω > , such that  

( ) ( ) ( ) ( )2
0

2 22 2
1 1, , .m m

m m
H H

u v D u D v E t t
Ω × Ω

= + ≤ >             (2.36) 

Proof. Taking L2-inner product by ( ) ( ) ( )m m m
tv u uε−∆ = −∆ + −∆  in (1.1), we have  

( ) ( ) ( ) ( )( ) ( ) ( )( )2
, , .

qm m m mm
tt tu u D u u g u v f x v+ −∆ + −∆ + −∆ = −∆       (2.37) 

After a computation in (2.37) one by one, as follow  

( )( ) ( )2 2 2

2 22 2 2 22

1

1 d, ,
2 d
1 d ,
2 d 22

m m m m m
tt

m m m m
m

u v D v D v D u D v
t

D v D v D u D v
t

ε ε

ε εε
λ

−∆ = − +

≥ − − −
        (2.38) 
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( ) ( )( ) 2 2 22 2 2 2d, ,
2 d

m m m m m
tu v D v D u D u

t
ε ε−∆ −∆ = − −            (2.39) 

( ) ( )( )
( )

2

22
2 2 2 2 22 2

,

1 d d .
2 d 2 d

q m mm

m
q q qm m m m m

D u u v

D u
D u D u D u D u D u

t t
ε

−∆ −∆

= − +

       (2.40) 

By Young’s inequality, we get  

( ) ( )( ) ( )
( )

22 2
2, .

2 2

m
m m

D vg u
g u v g u D v−∆ ≥ − ≥ − −            (2.41) 

Next to estimate ( ) 2
g u  in (2.41). By (H4): ( ) ( )1 1 pg s C s≤ +  and Young’s in-

equality, we have  

( ) ( )
( )
( )

( )2

22 2
1

22 2 2
1 1 1

22 2
1 1

22 2
1 1

1 d

2 d

2 2 d

2 2 .p

p

p p

p

p
L

g u C u x

C C u C u x

C C u x

C C u

Ω

Ω

Ω

Ω

≤ +

≤ + +

≤ +

≤ Ω +

∫

∫

∫
                  (2.42) 

By 1
2

np
n m

≤ ≤
−

 and Embeding Theorem, then ( ) ( )2
0
m pH LΩ → Ω . So there exists  

0K > , such that ( )2 p
m

Lu K D u
Ω
≤ . mD u  bounded by lemma 1. Then, (2.42) turns 

into  

( ) ( )2
3 1, , , .g u C p C K≤ Ω                      (2.43) 

Collecting with (2.43), from (2.41) we have  

( ) ( )( )
22

3, .
2 2

m
m D vC

g u v−∆ ≥ − −                      (2.44) 

By ( ) ( )0
mf x H∈ Ω  and Young’s inequality, we obtain  

( ) ( )( ) ( )( )
22 2

2

1, , .
22

m m m m mf x v D f x D v D f D vε
ε

−∆ = ≤ +         (2.45) 

Integrating (2.38) - (2.40), (2.44) - (2.45), from (2.37) entails  

( ) ( )2 2 2 2 22 2 2

22 2 2 22 2
32

1

d 2 2
d

d 12 2
d

qm m m m m

q qm m m m
m

D v D u D u D v D v
t

D u D u D u D f C
t

ε ε ε

εε ε
λ ε

 + − + − +  

 
+ − + − − ≤ + 
 

      (2.46) 

By Poincaré inequality, such that 
2 22

1
m m mD v D vλ ≤ . So, (2.46) turns into  

( ) ( )2 2 2 22 2
1

22 2 2 22 2
32

1

d 2 2
d

d 12 2
d

qm m m m m

q qm m m m
m

D v D u D u D v
t

D u D u D u D f C
t

ε λ ε ε

εε ε
λ ε

 + − + − −  

 
+ − + − − ≤ + 
 

      (2.47) 
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First, we take proper ε , such that 2
1 2 2 0mλ ε ε− − >  and 

2
0

qmD u ε− >  by Lam- 
ma 1. Then, we assume that there exists 0M > , such that 2 0M ε− >  and 

( ) 22 2 2 2

1

d0 2 2 .
d

q q qm m m
mM D u D u D u

t
εε ε ε
λ

< − ≤ − + − −  Then, formula is simplified 

to  

( )
22 2 2

1

d2 2 .
d

q qm m
mM D u D u M

t
εε ε ε
λ

− + ≤ − −                (2.48) 

By Gronwall’s inequality, we get  

( )

2
2

2 2 2 1
0

2
e .

2

mq q M tm m

M
D u D u

M
ε

εε ε
λ

ε
ε

−

− −
< ≤ +

−
              (2.49) 

On account of Lemma 1, we know 
2qmD u  is bounded. So the hypothesis is true. 

Namely, we prove that there are 0M > , makes  

( ) 22 2 2 2

1

d0 2 2 .
d

q q qm m m
mM D u D u D u

t
εε ε ε
λ

< − ≤ − + − −          (2.50) 

Substituting (2.50) into (2.47), we receive  

( ) ( )

( )

2 2 2 22 2
1

2 2 22
32

d 2 2
d

1 .

qm m m m m

qm m m

D v D u D u D v
t

M D u D u D f C

ε λ ε ε

ε
ε

 + − + − −  

+ − ≤ +
        (2.51) 

Taking { }2
1 1min 2 2 ,m Mα λ ε ε= − − , then  

( ) ( )
2

1 32

d 1 ,
d

mz t z t D f C
t

α
ε

+ ≤ +                   (2.52) 

where ( ) ( )2 2 22qm m mz t D v D u D uε= + − . By Gronwall’s inequality, we have  

( ) ( ) 1

2

32

1

1

0 e ,

m

t
D f C

z t z α ε
α

−
+

≤ +                   (2.53) 

where ( ) ( )2 2 22
1 0 0 00 .

qm m m mz D u D u D u D uε ε= + + −  

Let { }2

0
min 1,inf ,

qm

t
T D u ε

≥
= −  so we get  

( )
1

2

322 22

1

1
0

e ,

m

tm m
D f Cz

D v D u
T T

α ε
α

−
+

+ ≤ +             (2.54) 

Then  

( ) ( ) ( )2
0

2

322 22 2

1

1

lim , .m m

m

m m
H Ht

D f C
u v D u D v

T
ε

αΩ × Ω→∞

+
= + ≤        (2.55) 

So, there exists 1E  and ( )1 1 0t t= Ω > , such that  

( ) ( ) ( ) ( )2
0

2 22 2
1 1, , .m m

m m
H H

u v D u D v E t t
Ω × Ω

= + ≤ >           (2.56) 
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3. Global Attractor 
3.1. The Existence and Uniqueness of Solution 

Theorem 3.1. Assume (H1) - (H4) hold, and ( ) ( ) ( )2
0 1 0, m mu u H H∈ Ω × Ω , 

( ) ( )0
mf x H∈ Ω , tv u uε= + . So Equation (1.1) exists a unique smooth solution  

( ) ( )( ) ( ) ( ) ( )( )2
0, , , 0, ; .m mu x t v x t L H H∞∈ +∞ Ω × Ω               (3.1) 

Proof. By the Galerkin method, Lemma 1 and Lemma 2, we can easily obtain the ex-
istence of Solutions. Next, we prove the uniqueness of Solutions in detail. 

Assume ,u v  are two solutions of the problems (1.1) - (1.3), let w u v= − , then 
( ) ( ) ( ) ( )0 1,0 0, ,0 0tw x w x w x w x= = = =  and the two equations subtract and obtain  

( ) ( ) ( ) ( ) ( )
2 2

0.
q qm m mm m

tt tw w D u u D v v g u g v+ −∆ + −∆ − −∆ + − =       (3.2) 

By multiplying (3.2) by tw , we get  

( ) ( ) ( ) ( ) ( )( )2 2
, 0,

q qm m mm m
tt t tw w D u u D v v g u g v w+ −∆ + −∆ − −∆ + − =    (3.3) 

( ) 21 d, ,
2 dtt t tw w w

t
=                          (3.4) 

( )( ) 2
, ,m m

t t tw w D w−∆ =                        (3.5) 

( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )( )

2 2

2 2 2

2 2 2 1 2

2 2

,

, ,

1 d
2 d

, .

q qm mm m
t

q q qm mm m m
t t

q qm m m m m
t

q q mm m
t

D u u D v v w

D u w w D u D v v w

D u D w q D u D u D w
t

D u D v v w

−

−∆ − −∆

= −∆ + − −∆

= −

+ − −∆

         (3.6) 

Exploiting (3.4) - (3.6), we receive  

( )
( ) ( )( )

( ) ( )( )

2 2 22

2 1 2 2 2

d 2
d

2 2 ,

2 , .

qm m m
t t

q q q mm m m m m
t t

t

w D u D w D w
t

q D u D u D w D u D v v w

g u g v w

−

+ +

= − − −∆

− −

      (3.7) 

In (3.7), according to Lemma 1 and Lemma 2, such that  

( ) ( )( )
( )

( ) ( )

( ) ( ) ( )

2 1 2 2 2

2 12 1 2

2

4 5

2 25 5
4

2 2 ,

2 4

,

, ,
,

2 2

q q q mm m m m
t

qqm m m m m m m
t

m m
t

m
t

q D u D w D u D v v w

q D u D w q D u D v D u D w v w

C q D w C q D w w

C q C q
C q D w w

θ

θ

θ θ

−

−−

− − −∆

≤ + + − ∆

≤ +

 
≤ + + 
 

    (3.8) 

where ( )40 1, 0C qθ< < >  and ( )5 , 0C q θ >  are constants. 
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By (H4), we obtain  

( ) ( )( )
( )( )( )

( )( )

( )( )
( )( )

( )

( ) ( )

1
1 22

1

1
1

1 6 1

22
1 6 1 1 6 1

2 ,

2 1 ,

2 1

2 (1 1

2 1 1

2 , , ,

, , , , , , ,

t

t

t

p
t

p
t

m
t

m
t

g u g v w

g u v w w

g u v w w

C u v dx w w

C u v w w

C C p m D w w

C C p m w C C p m D w

θ θ

θ θ

θ θ

θ θ

θ λ

θ λ θ λ

−

Ω

−

− −

′= − + −

′≤ + −

≤ + + −

 ≤ + + − 
 

≤

≤ +

∫               (3.9) 

where ( )6 6 1, , , 0C C p mθ λ= >  is constant. 
From the above, we have  

( ) ( ) ( ) ( )2 2 22 25
4 1 6

,d .
d 2

qm m m
t t

C q
w D u D w C q C C w D w

t
θ 

+ ≤ + + + 
 

    (3.10) 

For (3.10), because 
2qmD u  is bounded. Then, there exists 0ε > , such that  

2qmD u ε≥ . So, we have  

( )
( ) ( )

( ) ( )

( )

2 22

25
4 1 6

2 24 5 1 6

2 22
7

d
d

,
)

2

,
2

,

qm m
t

t

qm m

qm m
t

w D u D w
t

C q
C q C C w

C q C q C C
D u D w

C w D u D w

θ

θ
ε ε ε

+

 
≤ + + 
 

 
+ + + 
 

≤ +

               (3.11) 

where ( ) ( ) ( ) ( )5 4 5 1 6
7 4 1 6

, ,
min , .

2 2
C q C q C q C C

C C q C C
θ θ

ε ε ε
  = + + + + 
  

 By using Gron-  

wall’s inequality for (3.11), we obtain  

( ) ( ) ( )( ) 7
2 2 2 2220 0 0 0 e 0.

q q C tm m m m
t tw D u D w w D u D w≤ + ≤ + =      (3.12) 

Hence , we can get 
2 22 0.

qm m
tw D u D w+ =  That shows that  

2 22 0, 0.
qm m

tw D u D w= =                       (3.13) 

That is  

( ), 0.w x t =                                (3.14) 

Therefore  

.u v=                                  (3.15) 

So we get the uniqueness of the solution.  
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3.2. Global Attractor 

Theorem 3.2. [10] Let E be a Banach space, and ( ){ }( )0S t t ≥  are the semigroup op-
erator on E. ( ) ( ) ( ) ( )( ) ( ): , , 0 , 0S t E E S t S t S t S Iτ τ τ→ + = ∀ ≥ = , where I is a unit 
operator.Set ( )S t  satisfy the follow conditions: 

1) ( )S t  is uniformly bounded, namely 0, ER u R∀ > ≤ , it exists a constant ( )C R , 
so that  

( ) ( ) [ )( )0, ;
E

S t u C R t≤ ∈ +∞                     (3.16) 

2) It exists a bounded absorbing set 0B E⊂ , namely, B E∀ ⊂ , it exists a constant 

0t , so that  

( ) ( )0 0 ;S t B B t t⊂ ≥                        (3.17) 

where 0B  and B  are bounded sets. 
3) When 0t > , ( )S t  is a completely continuous operator. Therefore, the semi-

group operator S(t) exists a compact global attractor  . 
Theorem 3.3. Under the assume of Lemma 1, Lemma 2 and Theorem 3.1, equa-

tions have global attractor  

( ) ( )0 0
0

,
t

B S t B
τ τ

ω
≥ ≥

= =


                      (3.18) 

where ( ) ( ) ( ) ( ){ }22
00

2 2 22
0 0 0 1, : , m mm m

m m
H HH H

B u v H H u v u v R R
×

= ∈ Ω × Ω = + ≤ + ,  0B   

is the bounded absorbing set of 2
0

m mH H×  and satisfies 
1) ( ) , 0S t t= >  ; 
2) ( )( )lim , 0

t
dist S t B

→∞
= , here 2

0
m mB H H⊂ ×  and it is a bounded set, 

( )( ) ( )( )2
0

, sup inf 0, .m mH Hyx B
dist S t B S t x y t

×∈∈
= − → →∞


           (3.19) 

Proof. Under the conditions of Theorem 3.1, it exists the solution semigroup S(t),  
( ) 2 2

0 0: m m m mS t H H H H× → × , here ( ) ( )2
0

m mE H H= Ω × Ω . 
(1) From Lemma 1 to Lemma 2, we can get that ( ) ( )2

0
m mB H H∀ ⊂ Ω × Ω  is a 

bounded set that includes in the ball ( ){ }2
0

, m mH H
u v R

×
≤ ,  

( )( )

( )( )
2 22

0 00

2 2 22 2
0 0 0 0

2
0 0

,

, 0, , .

m m m mm m H H H HH H
S t u v u v u v C

R C t u v B

×
= + ≤ + +

≤ + ≥ ∈
           (3.20) 

This shows that ( )( )0S t t ≥  is uniformly bounded in ( ) ( )2
0

m mH HΩ × Ω . 
(2) Furthermore, for any ( ) ( ) ( )2

0 0 0, m mu v H H∈ Ω × Ω , when { }0 1max ,t t t≥ , we 
have  

( )( ) 22
00

2 2 2
0 0 0 1, .m mm m H HH H

S t u v u v R R
×

= + ≤ +             (3.21) 

So we get 0B  is the bounded absorbing set. 
(3) Since ( ) ( ) ( ) ( )2 2 2

1 0 0: :m m mE H H E H L= Ω × Ω → = Ω × Ω  is compact embedded, 
which means that the bounded set in 1E  is the compact set in 0E , so the semigroup 
operator S(t) exists a compact global attractor  .  
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4. The Estimates of the Upper Bounds of Hausdorff and Fractal  
Dimensions for the Global Attractor 

We rewrite the problems (1.1) - (1.3):  

( ) ( )
2

2 in ,
qm

m m
tt tu A u A u A u g u f x R++ + + = Ω×               (4.1) 

( ) ( ) ( ) ( )0 1,0 ; ,0 , ,tu x u x u x u x x= = ∈Ω                  (4.2) 

( ) ( ), 0, 0 1, , 1 , in .
i

i

uu x t i m R
v

+
∂Ω

∂
= = = − ∂Ω×

∂
              (4.3) 

Let Au u= −∆ , where Ω  is a bounded domain in N  with smooth boundary 
∂Ω , q is positive constant, and m is positive integer. The linearized equations of the 
above equations as follows:  

,tU AU FU+ =                             (4.4) 

( )0 , 0 .tU Uξ ζ= =                            (4.5) 

Let ( )0 0
mU H∈ Ω , ( )U t  is the solution of problems (4.4) - (4.5). We can prove that the 

problems (4.4) - (4.5) have a unique solution ( )( ) ( )( )2
00, , , 0, , .m

tU L T H U L T L∞ ∞∈ Ω ∈ Ω  
The equation (4.4) is the linearized equation by the Equation (4.17). Define the  
mapping ( ) ( ) ( )

0 0
:u uLs t Ls t U tζ = , here ( ) ( ) 0u t s t u= , let ( )0 0 1,u uϕ = , 

{ } { }0 0 0 1, ,u uϕ ϕ ξ ζ ξ ζ= + = + + , let 
00 1E Rϕ ≤ , 

0
0 2E

Rϕ ≤ , ( ) ( )2
0 0 ŁmE H= Ω × Ω , 

( ) ( ) ( ) ( ){ }0 , tS t t u t u tϕ ϕ= = , ( ) ( ) ( ){ }0 , tS t t tϕ ϕ ϕ= . 

Lemma 4.1 [6] Assume H is a Hilbert space, 0E  is a compact set of H.  
( ) 0:S t E H→  is a continuous mapping, satisfy the follow conditions. 
1) ( ) 0 0 , 0S t E E t= > ; 
2) If ( )S t  is Fréchet differentiable, it exists is a bounded linear differential operator 
( ) ( )( )0 0 0, ; , , 0L t C R L E E tϕ +∈ ∀ > , that is 

( ) ( ) ( )( )

{ }
{ }0

0

2

0 0 0

2

, ,
0, , 0.

,
E

E

S t S t L t u vϕ ϕ ϕ
ξ ζ

ξ ζ

− −
→ →  

The proof of lemma 4.1 see ref. [6] is omitted here. According to Lemma 4.1, we can 
get the following theorem : 

Theorem 4.1. [6] [7] Let   is the global attractor that we obtain in section 3.In 
that case,   has finite Hausdorff dimensions and Fractal dimensions in  

( ) ( )2
0

m mH HΩ × Ω  ,that is ( ) ( ) 6,
5 5H F
n nd d≤ ≤  . 

Proof. Firstly, we rewrite the equations (4.1), (4.2) into the first order abstract evolu-
tion equations in 0E . 

Let { }, tR u u uεϕ εΨ = = + , let { } { }: , ,t tR u u u u uε ε→ + , is an isomorphic map-
ping. So let   is the global attractor of ( ){ }S t , then Rε  is also the global attractor 
of ( ){ }S tε , and they have the same dimensions. Then Ψ  satisfies as follows:  
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( ) ,t g fεΨ + Λ Ψ + Ψ =                          (4.6) 

( ) { }T
0 1 00 , ,u u uεΨ = +                          (4.7) 

where { } ( ) ( ){ } ( ){ }T TT, , 0, , 0, ,tu u u g g u f f xεΨ = + Ψ = =   

2
22

,qm
m m m

I I

A u A A I A Iε

ε

ε ε ε

− 
 

Λ =  
− + − 

 

                   (4.8) 

( ) ( ): ,t F f gεΨ = Ψ = −Λ Ψ − Ψ                        (4.9) 

( ) ,t tP F= Ψ                               (4.10) 

( ) 0,t tP P g Pε+ Λ + Ψ =                          (4.11) 

where { } ( ) ( ){ }TT, , 0,t t tP U U U g P g u Uε= + Ψ = . The initial condition (4.5) can be 
written in the following form:  

( ) { } 00 , , .P Eω ω ξ ζ= = ∈                        (4.12) 

We take n N∈ , then consider the corresponding n solutions: 

( )1 2 0, , , ;n jP P P P P E= ∈  of the initial values: ( )1 2 0, , , ;n j Eω ω ω ω ω= ∈  in the 
Equations (4.10) - (4.11). So there is 

( ) ( ) ( ) ( )( ) ( )00

00

d
1 2 1 2 e

t
t n

nn
EE

TrF S Q
n nP t P t P t ε τ τ τω ω ω Ψ ⋅

∧∧
∫∧ ∧ ∧ = ∧ ∧ ∧ ⋅  . from 

( ) ( ) 0Sεψ τ τ= Ψ , we get ( ) { } ( ) ( ) ( ) ( ){ }0 1 1 0: , , ,tS u v u u u v u uε τ ε τ τ τ ε τ= + → = +   
( ) ( ) ( ) ( ) ( ){ }, t tu v u uψ τ τ τ τ ε τ= = + , here u is the solution of problems (4.1)-(4.3); ∧  

represents the outer product, Tr reprsents the trace, ( ) ( )0 1 2, ; , , ,n n nQ Qτ τ ω ω ω= Ψ   
is an orthogonal projection from the space 0E = ×   to the subspace spanned by 

( ) ( ) ( ){ }1 2, , , nP P Pτ τ τ . 
For a given time τ , let ( ) ( ) ( ){ }, , 1, 2, ,j j j j nφ τ ξ τ ζ τ= =  . ( ){ } 1,2, ,j j n

φ τ
= 

 is the  

standard orthogonal basis of the space ( ) ( ) ( ) ( )
0 1 2, , ,n nEQ span P P Pτ τ τ τ=    . 

From the above, we have  

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )
0

0

1

1

,

, ,

t n t n j j Ej

n

t j j Ej

TrF Q F Q

F

τ τ τ τ φ τ φ τ

τ φ τ φ τ

∞

=

=

Ψ ⋅ = Ψ ⋅

= Ψ

∑

∑
          (4.13) 

where ( )
0

, E⋅ ⋅ is the inner product in 0E .Then { } { }( ) ( ) ( )
0

, , , , ,
E

ξ ζ ξ ζ ξ ξ ζ ζ= + ;  
( )( ) ( ) ( )( )

0 0
, , ,t j j j j t j jE E

F g uεφ φ φ φ ξ ξΨ = − Λ − . 

( ) ( )( ) ( ) ( )

( )( ) ( )

( )

2
2 22 2

2
2 2 22 2

2 2

, 1 , , ,

1 , ,

,

qm
m m

j j j j j j j j j j

qm

j j j j j j j j j

j j

A u A A

A u

a

εφ φ ε ξ ε ξ ζ ε ξ ζ ζ ζ ε ζ

ε ξ ε ξ ζ λ ε ξ ζ λ ζ ε ζ

ξ ζ

 
 Λ = + − + − + −
 
 
 
 = + − + − + −
 
 

≥ +

(4.14) 
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where 

( )
2 2

2 22 22 1 2 1

: min ,
2 2

q qm m

j j jA u A u

a

ε ε ε λ λ ε ε ε λ
       
       + − + − − + − + −
              =  
 
 
  

 

Now, suppose that { }0 1,u u ∈ , according to theorem 3.3,   is a bounded absorb-
ing set in 1E . ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) { }1, , ; ,tt u t u t u t E u t D A D A u AuεΨ = + ∈ ∈ = ∈ ∈  . 

Then there is a [ ]0,1s∈  to make the mapping ( ) ( ): ,t sg D A ρ→   . At the same 
time, there are the following results:  

{ }

( )
( ) ( )

,

,

sup ;

sup

A

A

t vsu D A
Au R

R A

g u r
ξ ζ

ρ

ξ
∈

∈
<

= < ∞

≤ < ∞




                       (4.15) 

where ( ) ,t j jg u ξ ζ  meets: ( ) ,t j j j js
g u rξ ζ ξ ζ≤ . Comprehensive above can be 

obtained:  

( )( ) ( )
( )

0

2 2

22 2 2

, .

.
2 2

t j j j j j jE s

j j j s

F a r

a r
a

φ φ ξ ζ ξ ζ

ξ ζ ξ

Ψ ≤ − + +

≤ − + +
              (4.16) 

0

2 2 2
1j j j E

ξ ζ φ+ = = , due to ( ){ } 1,2, ,j j n
φ τ

= 

 is a standard orthogonal basis in 
( )

0n EQ τ . So  

( )( ) ( ) ( )( )
0

2 2

1
, .

2 2

n

t j j j sEj

na rF
a

τ φ τ φ τ ξ
=

Ψ ≤ − +∑                (4.17) 

Almost to all t, making  
12 1

1 1
.

n n
s

j js
j j

ξ λ
−

−

= =

≤∑ ∑                           (4.18) 

So 

( )( ) ( )
2 1

1

1
.

2 2

n
s

t n j
j

na rTrF Q
a

τ τ λ
−

−

=

Ψ ⋅ ≤ − + ∑                  (4.19) 

Let us assume that { }0 1,u u ∈ , is equivalent to { }0 0 1 0, .u u u RεεΨ = + ∈   Then  
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         (4.20) 

According to (4.19), (4.20), so  
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Therefore, the Lyapunov exponent of   (or Rε ) is uniformly bounded.  
2

1
1 2

1
.

2 2

n
s

n j
j

na r
a

µ µ µ λ −

=

+ + ⋅⋅⋅ + ≤ − + ∑                  (4.22) 

From what has been discussed above, it exists 1n ≥ , a and r are constants, then  
2

1
2

1

1 ,
6

n
s
j

j

a
n r

λ −

=

≤∑                           (4.23) 

2
1

2
1

51 ,
2 12

n
s

n j
j

na r naq
a

λ −
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≤ − − ≤ − 

 
∑                   (4.24) 

( )
2

1

1
, 1, 2, , ,

2 12

j
s

j i
i

r naq j n
a

λ −

+
=

≤ ≤ =∑                   (4.25) 

( )
1 1

1max .
5

j

j n
n

q

q
+

≤ ≤ −
≤                          (4.26) 

According to the reference [6] [7], we immediately to the Hausdorff dimension and 
fractal dimension are respectively ( ) ( ) 6,

5 5H F
n nd d≤ ≤  .  

5. Conclusion 

In this paper, we prove that the higher-order nonlinear Kirchhoff equation with linear 
damping in ( ) ( ) ( )( )2

00, ; m mL H H∞ +∞ Ω × Ω  has a unique smooth solution ( ), tu u . Fur- 
ther, we obtain the solution semigroup ( ) ( ) ( ) ( ) ( )2 2

0 0: m m m mS t H H H HΩ × Ω → Ω × Ω  
has global attractor  . Finally, we prove the equation has finite Hausdorff dimensions 
and Fractal dimensions in ( ) ( ) ( )( )2

00, ; m mL H H∞ +∞ Ω × Ω . 
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